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Abstract

The distance signless Laplacian spectral radius of a connected graph G is the largest eigenvalue of

the distance signless Laplacian matrix of G, defined as DQ(G) = Tr(G) + D(G), where D(G)
is the distance matrix of G and Tr(G) is the diagonal matrix of vertex transmissions of G. In

this paper, we determine some upper and lower bounds on the distance signless Laplacian spectral

radius of G based on its order and independence number, and characterize the extremal graphs. In

addition, we give an exact description of the distance signless Laplacian spectrum and the distance

signless Laplacian energy of the join of regular graphs in terms of their adjacency spectrum.
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1. Introduction and preliminaries

All graphs considered here are simple, undirected and connected. A graph is (usually) denoted

by G = (V (G), E(G)), where V (G) is its vertex set and E(G) its edge set. The order of G is

the number n = |V (G)| of its vertices and its size is the number m = |E(G)| of its edges. The

set of vertices adjacent to v ∈ V (G), denoted by N(v), refers to the neighborhood of v. Let

N [v] = N(v) ∪ v and C(v) = V (G) − N [v]. The degree of v means the cardinality of N(v) and
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denoted by degG(v). Let S1 and S2 be two subsets of vertices of a graph G. We denote by [S1, S2]
the set of edges of G with one vertex in S1 and the other in S2. For X ⊆ V (G), we denote by

G[X] the subgraph of G induced by X . We also denote by G − e the graph obtained from G by

deleting an edge e ∈ E(G). Throughout, I and J denote the identity and the all-one matrices of

corresponding orders, respectively. The distance between vertices u and v, denoted by dG(u, v) or

simply duv, is the length of a shortest path between u and v in G. In particular, dG(u, u) = 0 for

any vertex u ∈ V (G). The diameter diam(G) is the maximum distance between any two vertices

of G.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. The distance matrix of G, denoted

by D(G), is the symmetric real matrix with (i, j)−entry being dvivj . Up to now, the distance

matrix has been most extensively studied. We refer the reader to the survey [1] for more details

about distance eigenvalues of graphs and their applications. The transmission TrG(v) of a vertex

v, is defined to be the sum of the distances from v to all other vertices in G, that is,

TrG(v) =
∑

u∈V (G)

dG(u, v).

The transmission of a connected graph G, denoted by σ(G), is the sum of distances between all

unordered pairs of vertices in G. Hence, it is clear that

σ(G) =
1

2

∑

v∈V (G)

TrG(v).

We say that a graph is k−transmission regular (or transmission regular) if its distance matrix has

constant row sum equal to k, that is TrG(v) = k for each v ∈ V (G). Naturally, just as regular

graphs, transmission regular graphs are also of interest in spectral graph theory.

Studying the eigenvalues of a matrix associated with a graph is the subject of spectral graph

theory, where the main objective is determining what characteristics of the graph are reflected in

the spectrum of the matrix under consideration. The distance matrix (spectrum) and Laplacian

matrix (spectrum) are conceived in full analogy with the ordinary graph energy and their theory is

nowadays extensively elaborated (see e.g., [5], [10], [12], [13], [16], [18], [19], [20], [21]). As the

distance matrix is very useful in different fields, including the design of communication networks,

graph embedding theory as well as molecular stability, therefore maximizing or minimizing the

distance spectral radius over a given class of graphs is of great interest and importance.

The matrix of interest here is the distance signless Laplacian matrix. In [2], Aouchiche and

Hansen introduced the distance signless Laplacian matrix of a connected graph G as the n × n
matrix defined as, DQ(G) = Tr(G) +D(G), where D(G) is the distance matrix of G and Tr(G)
is the diagonal matrix of vertex transmissions of G. Since DQ(G) is symmetric (positive semi-

definite), its eigenvalues can be arranged as: ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G) ≥ 0, where ρ1(G)
is called the distance signless Laplacian spectral radius of G. From now onwards, we will denote

ρ1(G) by ρ(G). As DQ(G) is non-negative and irreducible, by the Perron-Frobenius Theorem,

ρ(G) is positive, simple and there is a unique positive unit eigenvector X corresponding to ρ(G),
which is called the distance signless Laplacian Perron vector of G.
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The study of the distance signless Laplacian matrix (spectrum) started only quite recently, and

only some of its basic properties have been established so far (see e.g., [6], [7], [14], [24]). In

this paper, we determine some upper and lower bounds on the distance signless Laplacian spectral

radius of G based on its order and independence number, and characterize the extremal graph. In

addition, we give an exact description of the distance signless Laplacian spectrum and the auxil-

iary distance signless Laplacian energy of the join of regular graphs in terms of their adjacency

spectrum.

