Vol. 10 No. 2, Hlm. 409-418, Agustus 2018 http://journal.ipb.ac.id/index.php/jurnalikt DOI: http://dx.doi.org/10.29244/jitkt.v10i2.21148

DESAIN FREEBOARD MINIMUM TERHADAP KESELAMATAN DAN PENGURANGAN BIAYA OPERASIONAL KAPAL PERIKANAN 30 GT DI PERAIRAN SULAWESI (STUDI KASUS KM INKA MINA 759)

MINIMUM FREEBOARD DESIGN ON SAFETY AND OPERATIONAL COST REDUCING OF A 30 GT FISHING VESSEL IN SULAWESI WATERS (CASE STUDY OF KM INKA MINA 759)

Andi Haris Muhammad*, Baharuddin, dan Hasnawiya Hasan

Departemen Teknik Sistem Perkapalan, FTUH, Makassar *E-mail: andi haris@ft.unhas.ac.id

ABSTRACT

Fishing vessels are generally designed with special missions to locate, capture, and preserve fish, while the vessel must have a good level of safety, low operation costs and environmentally friendly. This study aims to improve the safety level and reduce operational cost of 30 GT fishing vessel through minimum freeboard design. Maxsurf program package has been used in dimension modeling, hull form design, stability and resistance prediction on 4 (four) hull form models analyzed $(K_1, K_2, K_3 \text{ and } K_4)$. The results show that the hull form of K_2 with the wider dimension ratio (L/B=4.98, B/D=3.26, B/T=4.80, D/T=1.47) has a level of stability better than 3 (three) other hull form models $(K_1, K_3 \text{ and } K_4)$, while the highest reduction of resistance value is shown by hull form model of K_3 with a slimmer main dimension ratio (L/B=6.43, B/D=2.78; B/T=4.09; D/T=1.47). In general, the four models of hull forms analyzed deserve to be operated in accordance with the IMO criteria.

Keywords: fishing vessel, minimum freeboard, safety and economical

ABSTRAK

Kapal perikanan umumnya dirancang dengan misi khusus untuk menemukan, menangkap, dan mengawetkan ikan, sementara itu kapal harus memiliki tingkat keselamatan yang baik, biaya operasional yang rendah serta ramah lingkungan. Penelitian ini bertujuan untuk meningkatkan tingkat keselamatan dan pengurangan biaya operasional kapal perikanan 30 GT melalui desain *freeboard* minimum. Paket program Maxsurf telah digunakan dalam pemodelan dimensi, desain bentuk kasko, prediksi stabilitas dan resistensi pada 4 (empat) model kasko yang dianalisis (K_1 , K_2 , K_3 dan K_4). Hasil penelitian menunjukkan bahwa bentuk kasko K_2 dengan rasio dimensi utama lebih lebar (L/B=4,98; B/D=3,26; B/T=4,80; D/T=1,47) memiliki tingkat stabilitas yang lebih baik dibandingkan 3 (tiga) model kasko lainnya (K_1 , K_3 dan K_4), sementara pengurangan nilai resistensi tertinggi ditunjukkan oleh model bentuk kasko K_3 dengan rasio dimensi utama lebih ramping (L/B=6,43; B/D=2,78; B/T=4,09; D/T=1,47). Secara umum, keempat model bentuk kasko yang dianalisis layak dioperasikan sesuai dengan kriteria IMO.

Kata kunci: kapal perikanan, freeboard minimum, stabil dan ekonomis

I. PENDAHULUAN

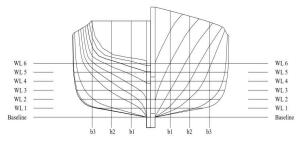
Sejumlah teknologi penghematan energi pada kapal telah diterapkan untuk mengurangi konsumsi bahan bakar dan emisi gas buang ke atmosfer, hal ini terkait dengan peningkatan harga produk minyak yang digunakan pada kapal (biaya bahan bakar, minyak dan pelumas adalah 50-80% dari

biaya operasi kapal) dan sesuai dengan persyaratan *IMO* (*International Maritime Organisation*) terkait dengan perlindungan lingkungan. Behrendt (2014) menjelaskan teknologi hemat energi yang pernah diterapkan pada sejumlah kapal perikanan, pengurangan terbesar bahan bakar kapal yaitu berkisar 8-10% melalui pengoptimuman bentuk kasko.

