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Abstract

Let G be a non-abelian group. The non-commuting graph of group G, shown by ΓG, is a graph

with the vertex set G \ Z(G), where Z(G) is the center of group G. Also two distinct vertices of

a and b are adjacent whenever ab 6= ba. A set S ⊆ V (Γ) of vertices in a graph Γ is a dominating

set if every vertex v ∈ V (Γ) is an element of S or adjacent to an element of S. The domination

number of a graph Γ denoted by γ(Γ), is the minimum size of a dominating set of Γ. Here, we

study some properties of the non-commuting graph of some finite groups. In this paper, we show

that γ(ΓG) <
|G|−|Z(G)|

2
. Also we charactrize all of groups G of order n with t = |Z(G)|, in which

γ(ΓG) + γ(ΓG) ∈ {n− t+ 1, n− t, n− t− 1, n− t− 2}.

Keywords: non-commuting graph, dominating set, domination number

Mathematics Subject Classification : 05C25, 05C75

DOI: 10.5614/ejgta.2018.6.2.3

1. Introduction

Let G be a non-abelian group and Z(G) be the center of G. Associate a graph ΓG with G as

follows: Take G \ Z(G) as the vertices of ΓG. Two vertices a and b are adjacent if ab 6= ba. This

graph is called the non-commuting graph of G. Let Γ be a simple graph. A subset S ⊆ V (Γ) is

called a dominating set if each vertex v ∈ V (Γ) \ S has at least one neighbor in S. The size of a

smallest dominating set of Γ is called domination number of Γ and is denoted by γ(Γ).
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Erdös considered the non-commuting graph in 1975 for the first time. In 2004, Abdollahi,

Akbari and Maimani studied some properties of the non-commuting graph of a group. For more

results, see [1],[2], [6], [5] and [12].

Before starting, let us introduce some necessary notation and definitions. For every graph Γ,
we denote the set of the vertices of Γ by V (Γ). The minimum degree of a graph Γ denoted by δ(Γ).
The complete graph, path and cycle on n vertices are denoted by Kn, Pn and Cn, respectively. The

open neighborhood of a vertex v in Γ is the set NΓ(v) of vertices joined to v by an edge. The closed

neighborhood of v is the set NΓ[v] = NΓ(v)∪ {v}. The complement of Γ denoted by Γ. If u and v
are vertices in Γ, then d(u, v) denotes the length of the shortest path between u and v. A graph Γ is

connected if there is a path between each pair of the vertices of Γ. The maximum value of d(u, v)
between all pair of the vertices of connected graph Γ is called the diameter of Γ and denoted by

diam(Γ). Let Γ1 and Γ2 be two graphs.The corona Γ = Γ1oΓ2 is the graph formed from one copy

of Γ1 and |V (Γ1)| copies of Γ2 such that the ith vertex of Γ1 is adjacent to every vertex in the ith
copy of Γ2.

For each x ∈ G, CG(x) = {g ∈ G | gx = xg}. We denote the symmetric group and the

alternating group on n letters by Sn and An, respectively. Also Q8 = 〈A , B | A4 = 1 , A2 =
B2, B−1AB = A−1〉 and D2n = 〈a , b | an = b2 = (ab)2 = 1〉 are the quaternion group with 8
elements and the dihedral group of order 2n, respectively.

In this paper, we study the domination number of the non-commuting graphs. In particular, we

charactrize all groups G of order n with |Z(G)| = t, in which γ(ΓG) + γ(ΓG) ∈ {n − t + 1, n −
t, n− t− 1, n− t− 2}.

2. Preliminaries

In this section, we provide some useful results which will be applied in the next section.

Theorem 2.1. (Ore) [10] Let Γ be a graph with no isolated vertices. Then γ(Γ) 6 n
2
.

Theorem 2.2. [7] For a graph Γ with even order n and no isolated vertices, γ(Γ) = n
2

if and only

if the components of Γ are the cycle C4 or the Corona HoK1 for any connected graph H.

Theorem 2.3. [1], 2.1. For any non-abelian group G, diam(ΓG)=2. In particular, ΓG is connected.

Also the girth of ΓG equal 3.

Theorem 2.4. [11] Let Γ be a graph of order n. Then the following holds.

i) γ(Γ) + γ(Γ) 6 n+ 1.

ii) γ(Γ)γ(Γ) 6 n.