2. On graphs which maximize the distance signless Laplacian spectral radius

Given a connected graph G on n vertices, a column vector X = (x1, x2, . . . , xn)
T ∈ R

n can

be considered as a function defined on V (G) which maps vertex vi to xi, i.e., X(vi) = xi, for

i = 1, 2, . . . , n. Then,

XTDQ(G)X =
∑

{u,v}⊆V (G)

duv(xu + xv)
2,

and λ is an eigenvalue of DQ(G) corresponding to the eigenvector X if and only if X 6= 0 and for

each v ∈ V (G),

λxv =
∑

u∈V (G)

duv(xu + xv).

These equations are called the (λ, x)−eigenequations of G. For a normalized column vector X ∈
R

n with at least one non-negative component, by the Rayleigh’s principle, we have

ρ(G) ≥ XTDQ(G)X,

with equality if and only if X is the distance signless Laplacian Perron vector of G.

Let e = uv be an edge of G such that G − e is also connected. The removal of e does not

decrease distance, while it does increase the distance by at least one unit, as the distance between

u and v is 1 in G and at least 2 in G − e. Similarly, adding a new edge to G does not increase

distances, while it does decrease the distance by at least one. By Perron-Frobenius Theorem, we

have the following lemma immediately.

Lemma 2.1. [17] Let G be a connected graph with u, v ∈ V (G). If uv /∈ E(G), then ρ(G+uv) <
ρ(G). If uv ∈ E(G) such that G− uv is also connected, then ρ(G) < ρ(G− uv).

The following lemma will be useful in the sequel.

Lemma 2.2. [24] Let G be a connected graph on n vertices. Then

ρ(G) ≥ 4σ(G)

n
,

with equality if and only if G is transmission regular.
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In this section, we are interested to find graphs which maximize the distance signless Laplacian

spectral radius and also to find graphs whose distance signless Laplacian spectral radius is close

to the maximum value. In order to better understanding these graphs, we consider the set Gn,∆,

where ∆ ≥ 2, of connected graphs with n vertices having the fixed value of the maximum degree

∆. Otherwise, if we only bound the maximum degree by ∆, the maximum graphs will inevitably

be the paths. Still, even with the requirement that a graph contains a vertex of degree ∆, the

extremal graphs resemble a path-like structure.

Definition 2.1. The broom Bn,∆ is a tree on n vertices obtained by taking a path Pn−∆+1 and an

empty graph K̄∆−1, and joining one end-vertex of a path with every vertex of the empty graph. The

other end-vertex of the path Pn−∆+1 with degree 1 in Bn,∆ will be called the distant-leaf of Bn,∆.

Figure 1. The broom tree B10,4.

The following theorem is known to some extent in mathematical chemistry; however, we give

a direct proof here for the sake of completeness.

Theorem 2.1. For every graph G ∈ Gn,∆, it holds that

σ(G) ≤ σ(Bn,∆),

with equality if and only if G is isomorphic to Bn,∆.

Proof. Let G be a graph in Gn,∆. Note first that by Lemma 2.1, removing an edge {u, v} from G
strictly increases its distance signless Laplacian spectral radius. Thus, for any spanning tree T of

G it holds that

σ(G) ≤ σ(T ),

with equality if and only if G = T . As any graph in Gn,∆ has a spanning tree with the same

maximum degree ∆, we may thus in the sequel restrict our proof to such trees only.

We shall now prove the theorem by induction on n. For n = ∆ + 1, there exists only one tree

with ∆ + 1 vertices and the maximum degree ∆, which is the star K1,∆
∼= B∆+1,∆. So, the base

case of our induction is established.

Now, suppose by induction hypothesis that for n ≥ ∆+1, the broom Bn,∆ attains the maximum

transmission in Gn,∆ and let T be any tree in Gn+1,∆. The tree T contains a leaf q whose removal

does not decrease the maximum degree of T . Otherwise, T would contain only one vertex of

degree ∆ and all leaves would be adjacent to that vertex, yielding that T would be isomorphic to a

star, which is a contradiction with n+ 1 ≥ ∆+ 2.
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Let p be the unique neighbor of q in T . For any vertex u of T it holds that dT (u, q) =
dT−q(u, p) + 1, while the distance between all other pairs of vertices of T − q remains unchanged.