Pengoptimuman bentuk kasko kapal dapat menyebabkan pengurangan konsumsi bahan bakar minyak melalui pengurangan total resistensi kapal (R_T) . Pengoptimuman ini signifikan dipengaruhi oleh rasio panjang terhadap lebar kapal (L/B) dan rasio lebar terhadap sarat kapal (B/T) serta koefisien balok kapal (Cb). Karakteristik sejumlah kapal perikanan dengan alat tangkap purse seine vang beroperasi di perairan Sulawesi umumnya memiliki bentuk kasko yang ramping dengan stabilitas yang baik (Nurdin et al., 2013, Muhammad et al., 2015 dan Azis et al., 2017). Fenomena berkembang saat ini, kapal perikanan selain di desain berdasarkan rasio L/B, B/T dan rasio tinggi terhadap sarat kapal (D/T) yang sesuai dengan pemenuhan kecepatan serta kriteria keselamatan kapal. Hendaknya pula kapal perikanan didesain untuk mampu menahan beban samping ketika kapal menarik peralatan tangkap (purse seiner), kapal memiliki geladak kerja yang luas dan mudah menaikan hasil tangkapan ke geladak melalui rancangan kapal dengan rasio D/Tvang relatif rendah atau freeboard minimum.

Freeboard atau lambung timbul adalah jarak vertikal antara garis geladak lambung timbul ke arah bawah hingga sisi atas garis muat yang diukur pada tengah kapal. Kuroda et al. (2003)dalam penelitiannya menyampaikan bahwa kapal dengan D/T yang relatif rendah atau freeboard minimum umumnya terhadap risiko terbalik (capsizing) dibanding dengan kapal yang memiliki freeboard yang lebih tinggi. Saat kapal dioperasikan dengan kondisi laut bergelombang yang dipengaruhi oleh panjang dan tinggi gelombang serta kecepatan operasi kapal. Kapal dengan freeboard minimum sangat rentan terhadap bahaya kehilangan stabilitas (pure loss stability) (Chorab, 2014). Namun kondisi tersebut diatas membaik melalui penambahan lebar kapal (B) dan pengaturan titik GM (Paroka dan Umeda, 2007). Penelitian ini bertujuan untuk meningkatkan tingkat biaya keselamatan pengurangan dan

operasional kapal perikanan 30 GT melalui pemodelan desain *freeboard* minimum.


II. METODE PENELITIAN

2.1. Waktu dan Tempat Penelitian

Penelitian dilaksanakan selama 8 Bulan (April - November 2017) yang berpusat di Laboratorium Riset Propulsi Kapal, Departemen Teknik Sistem Perkapalan, Fakultas Teknik Universitas Hasanuddin.

2.2. Bahan dan Data

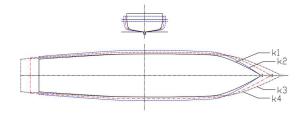
Kapal perikanan sebagai sampel dalam penelitian ini adalah KM INKA MINA 759 yang beroperasi di perairan Sulawesi. Kapal berkapasitas 30 GT dengan alat tangkap tipe purse-seiner, daya motor propulsi (P_B=170 hp) dan dioperasikan pada kecepatan jelajah (Vs=11 knot). KM INKA MINA 759 merupakan kapal yang memiliki rasio dimensi utama masuk dalam rentang ukuran kasko kapal pada umumnya di Indonesia, khususnya kelompok encircling gear (Iskandar dan Pujiati, 1995) dan kapal tersebut memiliki karakteristik performa yang baik (Muhammad et al., 2015 dan 2017). Kapal dioperasikan dengan dua (2) kondisi pemuatan yaitu; i) Kondisi pemuatan penuh; kapal beroperasi dan meninggalkan lokasi penangkapan (fishing ground) dengan pemuatan penuh (Δ_P =65,71 ton); ii) Kondisi kosong; kapal meninggalkan pemuatan beroperasi pelabuhan dan di lokasi penangkapan dengan pemuatan kosong (Δ_K =46.67 ton). Bentuk model kasko dan data dimensi utama kapal sampel sebagaimana Gambar 1 dan Tabel 1.

Gambar 1. Bentuk model kasko kapal sampel (K_I) .

Tabel 1. Dimensi utama kapal sampel (K_1) .