Lemma 2.1. Let G be a finite non-abelian group. Then δ(ΓG) > 3.

Proof. Suppose that degΓG
(v) 6 2, for some v ∈ V (ΓG). Since degΓG

(v) >
|G|
2
, then |G| 6 4.

So, G is an abelian group, which is a contradiction.

Remark 2.1. Here, we get figures of the non-commuting graph of some groups. These figures are

useful in proving some theorems in the third section. (See Figures 1, 2, 3 and 4.)
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Figure 1. The non-commuting graph of S3.

Figure 2. The non-commuting graph of D8.

Figure 3. The non-commuting graph of Q8.

Lemma 2.2. Let G be a non-abelian group of odd order. Then, the graph ΓG contains no isolated

vertex.

Proof. Assume to the contrary, a is an isolated vertex of ΓG. Then, for each x ∈ G \ Z(G) we

have ax 6= xa. Hence o(a) = 2, which is a contradiction.

Lemma 2.3. Let G be a non-abelian group and |Z(G)| = 1. Then, the vertices of degree one in

ΓG occure only at the edges. Furthermore, if degΓG
a = 1 then o(a) = 3.

Proof. Let a ∈ V (ΓG), degΓG
a = 1 and a be adjacent to b. Then, CG(a) = {1, a, b} and so

b = a−1. Hence, CG(b) = {1, b, a}. Thus, degΓG
b = 1. Furthermore, o(a) = o(b) = 3.
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Figure 4. The non-commuting graph of D10.

Lemma 2.4. Let G be a non-abelian group. Then ΓG does not have Cn, (n > 3) as component.

Proof. Let Cn be a component of ΓG and {a, b} ⊂ V (Cn) such that b ∈ NΓG
(a). Then NΓG

[a] =
{a, b, f} and NΓG

[b] = {a, b, c}. So CG(a) = {a, b, f}∪Z(G) and CG(b) = {a, b, c}∪Z(G). Since

|CG(a) ∩CG(b)| divides |CG(a)|, then 2 + |Z(G)| divides 3 + |Z(G)|, that is a contradiction.

Definition 2.1. Let G be a group. Write S and T for the set of elements of G of order two and

three, respectively. Then G is a acceptable when neither S nor T is empty and G = S∗ ∪ T , where

S∗ = S ∪ {e}.

Theorem 2.5. [3] If G is acceptable, then either S∗ ≤ G or T ∗ ≤ G.

3. Main results

In this section, we prove our main results.

Theorem 3.1. Let G be a non-abelian group. Then, the following holds.

i) δ(ΓG) = 3 if and only if G is isomorphic to S3.

ii) δ(ΓG) = 4 if and only if G is isomorphic to D8 or Q8.

iii) δ(ΓG) = 5 if and only if G is isomorphic to D10.

Proof. We prove as follows:

i) Let δ(ΓG) = 3 and degΓG
(v) = 3, for some v ∈ V (ΓG). Since degΓG

(v) > |G|
2
, then |G| 6 6.

The only non-abelian group of order less than 7 is S3.
Conversely, Suppose that G is isomorphic to S3. By considering the figure of the non-

commuting graph associated to symmetric group S3 (See Figure 1), we obtain δ(ΓG) = 3.

231



www.ejgta.org

Domination number of the non-commuting graph of finite groups | E. Vatandoost and M. Khalili

ii) Let δ(ΓG) = 4. Then |G| 6 8 and so G ∈ {S3, D8, Q8}. By (i), G ≇ S3. So G ∼= D8 or

Q8. Conversely, Suppose that G is isomorphic to D8 or Q8. By considering the figure of the

non-commuting graph associated to D8 and Q8 (See Figures 2 and 3), we obtain δ(ΓG) = 4.

iii) Let δ(ΓG) = 5. Then |G| 6 10. By (i) and (ii), |G| = 10. Since G is not an abelian

group, then G is isomorphic to D10. Conversely, Suppose that G is isomorphic to D10. By

considering the figure of the non-commuting graph associated to the dihedral group D10 (See

Figure 4), we obtain δ(ΓG) = 5.

Corollary 3.1. All of 3-regular and 5-regular graphs cannot be non-commuting graphs.

Theorem 3.2. Let Γ be a (n − 2)-regular graph of order n. Then Γ is the non-commuting graph

associated to a non-abelian group G if and only if n = 6 and G is isomorphic to D8 or Q8.