Thus, it holds that σ(T ) = σ(T − q)+TrT−q(p)+n. From the inductive hypothesis it follows that

σ(T − q) ≤ σ(Bn,∆), (1)

thus, σ(T ) ≤ σ(Bn+1,∆).
The equality holds if and only if the equality holds in (1). Then we have, by inductive hypoth-

esis, that T − q ∼= Tn,∆ and that q is a distant leaf of Bn,∆. This shows that T ∼= Bn+1,∆, and thus,

Bn+1,∆ is the unique graph (up to isomorphism) in Gn+1,∆ that attains the maximum value of the

transmission, and the proof is complete.

Notice that the path Pn has the maximum distance signless Laplacian spectral radius. Let G be

a simple graph and v one of its vertices. For k, l ≥ 0, we denote by G(v, k) the graph obtained

from G ∪ Pk by adding an edge between v and the end vertex of Pk, and by G(v, k, l) the graph

obtained from G ∪ Pk ∪ Pl by adding edges between v and one of the end vertices in both Pk and

Pl.

Lemma 2.3. [14, Lemma 3.3] Let G be a simple graph and v be one of its vertices. If k ≥ l ≥ 1,

then

ρ
(

G(v, k, l)
)

< ρ
(

G(v, k + 1, l − 1)
)

.

Next, for ∆ > 2, we can apply the transformation of Lemma 2.3 at the vertex of degree ∆
in Bn,∆ and obtain Bn,∆−1. Thus ρ(Bn,∆) < ρ(Bn,∆−1) for ∆ > 2, which shows the chain of

inequalities

ρ(Sn) = ρ(Bn,n−1) < ρ(Bn,n−2) < ... < ρ(Bn,3) < ρ(Bn,2) = ρ(Pn).

A subset S of a vertex set V (G) of a graph G is said to be an independent set, if no two vertices

of S are adjacent in G. The independence number of G is the maximum number of vertices in

the independent sets in G. The following theorem will gives the lower bound for distance signless

Laplacian spectral radius in terms of the order and the independence number of G. A clique in a

graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called

the clique number of G.

Theorem 2.2. Let G be a connected simple graph of order n, with independence number s, then

ρ(G) ≥ 2s+ 3n− 6 +
√

4s(3s− 4) + n(n+ 4)− 4ns+ 4

2
. (2)

Proof. Let S be the maximum independent set with independence number s. Let x be the principal

eigenvector of G. It is easily seen that the components of x have the same value, say x(v1) for

vertices in S and x(vn) for vertices in V (G) \S. Then, by the (ρ(G), x)−eigenequations of G, we

have

ρ(G)x(v1) ≥ 2(s− 1)(x(v1) + x(v1)) + (n− s)(x(v1) + x(vn)),

ρ(G)x(vn) ≥ (n− s− 1)(x(vn) + x(vn)) + s(x(v1) + x(vn)),
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and thus ρ(G) is the largest root of the equation

ρ2 + (6− 2s− 3n)ρ+ (2n2 − 2s2 + 4ns− 10n− 2s+ 8) ≥ 0.

From this we get the required result.

Graph operations are natural techniques for producing new graphs from old ones, and their

spectra and energy have received considerable attention in recent years. The join of two vertex-

disjoint connected graphs G and H , denoted G ∨H , is the graph obtained from the union G ∪H
by joining each vertex of G and a vertex of H .

Remark 2.1. We can easily verify that in (2) the equality holds if and only if G = K̄s∨Kn−s, with

independence number s.

Theorem 2.3. Let G be a connected simple graph, with independence number s and clique number

ω. Then

ρ(G) ≥ 5s+ 3ω − 8 +
√

(3s+ ω − 4)2 − 7(s− 1)(ω − 1)

2
, (3)

with equality if and only if G ∼= Kω−1 ∨ K̄s.

Proof. Let S and C be a maximum independent set and a maximum clique of G, respectively. Let

x be the principal eigenvector of G. It is easily seen that the components of x have the same value,

say x(v1) for vertices in V (S) and x(vn) for vertices in V (C). We have ∀u, v ∈ C : d(u, v) =
1, ∀u, v ∈ S : d(u, v) ≥ 2. On the other hand, |S ∩C| ≤ 1. Then, by the (ρ(G), x)-eigenequations

of G, we have

ρ(G)x(v1) ≥ 2(s− 1)(x(v1) + x(v1)) + (ω − 1)(x(v1) + x(vn))

ρ(G)x(vn) ≥ (ω − 1)(x(vn) + x(vn)) + (s− 1)(x(v1) + x(vn)),

and thus ρ(G) is the largest root of the equation

ρ2(G)− (5s+ 3ω − 8)ρ(G) + (8(s− 1)(ω − 1) + 2(ω − 1)2 + 4(s− 1)2) ≥ 0.