Uraian	Dimensi
Panjang keseluruhan,	26,30
Loa (m)	_ = = ,= =
Lebar, B (m)	4,50
Tinggi, D (m)	1,80
Sarat, $T(m)$	1,20
Kecepatan jelajah,	11
V_S (knot)	11
Displasmen penuh,	<i>(5.</i> 71
Δ_P (ton)	65,71
Koefisien prismatik	0,618

2.3. Metode Analisis


Pemodelan bentuk kasko merupakan tahap awal dalam desain freeboard minimum (f=D-T), dimana pemodelan ini penting untuk mengetahui bentuk dan karakteristik model kasko yang dihasilkan. Paket Program Maxsurf digunakan dalam pemodelan model sesuai dengan displasmen koefisien primastik kapal sampel. Pendekatan penentuan desain freeboard minimum $(f \ge$ D/15+0.2) dijadikan acuan dalam pemodelan sebagaimana yang disyaratkan pada desain kapal perikanan pemerintah Jepang pada tinggi kasko (D < 6 m) dan panjang (L < 40 m)(Kuroda et al., 2003). Persamaan diatas memiliki korelasi dalam penentuan freeboard minimum kapal yang beroperasi di perairan Pinrang dan Bulukumba Sulawesi Selatan sebagaimana maisnh-masing data kapal dalam penelitian Azis et al. (2017) dan Nurdin *et al.* (2013).

Terdapat empat (4) bentuk model kasko yang yang akan dianalisis dalam penelitian ini (termasuk kapal sampel): i) Kasko 1 (K_1) merupakan model kasko kapal sampel; ii) Kasko 2 (K_2) merupakan model kasko dengan penurunan freeboard (f) melalui penambahan lebar kapal (Bwl); iii) Kasko 3 (K3) merupakan model kasko dengan penurunan freeboard (f) melalui penambahan panjang kapal (Lwl)selanjutnya; iv) Kasko 4 (K_4) merupakan model kasko dengan penurunan freeboard (f) melalui kombinasi penambahan lebar (Bwl)

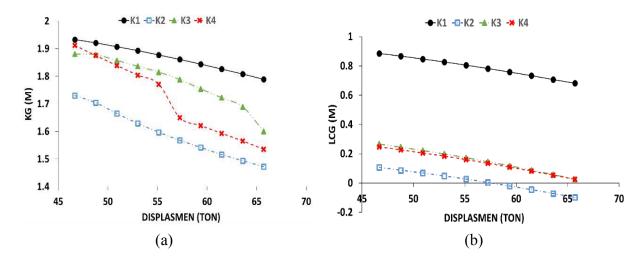
dan panjang kapal (Lwl). Untuk melihat tingkat keselamatan kapal hasil pemodelan, analisis stabilitas model kasko diperlukan, khususnya pada kondisi: i) kondisi pemuatan penuh; ii) kondisi pemuatan kosong serta; iii) kondisi saat terjadinya perubahan titik berat vertikal (KG). Analisis stabilitas (intact stability) dalam menentukan tingkat kestabilan kapal (GZ) pada kondisi laut tidak bergelombang didasarkan pada kriteria IMO-A749 (2002). Selanjutnya untuk melihat pengurangan biaya operasional kapal yang bersumber dari jumlah bahan bakar minyak vang digunakan, prediksi resistensi pada kondisi pemuatan penuh dan kosong perlu dianalisis. Prediksi resistensi model kasko menggunakan Metode Holtrop (Holtrop and Mennen, 1982 dan Holtrop, 1984).

III. HASIL DAN PEMBAHASAN

Gambar 2 menampilkan 4 (empat) model kasko hasil pemodelan melalui Paket Program Maxsurf pada displasmen penuh $(\Delta_P=65.71 \text{ Ton})$ dan koefisien prismatik $(C_P=0.618)$ sebagaimana data kapal sampel pada Tabel 1. Kasko 1 (K_1) merupakan model kasko kapal sampel sebagaimana dimensi utama pada Tabel 1. Kasko 1 (K_l) tersebut merupakan kasko standar dalam pemodelan Kasko K_2 , K_3 dan K_4 . Kasko hasil pemodelan $(K_2, K_3 \text{ dan } K_4)$ masing-masing memiliki dimensi tinggi (D) dan sarat (T) yang lebih rendah yaitu sebesar 17% dan 15% dibanding Kasko 1 (K_1) , hal ini dikarenakan penurunan freeboard kapal. Namun demikian untuk mempertahankan displasmen dan koefisien prismatik kapal ketiga kasko hasil pemodelan memiliki penambahan lebar sebesar 15% pada kasko 2 (K_2) , penambahan panjang 9.3% pada kasko $3 (K_3)$ dan penambahan lebar dan panjang masing-masing 7,7% dan 7,9% pada kasko 4 (K_4) . Hasil pemodelan freeboard (H-T) yaitu sebesar 0,48 m, desain freeboard ini lebih sebagaimana disyaratkan besar pada pemerintah Jepang yaitu minimal 0,3 m. Dimensi utama model kasko hasil pemodelan ditampilkan sebagaimana pada Tabel 2.