Proof. Let Γ be a (n − 2)-regular graph of order n and G be a group such that ΓG = Γ. Then

n is even and ΓG is a disjoint union of n
2

edges. If a and b are adjacent in ΓG, then CG(a) =
Z(G) ∪ {a, b} . It is clear that |Z(G)| 6 2.

If |Z(G)| = 1, then CG(a) = {1, a, a−1 = b} and o(a) = 3. Since ΓG is a disjoint union of

some edges, then for each x ∈ G we have o(x) = 3. Thus, there is a positive integer s such that

|G| = 3s. Hence |Z(G)| > 1, which is a contradiction.

If |Z(G)| = 2 and Z(G) = {1, x}, then for each a ∈ G\Z(G), CG(a) = {1, x, a, b} and so we

have a2 = 1 or a2 = x. Therefore for each a ∈ G \ Z(G) we have a2 ∈ Z(G). Hence G
Z(G)

is an

elementary abelian 2-group. So G′ ≤ Z(G), which implies |G′| = 1 or 2. Since G is not an abelian

group, then G′ 6= {1}. Thus G′ = Z(G). Also we have cl(a) = {g−1ag : g ∈ G} ⊆ aG′ and so

|cl(a)| 6 2. Since |cl(a)| = |G|
|CG(a)|

, then |G| 6 8. Hence G ∼= S3, D8 or Q8. Since Z(S3) = 1,

then G ∼= D8 or G ∼= Q8.

Conversely, suppose that G ∼= D8 or G ∼= Q8. Then by considering the figures of the non-

commuting graphs of these two groups (See Figures 2 and 3), we obtain ΓG is a 4-regular graph of

order 6.

Theorem 3.3. Every (n− 3)-regular graph of order n is not the non-commuting graph.

Proof. Let Γ be a graph of order n and (n − 3)-regular. Also, suppose that G is a group and

ΓG = Γ. Thus, ΓG is a 2-regular graph. It means that ΓG is a disjoint union of cycles.

By Lemma 2.4, ΓG is a disjoint union of triangles. Hence for every a ∈ G \ Z(G), CG(a) =
Z(G) ∪ {a, b, c} such that bc = cb. Thus, |Z(G)| 6 3.

Case 1. If |Z(G)| = 1, then |CG(a)| = 4. So there is a positive integer s such that |G| = 2s.
Thus, |Z(G)| > 1, which is a contradiction.

Case 2. If |Z(G)| = 2, then |CG(a)| = 5. Since |Z(G)| divides |CG(a)|, then 2 | 5, which is a

contradiction.

Case 3. If |Z(G)| = 3, then |CG(a)| = 6. Thus, CG(a) ∼= Z6 and so for each x /∈ Z(G),
o(x) ∈ {2, 6}. So for each a ∈ G \ Z(G), a2 ∈ Z(G) which implies G/Z(G) is an elementary

abelian 2-group. Therefore, G′ ≤ Z(G). Since G is not an abelian group, then G′ = Z(G). We
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know that cl(a) ⊆ aG′. So |cl(a)| 6 3 Hence 6 < |G| 6 18. Since |Z(G)| = 3 and |Z(G)|
divides |G|, then |G| ∈ {9, 12, 15, 18}. Furthermore, since G is not an abelian group, then we have

|G| ∈ {12, 18}.

If |G| = 12, then G ∼= A4, D12 or 〈a , b | a6 = 1 , a3 = b2 , b−1ab = a−1〉. Since G has

only 2 elements of order three, then G ≇ A4. Also since |Z(D12)| = 2, then G ≇ D12. Hence

G ∼= 〈a , b | a6 = 1 , a3 = b2 , b−1ab = a−1〉. So G has an element of order 4, which is a

contradiction.

If |G| = 18, then ΓG
∼= 5K3. So G has exactly 5 elements of order 2. Let np be the number of

Sylow p−subgroup of G. By Sylow Theorem, n2(G) ∈ {1, 3, 9}. Hence G has 1, 3 or 9 elements

of order 2, which is a contradiction.

In [10], Ore proved that if Γ is a graph with no isolated vertices, then γ(Γ) ≤ n
2
. In Theorems

3.4 and 3.5, we show that if G is a non-abelian group with |Z(G)| = t, then γ(ΓG) and γ(ΓG) are

less than n−t
2

.