It follows that ρ(G) ≥ 5s+3ω−8+
√

(3s+ω−4)2−7(s−1)(ω−1)

2
.

If G ∼= Kω−1 ∨ K̄s, we can easily verify that in (3) the equality holds. Conversely, if the

equality in (3) holds, then S ∪C = V (G) and |C ∩ S| = 1. Let |C ∩ S| = {u}. Since u ∈ C, then

for every v ∈ C we have uv ∈ E(G). Similarly, u ∈ S and
∑

u∈C,v∈S d(u, v) = (s − 1)(ω − 1)

results for every x ∈ S and y ∈ C − {u}, xy ∈ E(G). Therefore, G ∼= Kω−1 ∨ K̄s.

Corollary 2.1. Let G be a connected graph with Ḡ connected graph. Then

ρ(Ḡ) ≥ 5ω + 3s− 8 +
√

(3ω + s− 4)2 − 7(ω − 1)(s− 1)

2
,

with equality if and only if G ∼= Kω ∨ K̄s−1, and

ρ(Ḡ) ≥ 3n+ 2ω − 8 +
√

(n+ 2ω − 4)2 − 7(ω − 1)(n− ω − 1)

2
,

with equality if and only if G ∼= Kω ∨ K̄n−ω−1.

Proof. Follows from Theorem 2.3 and equality s(Ḡ) = ω(G).
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3. On distance signless Laplacian spectral radius of the complete k-partite graphs

Recall that the matrix DQ(G) is non-negative and irreducible, so the eigenvalues of DQ(G)
are real and we can order the eigenvalues as ρ(G) = ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G). We start

this section recalling the well-known Cauchy interlace theorem [4] that relates the eigenvalues of

an arbitrary Hermitian matrix with its principal submatrix. More precisely, this theorem states

that the eigenvalues of a Hermitian matrix A of order n are interlaced with those of any principal

submatrix. This theorem plays an important role in the study of the distance signless Laplacian

spectral radius of the complete k-partite graphs.

Lemma 3.1. [4] (Cauchy Interlace Theorem) Let A be a Hermitian matrix of order n, and let B be

a principal submatrix of A of order m. If λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) lists the eigenvalues of

A and µ1(B) ≥ µ2(B) ≥ . . . ≥ µm(B) the eigenvalues of B, then λn−m+i(A) ≤ µi(B) ≤ λi(A)
for i = 1, 2, . . . ,m.

The following inequalities are well-known Courant-Weyl inequalities.

Lemma 3.2. [23] (Courant-Weyl inequalities) Let A and B be n × n Hermitian matrices and

C = A+B. Then

λi(C) ≤ λj(A) + λi−j+1(B)(n ≥ i ≥ j ≥ 1),
λi(C) ≥ λj(A) + λi−j+n(B)(1 ≤ i ≤ j ≤ n).

Lemma 3.3. Let G = Kn1,...,nk
be a complete k−partite graph for 2 ≤ k ≤ n − 1. Then

ρn(G) ≥ n + n1 − 4. Moreover, if n1 = n2 = · · · = nk and n = kn1, then ρn(G) = n + n1 − 4
with multiplicity n− k.

Proof. Without loss of generality, we may assume that n1 ≥ n2 ≥ . . . ≥ nk. It is clear that

the diameter of G is 2. In a connected graph with diameter 2, we have Tr(v) = d(v) + 2(n −
d(v) − 1) = 2n − 2 − d(v), and therefore Tr(G) = (2n − 2)I − Diag(Deg). Then DQ(G) =
J − I + Ac + (2n − 2)I −Diag(Deg), where Ac is the adjacency matrix of Gc. Note that Gc is

the union of complete graphs, then by the Courant-Weyl inequality,

ρn(G) ≥ ρn(J − I) + ρn(A
c) + ρn((2n− 2)I) + ρn(−Diag(Deg))

≥ −2 + (2n− 2)− (n− n1) = n+ n1 − 4.

In the following, we shall show that there exists an eigenvalue which equals to n+n1−4. Suppose

V (G) = V1 ∪ V2 ∪ . . . ∪ Vk for 2 ≤ k ≤ n − 1 and n1 = |Vi|(i = 1, . . . , k). Then, the distance

signless Laplacian matrix of G is

DQ(G) =















S Jn1×n1
Jn1×n1

. . . Jn1×n1

Jn1×n1
S Jn1×n1

. . . Jn1×n1

...
...