Gambar 2. Bentuk model kasko kapal sampel dan hasil pemodelan.

Tabel 3 menampilkan rasio dimensi kasko kapal hasil pemodelan (K_2 , K_3 , dan K_4). Rasio dimensi tersebut masuk dalam rentang ukuran kasko kapal pada umumnya di Indonesia untuk kelompok *encircling gear* (Iskandar dan Pujiati, 1995), kecuali rasio L/D pada Model Kasko K_3 lebih besar sebagaimana acuan tersebut. Iskandar dan Pujiati (1995) menyebutkan bahwa semakin besar nilai L/D maka akan berdampak pada lemahnya kekuatan memanjang kapal.


Sesuai dengan misi dan operasi kapal perikanan, kapal senantiasa mengalami perubahan pemuatan yang bergantung pada jumlah hasil tangkapan. Perubahan pemuatan secara langsung berdampak pada perubahan titik berat baik secara tegak maupun memanjang kapal. Gambar 3a dan 3b menunjukan perkiraan batasan titik berat tegak maksimal (KG) dan memanjang (LCG) yang didasarkan pada displasmen kapal melalui bantuan Paket Program Hidromax. KG atau jarak tegak antara lunas dan titik berat kapal sebagaimana Gambar 3a, model kasko K_I diprediksi memiliki KG maksimum tertinggi sesuai ketentuan IMO A (749) 18 yaitu 1,79 m pada muatan penuh ($\Delta P = 65,71$ ton) dan 1,93 m pada muatan kosong ($\Delta_K =$ 46,67 ton), nilai ini lebih tinggi dibanding tiga model kasko lainnya sebagaimana ditampilkan pada Tabel 4. Pergeseran titik KG ini selain dipengaruhi pergeseran displasmen kapal, juga dipengaruhi oleh bentuk kasko kapal atau rasio B/D (Zhao, 1997).

Tabel 2. Dimensi utama model kasko kapal sampel dan hasil pemodelan.

Dimensi		Model kasko					
Dimensi	K_1	K_2	K_3	K_4			
Panjang keseluruhan (<i>Loa</i>),m	26,30	26,25	30,74	28,42			
Panjang (Lwl), m	24,35	24,35	26,85	26,45			
Lebar (Bwl), m	4,17	4,89	4,17	4,52			
Tinggi (D) , m	1,80	1,50	1,50	1,50			
Sarat (T) , m	1,20	1,02	1,02	1,02			
Freeboard (<i>D-T</i>)	0,60	0.48	0,48	0,48			
Freeboard (Pers. 1)	0,32	0,30	0,30	0,30			
Displasmen penuh (Δ_P), ton	65,74	65,77	65,74	65,74			
Koefisien balok (Cb)	0,45	0,45	0,45	0,45			

Tabel 3. Rasio dimensi model kasko kapal sampel dan hasil pemodelan.

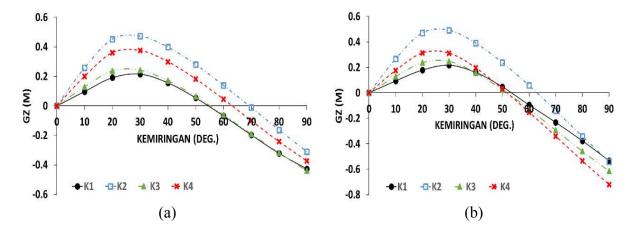
Rasio	Nilai Acuan	Model kasko					
Nasio	(Iskandar dan Pujiati, 1995)	K_1	K_2	K_3	K_4		
L/B	2,60-9,30	5,84	4,98	6,43	5,85		
L/D	4,55-17,45	13,53	16,23	17,90	17,63		
B/D	0,56-5,00	2,32	3,26	2,78	3,01		
B/T	-	3,48	4,80	4,09	4,43		
D/T	-	1,50	1,47	1,47	1,47		

Gambar 3. Titik berat (*KG* dan *LCG*) kasko kapal. (a) *KG* model kasko dan (b) *LCG* model kasko.

Tabel 4. Displasmen dan titik berat model kasko kapal.