Theorem 3.4. Let G be a non-abelian group of order n and |Z(G)| = t. Then γ(ΓG) <
n−t
2

.

Proof. We know |V (ΓG)| = n−t. Since ΓG is a connected graph, it contains no isolated vertex. By

Theorem 2.1, γ(ΓG) 6
n−t
2

. Now, we show γ(ΓG) <
n−t
2

. Assume to the contrary, γ(ΓG) =
n−t
2

.

By Theorem 2.2, each component of the graph ΓG is the cycle C4 or the Corona product K1 and a

connected graph H , that is HoK1. By Lemma 2.1, is a contradiction. Hence γ(ΓG) <
n−t
2

.

Theorem 3.5. Let G be a non-abelian group of odd order n and |Z(G)| = t. Then γ(ΓG) <
n−t
2

.

Proof. Since n is odd, then t is odd. By Lemma 2.2, the graph ΓG contains no isolated vertex.

By Theorem 2.1, γ(ΓG) 6
n−t
2

. Now, suppose that γ(ΓG) = n−t
2

. Then, by Theorem 2.2, ΓG

has connected components of kind of C4 or HoK1. By Lemma 2.4, all components of ΓG are the

corona product K1 and a connected graph H . Let a be a vertex of degree 1 in ΓG and b is adjacent

to a. Then CG(a) = {a, b} ∪ Z(G) and so |Z(G)| 6 2. Since |G| is odd, then |Z(G)| = 1. By

Lemma 2.3, |G| = 3s. Hence |Z(G)| > 1, which is a contradiction.

In the following theorem, we characterize all groups G of order n with |Z(G)| = t, in which

γ(ΓG) + γ(ΓG) ∈ {n− t+ 1, n− t, n− t− 1, n− t− 2}.

Theorem 3.6. Let G be a non-abelian group of order n and |Z(G)| = t. Then the following holds.

i) γ(ΓG) + γ(ΓG) < n− t+ 1.

ii) γ(ΓG) + γ(ΓG) = n− t if and only if G ∼= S3.

iii) γ(ΓG) + γ(ΓG) = n− t− 1 if and only if G ∼= D8 or G ∼= Q8 .

iv) γ(ΓG) + γ(ΓG) = n− t− 2 if and only if G ∼= D10.

Proof. Since |G| = n and |Z(G)| = t, then |V (ΓG)| = n− t. By Theorem 3.4, γ(ΓG) <
n−t
2
.
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i) By Theorem 2.4, γ(ΓG) + γ(ΓG) 6 n− t+ 1. Let γ(ΓG) + γ(ΓG) = n − t + 1. Then

γ(ΓG) > n− t+1− n−t
2

= n−t+2
2

. By Theorem 2.1, ΓG contains at least one isolated vertex.

So t = 1 and γ(ΓG) = 1. Thus γ(ΓG) = n− 1. Therefore ΓG = Kn−1. By Theorem 2.3, it

is impossible. Hence γ(ΓG) + γ(ΓG) < n− t+ 1.

ii) Let γ(ΓG) + γ(ΓG) = n− t. Then γ(ΓG) >
n−t
2
. By Theorem 2.1, ΓG contains at least one

isolated vertex. So t = 1, γ(ΓG) = 1 and γ(ΓG) = n − 2. Thus, ΓG is a disjoint union

of P2 and isolated vertices {x1, x2, . . . , xn−3}. All isolated vertices xi are of order 2. Let a
and b be the vertices of the path P2. By Lemma 2.3, b = a−1 and o(a) = o(b) = 3. We

claim that if x1 and x2 are two elements of order 2, then o(x1x2) = 3. To see this, suppose

o(x1x2) = 2. Then x1x2x1x2 = 1 and so x1x2 = x2x1. Thus x1 is adjacent to x2 in ΓG,

which is a contradiction. It is easy to see that o(xib) = 2, for i = 1, 2, . . . , n− 3.

If T = 〈x1, b | x2
1 = b3 = 1, (x1b)

2 = 1〉, then T ∼= S3. We prove G ∼= T . If x2 ∈ G\T and

x1x2 = b, then x2 = x1b. Since x1b ∈ T , x2 ∈ T . Also if x1x2 = b−1, then x2 = x1b
−1 ∈ T .