...
. . .

...

Jn1×n1
Jn1×n1

Jn1×n1
. . . Jn1×n1

Jn1×n1
Jn1×n1

Jn1×n1
. . . S















,

where S = 2Jn1×n1
+ (n+ n1 − 4)In1

. Hence
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PDQ(G)(ρ) = det
(

ρI −DQ(G)
)

=
(

ρ− (n+ n1 − 4)
)n−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζ −n1 −n1 . . .− n1

−n1 ζ −n1 . . .− n1
...

...
...
. . .

−n1 −n1 −n1 . . .− n1

−n1 −n1 −n1 . . . ζ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where ζ = ρ − n − 3n1 + 4. Since k ≤ n − 1, thus the multiplicity of n + n1 − 4 is at least

n− k ≥ 1.

Note that DQ(G) = J − I + Ac + (2n − 2)I −Diag(Deg). Then by Courant-Weyl inequal-

ities, we obtain ρn(J − I) + ρi(A
c) + ρn((2n − 2)I − Diag(Deg)) ≤ ρi(G) ≤ ρ1(J − I) +

ρi−1(A
c)+ρ2((2n− 2)I−Diag(Deg)) for 2 ≤ i ≤ n. Note that Gc is a union of complete graphs

Kn1
, . . . , Knk

. It follow that ρi(A
c) = ni− 1 for i = 1, . . . , k. Therefore, ρi(G) ≥ n+n1+ni− 4

for 2 ≤ i ≤ k. Thus ρi(G) ≥ n+ n1 − 3 for i = 2, . . . , k since ni ≥ 1 and ρ1(G) > 2n− 2. Thus

the multiplicity of n+ n1 − 4 is n− k, as desired.

Now, we will focus on the connected graphs with diameter equal to 2.

Lemma 3.4. The graph K1,n−1 is the unique graph with the maximizing distance signless Lapla-

cian spectral radius among all graphs with diameter 2.

Proof. Let G be an arbitrary connected graph of diameter 2 with V (G) = {v1, . . . , vn}. Suppose

that X = (x1, x2, . . . , xn) is the Perron vector of G, where xi corresponds to vi for i = 1, . . . , n.

Let vt be a vertex of V (G) such that xt = min{xi|vi ∈ V (G)}. Then, we shall follow the following

two cases.

Case 1. d(vt) = n− 1.
Then, we delete all edges in N(vt), and then the resulting graph is K1,n−1. Hence we have

ρ(K1,n−1) ≥ ρ(G) and the equality holds if and only if G ∼= K1,n−1.

Case 2. d(vt) ≤ n− 2.
Then C(vt) 6= φ. Obviously, each vertex of C(vt) is adjacent to at least one vertex of N(vt). Let

G′ = G− [N(vt), C(vt)] + {vtvi|vi ∈ C(vt)}. Clearly, the diameter of G′ is 2 and ∆(G′) = n− 1.

But

ρ(G′)− ρ(G) ≥ xt(DQ(G′)−DQ(G))x

=
1

2

∑

vi∈V (Ct)

(xi + xt)
2 −

∑

vi∈C(vt)

(xi + xt)
2

+
∑

vivj∈[N(vt),C(vt)]

(xi + xj)
2 − 1

2

∑

vivj∈[N(vt),C(vt)]

(xi + xj)
2

=
1

2

∑

vivj∈[N(vt),C(vt)]

(xi + xj)
2 − 1

2

∑

vi∈C(vt)

(xi + xt)
2 ≥ 0.
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Therefore, we have ρ(G′) ≥ ρ(G). Then by case 1, we get ρ(K1,n−1) ≥ ρ(G′) ≥ ρ(G). If

ρ(K1,n−1) = ρ(G), then G′ ∼= K1,n−1 and ρ(G) = ρ(G′). It follows that X is also the Perron

vector of K1,n−1. Then if vi, vj 6= vt, then xi = xj > xt. Since all the above inequalities are

equalities, we have
∑

vivj∈[N(vt),C(vt)]

(xi + xj)
2 =

∑

vi∈C(vt)

(xi + xt)
2.

Then for each edge vivj ∈ [N(vt), C(vt)], vi ∈ N(vt), vj ∈ C(vt), we get xi = xt, a contradiction.