	Pemuatan penuh (Δ_P)				Pemuatan kosong (Δ_K)			
Kondisi kapal		Model kasko			Model kasko			
	K_1	K_2	K_3	K_4	K_1	K_2	K_3	K_4
Displasmen, ton	65,71	65,71	65,71	65,71	46,67	46,67	46,67	46,67
<i>KG</i> , m	1,789	1,472	1,6	1,535	1,933	1,73	1,88	1,912
LCG, m	0,681	-0,099	0,026	0,024	0,885	0,227	0,266	0,246

Gambar menampilkan kurva stabilitas statis 4 (empat) model kasko (K_L K_2 , K_3 dan K_4), sesuai kriteria *IMO* ke empat kasko analis model yang di aman dioperasikan. Model kasko K_1 (B/D=2,32) dengan displasmen pemuatan penuh (Δ_P = 65,71 ton), diasumsikan saat kapal beroperasi meninggalkan lokasi penangkapan (fishing ground). Hasil analisis menunjukkan bahwa model kasko K₁ dengan nilai GZ maksimum sebesar 0,215 m.rad pada sudut 28°, nilai GZ maksimum yang dibentuk ini lebih besar 0,015 sebagaimana yang disyaratkan IMO vaitu 0,200 m.rad. Selanjutnya berturut-turut hasil analisis stabilitas model kasko K_3 (B/D=2,78) memiliki nilai GZ maksimum sebesar 0,241 m.rad pada sudut 25°; model kasko K_4 (B/D=3,01) memiliki nilai GZ maksimum sebesar 0,375 m.rad pada sudut 25°; model kasko K_2 (B/D=3,26) memiliki nilai GZ maksimum sebesar 0,473 m.rad pada sudut 26°. Nilai GZ model kasko K2 ini


lebih tinggi masing-masing 55%, 49 % dan 21% dibanding dengan desain model kasko K_1 , K_3 dan K_4 .

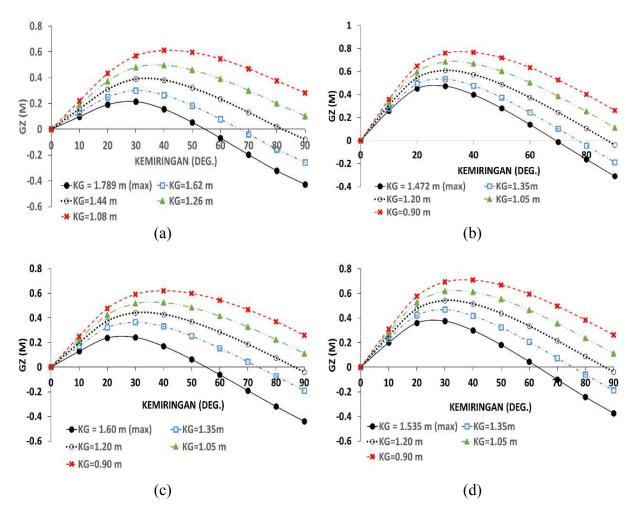
Selanjutnya analisis stabilitas statis masing-masing model kasko pada muatan kosong ($\Delta P = 46,67$ ton), diasumsikan saat kapal meninggalkan pelabuhan atau beroperasi di lokasi penangkapan. Hasil simulasi menunjukkan sebagaimana pada muatan penuh, model kasko K_2 memiliki nilai GZmaksimum sebesar 0,492 m.rad pada sudut 26°. Nilai *GZ* model kasko *K*² ini lebih tinggi masing-masing 55%, 49% dan 36 % dibanding dengan desain model kasko K₁, K₃ dan K4 dengan nilai GZ maksimum masingmasing sebesar 0,217, 0,247 m.rad dan 0,312 m.rad pada sudut 29°, 26° dan 25°. Sesuai nilai GZ maksimum dari masing-masing model kasko yang di analis menunjukkan bahwa model kasko K2 memiliki stabilitas yang baik. Meningkatnya tingkat stabilitas kapal secara langsung meningkatkan

keselamatan kapal saat dioperasikan. Hasil lengkap simulasi pengujian stabilitas awal berdasarkan titik *KG* maksimum ditampilkan sebagaimana pada Tabel 5.

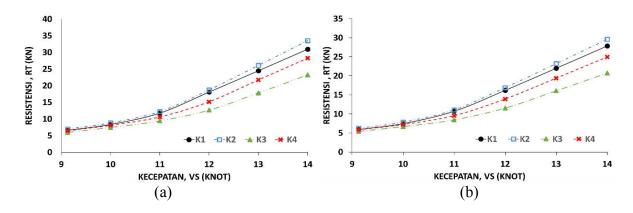
Tingginya nilai GZ pada model kasko K_2 , K_3 dan K_4 dibanding kapal sampel (K_I) pada 2 (dua) kondisi pengujian (muatan penuh dan kosong) sangat signifikan dipengaruhi oleh meningkatnya rasio B/D, namun sebaliknya model kasko K_I memiliki sudut GZ maksimum terbesar dibanding model kasko K_2 , K_3 dan K_4 , besarnya sudut

GZ maksimum ini dipengaruhi rasio D/T atau kapal memiliki *freeboard* yang lebih besar. Hasil serupa seiring dengan meningkatnya rasio B/D dapat meningkatkan nilai GZ ditunjukkan pula dalam penelitian Nurdin *et al.* (2014) dan Azis *et al.* (2017) pada masing-masing sampel kapal perikanan yang beroperasi di perairan Pinrang dan Bulukumba Sulawesi Selatan serta penelitian Susanto *et al.* (2011) pada kapal sampel di Palabuhanratu Jawa Barat.

