

Electronic Journal of Graph Theory and Applications

On topological integer additive set-labeling of star graphs

Hafizh M. Radiapradana^a, Suhadi Wido Saputro^a, Erma Suwastika^a, Oki Neswan^a, Andrea Semaničová-Feňovčíková^b

^aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia ^bDepartment of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

hafizhmcdc@gmail.com, {suhadi, ermasuwastika, oneswan}@math.itb.ac.id, andrea.fenovcikova@tuke.sk

Abstract

For integer $k \ge 2$, let $X = \{0, 1, 2, ..., k\}$. In this paper, we determine the order of a star graph $K_{1,n}$ of n + 1 vertices, such that $K_{1,n}$ admits a topological integer additive set-labeling (TIASL) with respect to a set X. We also give a condition for a star graph $K_{1,n}$ such that $K_{1,n}$ is not a TIASL-graph on set X.

Keywords: set-labeling, set topology, star graph, sumset, topological integer additive set-labeling Mathematics Subject Classification : 05C78 DOI: 10.5614/ejgta.2018.6.2.13

1. Introduction

Research on graph labeling was started after Rosa introduced the concept of β -valuation of graphs [2]. The concept of set-assignment [1], which is defined as follows, is analogous to the number valuations of graphs. Let G(V, E) be a graph, X be a non-empty set, and $\mathcal{P}(X)$ be the power set of X. Then the set-valued function $f : V(G) \to \mathcal{P}(X)$ is called the *set-assignment* of vertices of G. We can also define a set-assignment of edges or both elements (vertices and edges)

Received: 31 August 2017, Revised: 28 June 2018, Accepted: 14 September 2018.

in a similar way. A set-assignment of a graph G is called a *set-labeling* (or a *set-valuation*) of G if it is injective.

In this paper, we combine the concept of the vertex set-labeling and the set topology. A *topology* on a non-empty set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. The set X and \emptyset are in \mathcal{T} .
- 2. The union of the elements of any sub-collection of \mathcal{T} is in \mathcal{T} .
- 3. The intersection of the elements of any finite sub-collection of \mathcal{T} is in \mathcal{T} .

Let G be a connected, simple, and finite graph. Let X be a finite non-empty set of non-negative integers. A vertex set-labeling $f: V(G) \to \mathcal{P}(X) - \{\emptyset\}$ is called a *topological integer additive set-labeling* (TIASL) of G if f is an injective function, $\{f(V(G)) \cup \{\emptyset\}\}$ is a topology of X, and there exists the corresponding function $f^+: E(G) \to \mathcal{P}(X) - \{\emptyset\}$ such that for every edge $uv \in E(G), f^+(uv) = f(u) + f(v)$. We recall that the *sumset* (or *Minkowski sum* [4]) of two non-empty sets A and B, denoted by A + B, is defined by $A + B = \{a + b \mid a \in A; b \in B\}$. A graph G which admits TIASL is called a *topological integer additive set-labelled graph* (in short, TIASL-graph).

The topological integer additive set-labeling was introduced by Sudev and Germina [3]. They give a tight condition for a TIASL-graph. They proved that G is a TIASL-graph if and only if G has at least one pendant vertex. They also characterized all TIASL-graphs with respect to either the indiscrete topology or Sierpenski's topology.

Let G be a graph having a pendant vertex. For integer $k \ge 2$, let $X = \{0, 1, 2, ..., k\}$. It seems that every graph G admits a topological integer additive set-labeling on set X if the cardinality of X is big enough. In [3], Sudev and Germina proved that an (n, m)-tadpole graph is a TIASLgraph. An (n, m)-tadpole graph is a graph obtained from one copies of cycle C_n , $n \ge 3$, and path P_m , $m \ge 2$, by identifying an end point of the path P_m to a vertex of cycle C_n . They have shown that an (n, m)-tadpole graph of n + m - 1 vertices admits a topological integer additive set-labeling on set $X = \{0, 1, 2, ..., k\}$ where k = 2(m + n) - 5.