Hence, ρ(K1,n−1) > ρ(G). This completes the proof.

It is well-known that if G is regular, then G has exactly three distinct A-eigenvalues if and only

if G is strongly regular. We have the following result for connected graphs with diameter 2.

Theorem 3.1. Let G be a connected graph of diameter 2. If G is k-regular, then G has exactly

three distinct DQ(G)-eigenvalues if and only if G is strongly regular.

Proof. Since the diameter of G is 2, thus DQ(G) = J − I +Ac + (2n− 2)I −Diag(Deg), where

Ac is the adjacency matrix of Gc. Obviously ρ(G) = 4(n − 1) − 2k and X = (1, . . . , 1)T is the

distance signless Laplacian Perron vector corresponding to ρ(G). Note that since G is k-regular,

then Gc is (n− 1− k)-regular and X = (1, . . . , 1)T is also an eigenvector corresponding to ρ(Ac).
Let Xi be the eigenvector of Ac corresponding to ρi(A

c) for 2 ≤ i ≤ n. Then XTXi = 0 and

then DQ(G)Xi = (J − I)Xi + AcXi + (2n − 2)IXi −Diag(Deg)Xi = (2n − 4 − k − ρi(A)).
Therefore, DQ(G) has exactly three distinct eigenvalues if and only if A has exactly three distinct

eigenvalues if and only if G is strongly regular.

Theorem 3.2. Let G = Kn1,...,nk
be a complete k−partite graph with n1 = · · · = nk and n = kn1.

Then the characteristic polynomial of DQ(G) is

PDQ(G)(ρ) =
(

ρ− (n+ n1 − 4)
)n−k

(ρ− n− 2n1 + 4)k−1(ρ− 2n− 2n1 + 4).

Proof. By Lemma 3.3,

PDQ(G)(ρ) = det
(

ρI −DQ(G)
)

=
(

ρ− (n+ n1 − 4)
)n−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ− n− 3n1 + 4 −n1 −n1 . . .− n1

−n1 ρ− n− 3n1 + 4 −n1 . . .− n1
...

...
...

−n1 −n1 −n1 . . .− n1

−n1 −n1 −n1 . . . ρ− n− 3n1 + 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

ρ− (n+ n1 − 4)
)n−k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ− n− 3n1 + 4 −n1 −n1 . . .− n1

n+ 2n1 − 4− ρ ρ− n− 2n1 + 4 0 . . . 0
...

...
...

n+ 2n1 − 4− ρ 0 0 . . . 0
n+ 2n1 − 4− ρ 0 0 . . . ρ− n− 2n1 + 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=
(

ρ− (n+ n1 − 4)
)n−k

(

(ρ− n− 2n1 + 4)k − n(ρ− n− 2n1 + 4)k−1
)

=
(

ρ− (n+ n1 − 4)
)n−k

(ρ− n− 2n1 + 4)k−1(ρ− 2n− 2n1 + 4).

Now, we give a lower bound on the spectral radius of DQ(G) of a bipartite graph.

Theorem 3.3. Let G = (V,E) be a connected bipartite graph of order n with bipartition V (G) =
A ∪ B, where |A| = p, |B| = q. Then

ρ(G) ≥ 3n+ 2p− 8 +
√

9n2 + 16q2 − 28pq

2
, (4)

with equality if and only if G is a complete bipartite graph Kp,q.

Proof. Since V (G) = A ∪ B and A ∩ B = ∅, |A| = p, |B| = q, we can assume that A =
{1, 2, . . . , p} and B = {p + 1, p + 2, . . . , p + q}, where p + q = n. Let X = (x1, x2, . . . , xn)

T

be an eigenvector of DQ(G) corresponding to the largest eigenvalue ρ(G). We can assume that

xi = min{xk| k ∈ A} and also xj = min{xk| k ∈ B}. For i ∈ A,

ρ(G)xi =

p
∑

k=1,k 6=i

di,k(xk + xi) +

p+q
∑

k=p+1

di,k(xk + xi)

≥ 4(p− 1)xi + q(xj + xi). (5)

For j ∈ B,

ρ(G)xj =

p
∑

k=1

dj,k(xk + xj) +

p+q
∑

k=p+1,k 6=j

dj,k(xk + xj)

≥ p(xi + xj) + 4(q − 1)xj. (6)

Since G is a connected graph, xk > 0 for all k ∈ V . From (5) and (6), we get

ρ2(G) + (8− 5p− 5q)ρ(G) + 4p2 + 4q2 + 16pq − 20p− 20q + 16 ≥ 0.