Gambar 4. Kurva stabilitas statis model kasko kapal dengan *KG* Maksimum. (a) Pemuatan penuh dan (b) Pemuatan kosong.


Tabel 5. Nilai stabilitas statis model kasko kapal dan nilai rekomendasi *IMO*.

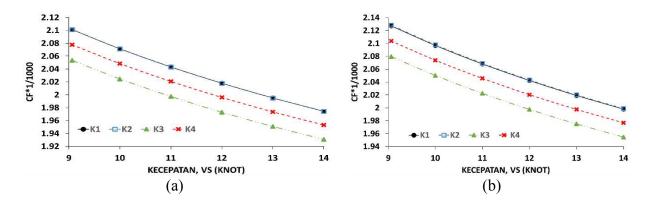
	Pemuatan Penuh				Pemuatan Kosong					
Kriteria IMO		(Δ_P)			(Δ_K)					
A.749(18)		Model	Kasko			Model Kasko				
	K_1	K_2	K_3	K_4	K_1	K_2	K_3	K_4		
Luas $0-30 \ge 3,151$ (m.deg)	4,055	9,730	4,992	7,678	3,898	10,120	5,030	6,658		
Luas $0-40 \ge 5,157$ (m.deg)	5,968	14,135	7,092	11,103	5,858	14,604	7,110	9,273		
Luas $30-40 \ge 1,719$ (m.deg)	1,914	4,405	2,100	3,426	1,961	4,483	2,080	2,615		
Maks GZ pada 30 \geq 0,2 (m)	0,215	0,473	0,241	0,375	0,217	0,492	0,247	0,312		
Sudut maks, $GZ \ge 25$ (deg)	28	26	25	26	29	26	26	25		
GMt awal \geq 0,150 (m)	0,576	1,490	0,726	1,158	0,536	1,552	0,736	1,023		


Selain dipengaruhi rasio B/D, nilai GZ pula sangat dipengaruhi tinggi titik berat (KG) sesuai pengaturan muatan (Marjoni et al., 2010 dan Novita et al., 2014). Gambar 5 menampilkan kurva hasil simulasi stabilitas statis terhadap penurunan titik berat kapal pada masing-masing model kasko $(K_1, K_2, K_3 \text{ dan } K_4)$. Penurunan nilai KG melalui pengaturan letak palka ikan, pemilihan dan penempatan jenis material kasko dan bangunan atas serta peletakan permesinan dan perlengkapan kapal. Selanjutnya dengan meningkatnya nilai GZ secara langsung dapat meningkatkan rentang stabilitas kapal.

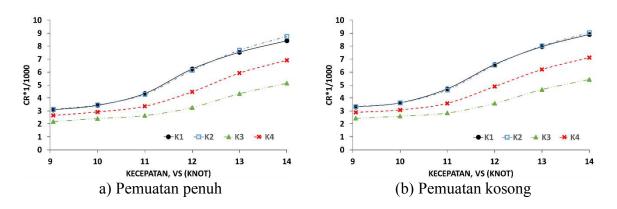
Gambar 6 menunjukkan hasil prediksi resistensi model kasko antara kecepatan 9 – 14 knot. Pada kecepatan jelajah (*V_S*=11 knot) terdapat pengurangan resistensi sebesar

19,89% untuk model kasko K_3 (L/B=6,43) dan 9.94% untuk model kasko K_4 (L/B=5.85) dibanding model kasko K_1 (kapal sampel) (L/B=5,84), sementara untuk model kasko K_2 (L/B=4,98) terjadi penambahan resistensi sebesar 3,82%. Lebih lanjut seiring dengan penambahan kecepatan pada model kasko K₃ terjadi pengurangan resistensi berturut-turut sebesar 29,97% dan 27,12% pada kecepatan V_S =12 knot dan V_S =13 knot, fenomena penurunan resistensi ini terjadi pula pada model kasko K_4 , namun pada model kasko K_2 sebaliknya. Pengurangan atau penambahan besaran resistensi ini dipengarui sebagai akibat rasio L/B. Rekapitulasi hasil prediksi resistensi model kasko ditampilkan pada Tabel 6.