In this paper, we consider a star graph $K_{1,n}$ of n+1 vertices and a given set $X = \{0, 1, 2, ..., k\}$ where $k \ge 2$. We obtain two main results. The first result is related to the order of a star graph $K_{1,n}$ such that $K_{1,n}$ is a TIASL-graph on the set X.

Theorem 1.1. Let $K_{1,n}$ be a star graph with n + 1 vertices. For $k \ge 2$, let $X = \{0, 1, 2, ..., k\}$. If n is one of the positive integers below, then $K_{1,n}$ is a TIASL-graph on set X.

(a) $n \in \{1, 2, \dots, 4k - 4\}$, or

(b) $n = 2^{r_1} + r_2 - 2$ for $r_1 \in \{2, 3, \dots, k-1\}$ and $r_2 \in \{1, 2\}$.

In the second result, we give a condition for a star graph $K_{1,n}$ such that $K_{1,n}$ is not a TIASLgraph on set X.

Theorem 1.2. Let $K_{1,n}$ be a star graph with n + 1 vertices. For $k \ge 2$, let $X = \{0, 1, 2, ..., k\}$. If $3 \cdot 2^{k-1} - 2 \le n \le 2^{k+1} - 2$, then $K_{1,n}$ is not a TIASL-graph on set X.

In order to prove both theorems above, we also consider the following useful proposition.

Proposition 1.1. Let S be a finite non-empty set of non-negative integers with s elements. Then $\mathcal{P}(S)$ is a topology of S with 2^s elements.

2. Proof of Theorem 1.1

For an integer $k \ge 2$, let $X = \{0, 1, 2, ..., k\}$. First we must consider the following proposition which has been proved by Sudev and Germina [3].

Proposition 2.1. Let $f : V(G) \to \mathcal{X} - \{\emptyset\}$ is a TIASL of a graph G. Then, the vertices whose set-labels containing the maximal element of the ground set X are pendant vertices which are adjacent to the vertex having the set-label $\{0\}$.

From Proposition 2.1, if f is a TIASL of a graph G, then there exists a vertex v of G such that $f(v) = \{0\}$. Therefore, we must construct a topology of X containing $\{0\}$.

Proposition 2.2. There exists a topology \mathcal{T} containing $\{0\}$ on set X such that $|\mathcal{T}| = t$, where t is one of the positive integers as follows.

(a)
$$3 \le t \le 4k - 2$$
, or
(b) $t = 2^{r_1} + r_2$ for $r_1 \in \{2, 3, \dots, k - 1\}$ and $r_2 \in \{1, 2\}$.

Proof. We distinguish two cases.

Part 2.2.1. $3 \le t \le 4k - 2$ Let $I_0 = X$. For $i \in \{1, 2, ..., k\}$, we define recursively

$$I_i = I_{i-1} - \max(I_{i-1})$$

and

$$\mathcal{I}_i = \{I_k\} \cup \{I_s \mid 0 \le s \le i - 1\}.$$

Note that $|\mathcal{I}_i| = i + 1$. We also define $I_i^* = I_{k-i} - \{0\}$ and $\mathcal{I}_i^* = \{I_s^* \mid 1 \le s \le i\}$. In this case, $|\mathcal{I}_i^*| = i$. For $j \in \{1, 2, ..., k-2\}$, we define

$$\widehat{I}_j = I_{j+2} \cup \{k-1\}$$

and

$$\widehat{I}_j^* = \widehat{I}_j - \{0\}.$$

We also define

$$\mathcal{I}_j^{**} = \widehat{\mathcal{I}}_j \cup \widehat{\mathcal{I}}_j^*$$

where $\widehat{\mathcal{I}}_j = \{\widehat{I}_s \mid 1 \le s \le j\}$ and $\widehat{\mathcal{I}}_j^* = \{\widehat{I}_s^* \mid 1 \le s \le j\}$. Note that $|\mathcal{I}_j^{**}| = 2j$. By some definitions above, we define a collection-set \mathcal{T}_i with t elements as follows:

By some definitions above, we define a collection-set
$$\mathcal{I}_1$$
 with t elements as follows.