From this we get the required result (4).

Now suppose that equality holds in (4). Then, all inequalities in the above argument must be

equalities. From equality in (5), we get xk = xj and ik ∈ E(G), for all k ∈ B. From equality in

(6), we get xk = xi and jk ∈ E(G), for all k ∈ A. Thus, each vertex in each set is adjacent to all

the vertices on the other set and vice versa. Hence, G is a complete bipartite graph Kp,q, and the

proof is complete.
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4. On distance signless Laplacian energy of join of regular graphs

Energy of a graph is a concept defined in 1978 by Ivan Gutman in [8] and originating from

theoretical chemistry. Let G be a simple graph of order n with adjacency matrix A(G) having

eigenvalues λ1, λ2, . . . , λn. Then the energy of a graph G, denoted E(G), is defined as E(G) =
∑n

i=1 |λi| (see [9] for details and recent survey). Nowadays many results have been obtained about

the energy of different graph structures. The pioneering paper [8] further proposes the study of

energy in graphs with an analogue of the energy defined with respect to other (than adjacency)

matrices assigned to the graphs. This proposal has been put into effect and extended: the energy of

a graph with respect to Laplacian matrix as well as the energy of a graph with respect to distance

matrix, have been studied (see [10] and [12] for more details in this subject). For distance signless

Laplacian matrix, we define the sum of its eigenvalues as auxiliary energy and denote by EDQ(G).
Our main aim in the following results is the description of the distance signless Laplacian

spectrum and the auxiliary distance signless Laplacian energy of the join of regular graphs in

terms of their adjacency spectrum.

Theorem 4.1. Let Gi be an ri−regular graph with ni vertices and eigenvalues of the adjacency

matrix AGi
, λi,1 = ri ≥ λi,2 ≥ · · · ≥ λi,ni

, where i ∈ {1, 2}. Then the distance signless Laplacian

spectrum of G1 ∨G2 consists of eigenvalues 2n1+n2−λ1,j − r1− 4 and 2n2+n1−λ2,j − r2− 4
for j = 2, 3, . . . , ni and two more eigenvalues of the form

5(n1 + n2)− 2(r1 + r2)− 8±
√

(3(n1 − n2)− 2(r1 − r2))2 + 4n1n2

2
. (7)

Proof. The distance signless Laplacian matrix DQ(G) of the join G1 ∨G2 has the form

DQ(G) =

(

2J − AG1
+ (2n1 + n2 − r1 − 4)I Jn1×n2

Jn2×n1
2J − AG2

+ (2n2 + n1 − r2 − 4)I

)

.

As a regular graph, G1 has the all-one vector j as an eigenvector corresponding to eigenvalue r1,
while all other eigenvectors are orthogonal to j. (Note that G1 need not be connected, and thus, r1
need not be a simple eigenvalue of G1).

Let λ be an arbitrary eigenvalue of the adjacency matrix of G1 with corresponding eigenvector

x, such that jTx = 0. Then (x0n2×1)
T is the eigenvector of DQ(G) corresponding to eigenvalue

2n1 + n2 − λ1,j − r1 − 4. A similar argument holds for an arbitrary eigenvalue µ of AG2, with

the corresponding eigenvector y such that jTy = 0. In this way, forming the eigenvectors of the

forms (x0)T and (0y)T , we can construct a total of n1 + n2 − 2 mutually orthogonal eigenvectors

of DQ(G). This implies that the two remaining eigenvectors of DQ(G) have the form (αjβj)
T for

a suitable choice of α and β.

Suppose now that ρ is an eigenvalue of DQ(G) with an eigenvector of the form (αjβj)
T . Then,

using AG1
j = r1j and AG2

j = r2j, we get the system

ρα = (2n1 − r1 − 2)(α + α) + n2(α + β)

ρβ = n1(α + β) + (2n2 − r2 − 2)(β + β).
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Eliminating α and β we get the quadratic equation in ρ

ρ2 − ρ((4n1 + n2 − 2r − 4) + (4n2 + n1 − 2r2 − 4))

+(4n1 + n2 − 2r − 4)(4n2 + n1 − 2r2 − 4)− n1n2 = 0

whose solutions are given by (7). One easily checks that these two solutions are indeed the remain-

ing two eigenvalues of DQ(G).

Theorem 4.2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices. Then

EDQ(G1 ∨G2) = n1(2n1 + n2 − r1) + n2(2n2 + n1 − r2)− 2(n1 + n2).