Gambar 5. Kurva stabilitas statis model kasko dengan variasi KG. (a) Model kasko K_1 , (b) Model kasko K_2 , (c) Model kasko K_3 , dan (d) Model kasko K_4 .


Gambar 6. Kurva resistensi total model kasko kapal. (a) Pemuatan penuh dan (b) Pemuatan kosong.

Tabel 6. Prediksi resistensi total model kasko kapal.


Vacanatan	Pemuatan penuh (Δ_P)				Pemuatan kosong (Δ_K)				
Kecepatan (knot)		Model kasko				Model kasko			
(KIIOt)	K_1	K_2	K_3	K_4	K_1	K_2	K_3	K_4	
9	6,60	6,98	5,96	6,45	5,92	6,24	5,42	5,84	
10	8,37	8,84	7,45	8,09	7,46	7,83	6,67	7,21	
11	11,76	12,21	9,42	10,59	10,70	11,07	8,45	9,54	
12	18,08	18,73	12,66	15,16	16,20	16,92	11,54	13,92	
13	24,48	26,09	17,84	21,72	22,00	23,23	16,07	19,39	
14	30,96	33,52	23,27	28,27	27,86	29,63	20,75	24,95	

Lebih lanjut penurunan resistensi total kapal yang dikarenakan perubahan rasio dimensi kapal atau rasio dimensi freeboard sangat mempengaruhi besaran koefisien tahanan gesek dan gelombang (sisa). Gambar 7a dan 7b masing-masing menampilkan kurva prediksi koefisien gesek (C_F) sebagai koefisien pembentuk resistensi total kapal $(C_T=C_F+C_R)$ antara kecepatan 9–14 knot pada pemuatan penuh dan kosong. Koefisien gesek atau koefisien yang dibentuk akibat adanya gesekan aliran terhadap permukaan kulit kasko senantiasa berkurang seiring dengan penambahan kecepatan kapal, namun sebaliknya koefisien resistensi gelombang (Gambar 8a dan 8b), menurunnya koefisien disebabkan resistensi gesek ini oleh menurunnya kecepatan aliran fluida di sekitar kasko sebagai akibat pergesekan antara kulit kasko dan aliran yang dilewati. Koefisien resistensi gelombang yang tergabung pada koefisien sisa (C_R) besarannya sangat

dipengaruhi faktor bentuk model kasko yang dikarenakan gerakan kapal. Pada muatan penuh model kasko K3 dengan bentuk yang lebih langsing (L/B=6,43) pada kecepatan jelajah (*V_S*=11 knot) memiliki koefisien resistensi gesek (C_F =1,997*10⁻³) dan sisa $(C_R=2,64*10^{-3})$ sebagaimana ditunjukkan pada gambar 7a dan 8a. Hasil ini lebih rendah dibanding model kasko K_1 , K_2 dan K_4 pada pemuatan dan kecepatan yang sama. Fenomena serupa terjadi pula pada pemuatan kosong, model kasko K3 memilik koefisien resistensi gesek dan sisa yang lebih baik dibanding 3 (tiga) model lainnya sebagaimana ditunjukkan pada gambar 7b Seiring dengan pengurangan resistensi model kasko kapal, hal ini secara langsung berdampak pada pengurangan konsumsi bahan bakar yang merupakan salah satu komponen pembiayaan terbesar dalam pengoperasian kapal.

Gambar 7. Kurva koefisien gesek (C_F) model kasko kapal. (a) Pemuatan penuh dan (b) Pemuatan kosong.

Gambar 8. Kurva koefisien sisa (C_R) model kasko kapal. (a) Pemuatan penuh dan (b) Pemuatan kosong.

IV. KESIMPULAN

Pemodelan desain freeboard minimum model kasko kapal perikanan 30 GT terhadap tingkat keselamatan dan biaya operasional telah dianalisis melalui paket Program Maxsurf. Model Kasko K₁ sebagai kapal sampel dalam pemodelan merupakan kapal yang memiliki dimensi dan stabilitas yang baik sesuai kriteria IMO. Tingkat stabilitas kapal perikanan 30 GT meningkat seiring dengan penambahan rasio B/D, namun dengan penambahan rasio yang besar dapat memperburuk nilai resistensi kapal (model kasko K_2). Selanjutnya dengan melalui penambahan rasio L/Bpada displasmen konstan. secara signifikan mengurangi nilai resistensi kapal (model kasko K_3). Pengurangan nilai resistensi kapal ini secara langsung berdampak pada pengurangan konsumsi bahan bakar yang merupakan salah satu komponen pembiayaan terbesar dalam pengoperasian kapal. Secara umum, keempat model bentuk kasko yang dianalisis layak dioperasikan sesuai dengan kriteria *IMO*.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) Universitas Hasanuddin, melalui pendanaan penelitian Benua Maritim Indonesia Spesifik (BMIS) SK No 14612/UN4.1/TU.21/2017 Tahun Anggaran 2017. Terima kasih pula khususnya kepada Mahasiswa yang tergabung dalam kelompok penelitian bersama pada LBE (*Labo-Based*