$$\mathcal{T}_{1} = \{\emptyset\} \cup \begin{cases} \mathcal{I}_{t-2}, & \text{if } 3 \leq t \leq k+2, \\ \mathcal{I}_{k} \cup \mathcal{I}_{t-k-2}^{*}, & \text{if } k+3 \leq t \leq 2k+2, \\ \mathcal{I}_{k} \cup \mathcal{I}_{k-1}^{*} \cup \mathcal{I}_{\frac{t-1}{2}-k}^{**}, & \text{if } 2k+3 \leq t \leq 4k-3 \text{ and } t \text{ is odd}, \\ \mathcal{I}_{k} \cup \mathcal{I}_{k}^{*} \cup \mathcal{I}_{\frac{t-2}{2}-k}^{**}, & \text{if } 2k+4 \leq t \leq 4k-2 \text{ and } t \text{ is even.} \end{cases}$$

Note that $I_k = \{0\} \in \mathcal{T}_1$. Now, we will show that \mathcal{T}_1 is a topology of X.

Let A and B be two distinct elements of \mathcal{T}_1 where $|A| \leq |B|$. If $A \subset B$, then $A \cap B = A \in \mathcal{T}_1$ and $A \cup B = B \in \mathcal{T}_1$. Otherwise, we distinguish six cases.

On topological integer additive set-labeling of star graphs H.M. Radiapradana et al.

- 1. $A \in \mathcal{I}_k$ and $B \in \mathcal{I}_i^*$ for $i \in \{1, 2, ..., k\}$ (or $B \in \mathcal{I}_k$ and $A \in \mathcal{I}_i^*$) Then $A \cap B \in \mathcal{I}_i^*$ and $A \cup B \in \mathcal{I}_k$.
- 2. $A \in \mathcal{I}_k$ and $B \in \widehat{\mathcal{I}}_j$ for $j \in \{1, 2, \dots, k-2\}$ (or $B \in \mathcal{I}_k$ and $A \in \widehat{\mathcal{I}}_j$) Then $A \cap B \in \mathcal{I}_k$ and either $A \cup B \in \mathcal{I}_k$ or $A \cup B \in \widehat{\mathcal{I}}_j$.
- 3. $A \in \mathcal{I}_k$ and $B \in \widehat{\mathcal{I}}_j^*$ for $j \in \{1, 2, \dots, k-2\}$ (or $B \in \mathcal{I}_k$ and $A \in \widehat{\mathcal{I}}_j^*$) Then $A \cap B \in \mathcal{I}_k^*$ and either $A \cup B \in \widehat{\mathcal{I}}_j$ or $A \cup B \in \mathcal{I}_k$.
- 4. $A \in \mathcal{I}_i^*$ and $B \in \widehat{\mathcal{I}}_j$ for $i \in \{k-1, k\}$ and $j \in \{1, 2, \dots, k-2\}$ (or $B \in \mathcal{I}_i^*$ and $A \in \widehat{\mathcal{I}}_j$) Then either $A \cap B = \emptyset$ or $A \cap B \in \mathcal{I}_i^*$ or $A \cap B \in \widehat{\mathcal{I}}_j^*$. Also, we have either $A \cup B \in \widehat{\mathcal{I}}_j$ or $A \cup B \in \mathcal{I}_k$.
- 5. $A \in \mathcal{I}_i^*$ and $B \in \hat{\mathcal{I}}_j^*$ for $i \in \{k-1, k\}$ and $j \in \{1, 2, \dots, k-2\}$ (or $B \in \mathcal{I}_i^*$ and $A \in \hat{\mathcal{I}}_j^*$) Then either $A \cap B \in \mathcal{I}_k$ or $A \cap B = \emptyset$. Also, we have either $A \cup B \in \mathcal{I}_i^*$ or $A \cup B \in \hat{\mathcal{I}}_j^*$.
- 6. $A \in \widehat{\mathcal{I}}_j$ and $B \in \widehat{\mathcal{I}}_j^*$ for $j \in \{1, 2, \dots, k-2\}$ (or $B \in \widehat{\mathcal{I}}_j$ and $A \in \widehat{\mathcal{I}}_j^*$) Then $A \cap B \in \widehat{\mathcal{I}}_j^*$ and $A \cup B \in \widehat{\mathcal{I}}_j$.