Proof. For i = 1, 2, denote the eigenvalues of the adjacency matrix AGi
by λi,1 = ri ≥ λi,2 ≥

. . . ≥ λi,ni
. According to the Theorem 4.1, the distance signless Laplacian eigenvalues of G1 ∨G2

are

5(n1 + n2)− 2(r1 + r2)− 8±
√

(3(n1 − n2)− 2(r1 − r2))2 + 4n1n2

2
(8)

and 2n1+n2−λ1,j−r1−4, 2n2+n1−λ2,j−r2−4 for j = 2, 3, . . . , ni. The eigenvalues given by (8)

are both non-negative, thus the sum of eigenvalues (8) is equal to (5n1−2r1−4)+(5n2−2r2−4).
For the remaining eigenvalues of G1 ∨G2, we have,

n1
∑

j=2

(2n1 + n2 − λ1,j − r1 − 4) +

n2
∑

j=2

(2n2 + n1 − λ2,j − r2 − 4) =

(n1 − 1)(2n1 + n2 − r1 − 4) + r1 + (n2 − 1)(2n2 + n1 − r2 − 4) + r2,

concluding that the auxiliary distance signless Laplacian energy of G1 ∨ G2 is equal to n1(2n1 +
n2 − r1) + n2(2n2 + n1 − r2)− 2(n1 + n2), as desired.

Our goal here is to compute the auxiliary distance signless Laplacian energy of a complete

multipartite graph on n vertices.

Theorem 4.3. If n1 = · · · = nk ≥ 2 and n = kn1, then

EDQ(Kn1,...,nk
) = n(n+ n1 − 2).

In the sequel we want to prove this theorem. In order to estimate the eigenvalues of DQ, we

have to resort to the concept of equitable matrix partition, an analog of the concept of equitable

partition of a graph. A partition V = ∪k
i=1Vi of the index set of matrix A is called an equitable

matrix partition if there exists an k×k matrix B such that for every i, j ∈ {1, . . . , r} and for every

u ∈ Vi holds
∑

v∈Vj

Au,v = Bi,j.

Apparently, from an equitable matrix partition of DQ(G), with the matrix B being equal to

B = n1J + (n+ 2n1 − 4)I, (9)

where J is the all-ones matrix and I is the unit matrix. We have the following fundamental lemma.
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Lemma 4.1. Let matrix DQ(G) has an equitable matrix partition V = ∪k
i=1Vi with the corre-

sponding matrix B. Each eigenvalue of B is then also an eigenvalue of DQ(G).

Proof. Let ρ be an eigenvalue of B with an eigenvector x such that Bx = ρx. Form a vector y,
indexed by V, given by

yu = xi if u ∈ Vi.

Then for u ∈ Vi holds

(DQ(G)y)u =
∑

v∈V

DQ(G)u,vyv =
k

∑

j=1

∑

v∈Vj

DQ(G)u,vxj

=
k

∑

j=1

Bi,jxj = (Bx)i = ρxi = ρyu.

Since this holds for arbitrary u, we have DQ(G)y = ρy and ρ is an eigenvalue of DQ(G).

If ρ has multiplicity k as an eigenvalue of B, then there is a set of k mutually independent

eigenvectors of B corresponding to ρ. Clearly, linear independence is preserved by the construction

in the proof of previous lemma, so we obtain a set of k mutually independent eigenvectors of

DQ(G) corresponding to ρ. This implies that ρ, as an eigenvalue of DQ(G), has multiplicity at

least k. The characteristic polynomial of the matrix B given by (9) after subtracting the last row

from each of the previous rows, becomes

det(ρI − B) = det
(

(ρ− (n+ 2n1 − 4))I − n1J
)

= (ρ− n− 2n1 + 4)k
(

1− n

ρ− n− 2n1 + 4

)

.

Therefore, the eigenvalues of B are non-negative and so

k
∑

i=1

|ρi| =
k

∑

i=1

ρi.

From the Vieta’s formula for the characteristic polynomial of B we further have

k
∑

i=1

ρi = k(n+ 3n1 − 4).

Therefore, the auxiliary distance signless Laplacian energy of Kn1,...,nk
, if n1 = · · · = nk ≥ 2, is

equal to

EDQ(Kn1,...,nk
) = |n+ n1 − 4|

k
∑

i=1

(ni − 1) +
k

∑

i=1

|ρi|

= |n+ n1 − 4|(n− k) + nk + 3n− 4k

= n(n+ n1 − 2),

as desired.
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