Education) Propulsi Kapal Universitas Hasanuddin yang telah membantu dalam proses pemodelan simulasi komputer.

DAFTAR PUSTAKA

- Azis, M.A., B.H. Iskandar, dan Y. Novita. 2017. Rasio dimensi utama dan stabilitas statis kapal purse seine tradisional di kabupaten pinrang. *J. Ilmu dan Teknologi Kelautan Tropis*, 9(1):19-28.
- Behrendt, C. 2014. Energy saving technologies for fishing vessels. *J. Scientific*, 39(111):11–15.
- Chorab, P. 2014. Sample calculations using a draft method for assessment of the vulnerability to pure loss of stability of a fishing vessel. *J. Scientific*, 40(112):39-46.
- Holtrop, J. and G.G.J. Mennen. 1982. An approximate power prediction method, *J. International Shipbuilding Progress*, 29: 166-170.
- Holtrop, J. 1984. A statistical reanalysis of resistance and propulsion data. *J. International Shipbuilding Progress*, 31: 272-276.
- International Maritime Organization. 2002.

 Code on intact stability: Code on intact stability for all types of ships covered by IMO Instruments.

 International Maritime Organization.

 London. 27-28 pp.
- Iskandar, B.H. dan S. Pujiati. 1995. Keragaman teknis kapal perikanan di beberapa wilayah Indonesia (Laporan Penelitian). Jurusan pemanfaatan sumberdaya perikanan, Fakultas Perikanan, Institut Pertanian Bogor. Bogor. 54 hlm.
- Kuroda, T., H. Hashimoto, and R. Shigehiro. 2003. Relation between freeboard and capsizing risk for fishing vessels. *In*: Pérez-Rojas, L. (*eds.*). 8th International Conference on the Stability of Ships and Ocean Vehicles. Madrid, Spain. 665-676 pp.

- Muhammad, A.H., D. Paroka, S. Rahman, and Syarifuddin. 2015. Hydrodynamic characteristics of 30 GT fishing ship hull form in sulawesi waters. *J. International of Engineering and Science Applications*, 2(2):153-161.
- Muhammad, A.H., Syarifuddin, D. Paroka, S. Rachman, Wisyono, dan A.A. Pratama. 2017. Performa maneuvering kapal perikanan 30 GT dengan konfigurasi propeler asimetrik. *J. Ilmu dan Teknologi Kelautan Tropis*, 9(2):491-498.
- Marjoni, B.H. Iskandar, dan M. Imron. 2010. Stabilitas statis dan dinamis kapal purse seine di pelabuhan perikanan pantai lampulo kota banda aceh nanggroe aceh Darussalam *J. Marine Fisheries*, 1(2):113-122.
- Nurdin, H.S., B.H. Iskandar, M. Imron, dan Y. Novita. 2013. Tata muatan dan variasi musim penangkapan pengaruhnya terhadap stabilitas purseseiner bulukumba, Sulawesi Selatan. *J. Marine Fisheries*, 4(2):183-193.
- Novita, Y., N. Martiyani, dan R.E. Ariyani. 2014. Kualitas stabilitas kapal payang Palabuhanratu berdasarkan distribusi muatan. *J. IPTEKS PSP*, 1(1): 28-39.
- Paroka, D. and N. Umeda. 2007. Effect of freeboard and metacentric height on capsizing probability of purse seiners in irregular beam seas. *J. Marine Science and Tech.*, 12(3):150-159.
- Susanto, A., B.H. Iskandar, dan M. Imron. 2011. Fishing vessel design and stability evaluation in palabuhanratu (case study of psp 01 training fishing vessel). *J. Marine Fisheries*, 2(2):213-221.
- Zhao, H.L. 1997. The height of gravity center of ships. *J. Marine Tech.*, 3:21-23.

Diterima : 21 Mei 2018 Direview : 25 Mei 2018 Disetujui : 05 Juli 2018