From the six cases above, we obtain that every two distinct elements A and B in \mathcal{T}_1 satisfy $A \cap B \in \mathcal{T}_1$ and $A \cup B \in \mathcal{T}_1$. Since \mathcal{T}_1 also contains \emptyset and X, it implies that \mathcal{T}_1 is a topology of X.

Part 2.2.2. $t = 2^{r_1} + r_2$ for $r_1 \in \{2, 3, \dots, k-1\}$ and $r_2 \in \{1, 2\}$

We define the sets $J_{r_1} = \{0, 1, ..., r_1\}$. Now, we consider an element a of X such that $a \neq \max(X)$. Let $X^- = X - \{a\}$. By these definitions, we define a collection-set \mathcal{T}_2 with t elements as follows.

$$\mathcal{T}_2 = \begin{cases} \mathcal{P}(J_{r_1}) \cup \{X\}, & \text{if } t = 2^{r_1} + 1, \\ \mathcal{P}(J_{r_1}) \cup \{\{X\}, \{X^-\}\}, & \text{if } t = 2^{r_1} + 2. \end{cases}$$

Now, we will show that \mathcal{T}_2 is a topology of X.

Note that \emptyset , $\{0\}$, $X \in \mathcal{T}_2$. Let A and B be two distinct elements of \mathcal{T}_2 . We distinguish three cases.

- 1. $A, B \in \mathcal{P}(J_{r_1})$ By Proposition 1.1, then $A \cap B \in \mathcal{P}(J_{r_1})$ and $A \cup B \in \mathcal{P}(J_{r_1})$. 2. $A \in \mathcal{P}(J_{r_1})$ or $A = X^-$, and B = X
- Then $A \cup B = B$ and $A \cap B = A$.
- 3. $A \in \mathcal{P}(J_{r_1})$ and $B = X^-$. Then $A \cap B \in \mathcal{P}(J_{r_1})$ and $A \cup B \in \{X, X^-\}$.

From three cases above, we obtain that $A \cap B, A \cup B \in \mathcal{T}_2$.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let $V(K_{1,n}) = \{v_1, v_2, \dots, v_{n+1}\}$, where v_1 is the centre of $K_{1,n}$. Let \mathcal{T}_t be a topology of X with t elements satisfying Proposition 2.2. Let $\mathcal{T}_t' = \mathcal{T}_t - \{\emptyset\}$. Now, we define a vertex injective labeling $f : V(S_n) \to \mathcal{T}_t'$ such that $f(v_1) = \{0\}$. Since for $2 \le i \le n, v_1$ is adjacent to v_i and $f(v_1) + f(v_i) = f(v_i) \in \mathcal{T}_t' \subseteq \mathcal{P}(X)$, we obtain that $K_{1,n}$ is a TIASL-graph on the set X.

3. Proof of Theorem 1.2

Let S be a finite non-empty set of non-negative integers. From Proposition 1.1, it is clear that $\mathcal{P}(S)$ is a topology on the set S. Let $\mathcal{A} \subset \mathcal{P}(S)$. On some cases of \mathcal{A} , the collection $\mathcal{P}(S) - \mathcal{A}$ is not a topology on the set S. In proposition below, we prove that if $L \in \mathcal{P}(S)$ is not an element of a topology \mathcal{T} on the set S, then there exists an element $l \in L$ such that $\{l\} \notin \mathcal{T}$.

Proposition 3.1. Let S be a finite non-empty set of non-negative integers with s elements, and \mathcal{T} be a topology of S. Let $A \in \mathcal{P}(S)$ but $A \notin \mathcal{T}$. Then there exists an element a of A such that $\{a\} \notin \mathcal{T}$.

Proof. By the definition of a topology, we have $A \neq \emptyset$. Let $A = \{a_1, a_2, \ldots, a_r\}$. If r = 1, then we are done. Now, we assume that $r \ge 2$. Suppose that $\{a_i\} \in \mathcal{T}$ for $1 \le i \le r$. Note that $\bigcup_{i=1}^r \{a_i\} = A \notin \mathcal{T}$, a contradiction.

Let the collection \mathcal{T} be a topology on the set S which is satisfying Proposition 3.1 above and the set $L \in \mathcal{P}(S)$ but $L \notin \mathcal{T}$. Let $l \in L$ and $\{l\} \notin \mathcal{T}$. So, there are no two distinct sets A_1 and A_2 in \mathcal{T} such that $A_1 \cap A_2 = \{l\}$. Therefore, we need to determine how many elements of \mathcal{T} such that \mathcal{T} may be a topology on the set S.

Proposition 3.2. Let S be a finite non-empty set of non-negative integers with $s \ge 2$ elements. Let \mathcal{A} be a non-empty collection-set, where every element of \mathcal{A} is an element of $\mathcal{P}(S)$. If $\mathcal{P}(S) - \mathcal{A}$ is a topology of S, then $|\mathcal{P}(S) - \mathcal{A}| \le 3 \cdot 2^{s-2}$.

Proof. Let $S = \{v_1, v_2, \dots, v_s\}$. By Proposition 1.1, $\mathcal{P}(S)$ is a topology of S with 2^s elements. Let \mathcal{A} be a non-empty collection-set, where every element of \mathcal{A} is element of $\mathcal{P}(S)$. Let $\mathcal{T} = \mathcal{P}(S) - \mathcal{A}$ be a topology of S.

Let $E \in \mathcal{A}$. Since \mathcal{T} is a topology of S, it is clear that $E \neq \emptyset$ and $E \neq S$. By considering Proposition 3.1, without lost of generality, let $v_s \in E$ and $\{v_s\} \notin \mathcal{T}$. We can say that $\{v_s\} \in \mathcal{A}$.

Let $\mathcal{B} = \{\{v_s, v_i\} \mid 1 \leq i \leq s-1\}$. Note that $|\mathcal{B}| = s-1$. Since \mathcal{T} is a topology of S, then at least s-2 elements of \mathcal{B} are in \mathcal{A} . Without lost of generality, let $\widehat{\mathcal{B}} = \{\{v_s, v_i\} \mid 1 \leq i \leq s-2\} \subseteq \mathcal{A}$. Now, we define $B = \{v \mid \{v_s, v\} \in \widehat{\mathcal{B}}\}$. We also define $\mathcal{C} = \{\{v_s\} \cup C \mid C \in \mathcal{P}(B)\}$. Note that $|\mathcal{C}| = 2^{s-2}, \{v_s\} \in \mathcal{C}$, and $\mathcal{B} \subseteq \mathcal{C}$. Note that for any distinct elements $C_1, C_2 \in \mathcal{C}$, we have $C_1 \cup C_2$ and $C_1 \cap C_2$ are also in \mathcal{C} . However, every $C \in \mathcal{C}$ satisfy $C \cap \{v_s, v_{s-1}\} = \{v_s\} \in \mathcal{A}$. So, it must be $\mathcal{C} \subseteq \mathcal{A}$. Therefore, we obtain

$$|\mathcal{P}(S) - \mathcal{A}| \le 2^s - 2^{s-2} = 3 \cdot 2^{s-2}.$$

Proof of Theorem 2. Theorem 1.2 is a direct consequence of Propositions 1.1 and 3.2.

Acknowledgement

This work is partially supported by Riset Program Penelitian, Pengabdian Masyarakat, dan Inovasi (P3MI) 1016/I1.C01/PL/2017, by APVV-15-0116, and by VEGA 1/0233/18.

References

- [1] B.D. Acharya and K.A. Germina, Set-valuations of graphs and their applications: A survey, *Ann. Pure Appl. Math.* **4** (1) (2013), 8–42.
- [2] A. Rosa, On certain valuation of the vertices of a graph, in Theory of Graphs (Int. Symposium, Rome, July 1966), Gordon and Breach, N.Y., and Dunod. Paris (1967), 349–355.
- [3] N.K. Sudev and K.A. Germina, A study on topological integer additive set-labeling of graphs, *Electron. J. Graph Theory Appl.* **3** (1) (2015), 70–84.
- [4] G. Varadhan and D. Manocha, Accurate Minkowski sum approximation of polyhedral models, *Graph. Models* **68** (2006), 343–355.