However it is a contradiction. Hence G ∼= T ∼= S3. Conversely, if G ∼= S3, then by Figure 1,

γ(ΓG) = 1 and γ(ΓG) = 4 and the proof is complete.

iii) Let γ(ΓG) + γ(ΓG) = n− t− 1. Then γ(ΓG) >
n−t−2

2
. We consider two cases:

Case 1. Let γ(ΓG) =
n−t
2

. Then γ(ΓG) =
n−t
2

− 1. If ΓG has an isolated vertex, then t = 1

and so n is odd. By Theorem 3.5, γ(ΓG) < n−1
2

, which is false. If ΓG does not have an

isolated vertex, then by Theorem 2.2 and Lemma 2.4, ΓG has a vertex of degree one. So

t = 1 or t = 2. If t = 1, then n is odd. By Theorem 3.5, γ(ΓG) <
n−1
2

, which is false.

If t = 2, then γ(ΓG) =
n−2
2

and γ(ΓG) =
n−4
2
. By Theorem 2.4, n−2

2
.n−4

2
6 n − 2. Since

n 6= 2, then n 6 8. So G is isomorphic to S3, D8 or Q8. But Z(S3) = 1. Hence G is isomor-

phic to D8 or Q8.

Case 2. If γ(ΓG) > n−t
2

, then ΓG contains at least one isolated vertex. So t = 1 and so

γ(ΓG) = 1. Therefore γ(ΓG) = n − 3. By Lemmas 2.3, 2.4 and γ(ΓG) = n − 3, we have

the following subcases.

Subcase 1. Let ΓG be a union of the isolated vertices {x1, x2, . . . , xn−4} and K3 with ver-

tices a, b, c. Then CG(a) = CG(b) = CG(c) = {1, a, b, c}. So orders of a, b and c are 2 or

4. If o(a) = o(b) = o(c) = 2, then order of each element of G is 2 and so G is an abelian

group, which is a contradiction. If o(a) = 2 and o(b) = 4, then a = b2 and for each i
(i = 1, 2, ..., n− 4), xibxi = b or xibxi = b−1. If xibxi = b, then bxi = xib. So b is adjacent

to xi, which is a contradiction. If xibxi = b−1, then 〈b, xi〉 ∼= D8. We claim that G ∼= 〈b, x1〉.
Suppose that x ∈ G \ 〈b, x1〉. Since xbx = b−1 and x1bx1 = b−1, then xbx = x1bx1 and

so x1x ∈ CG(b). We know that CG(b) = 〈b〉. So x ∈ {x1b, x1b
2, x1b

3}, Hence x ∈ 〈b, x1〉.
Therefore G ∼= D8. Since in this case Z(G) = {1}, then we have Z(D8) = {1}, which is a

contradiction.
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Subcase 2. Let ΓG be a union of the isolated vertices {x1, x2, . . . , xn−5} and two edges

with vertices a ∼ b and c ∼ d. By Lemma 2.3, o(a) = o(b) = o(c) = o(d) = 3. Since

{1, a, b, c, d} is not a subgroup of G, by Theorem 2.5, {1, x1, x2, . . . , xn−5} is a subgroup

of G. So o(x1x2) = 2. Hence x1x2 = x2x1 and so x1 is adjacent to x2 in ΓG, which is a

contradiction. Conversely, by using the figures 2 and 3 we can obtain the proof.

iv) Let γ(ΓG)+γ(ΓG) = n−t−2. By Theorem 3.4, γ(ΓG) <
n−t
2

. We have the following cases.

Case 1. If γ(ΓG) =
n−t−2

2
, then γ(ΓG) =

n−t−2
2

. By Theorem 2.4, γ(ΓG).γ(ΓG) 6 n − t.
Hence, 1 6 n − t 6 7. Since n − t is even and t | n, then n − t ∈ {4, 6}. If n − t = 4,
then (n, t) = (6, 2) and so G ∼= S3. Which is a contradiction to the fact that Z(S3) = 1. If

n− t = 6, then (n, t) ∈ {(10, 4), (8, 2)}. Since t | n, we have (n, t) = (8, 2). So G ∼= D8 or

G ∼= Q8. By Figures 2 and 3, we have a contradiction.

Case 2. Let γ(ΓG) =
n−t−4

2
and γ(ΓG) =

n−t
2

. If ΓG has an isolated vertex, then t = 1 and

so n is odd. By Theorem 3.5, γ(ΓG) <
n−1
2

, which is false.

If ΓG does not have an isolated vertex, then by Theorem 2.2 and Lemma 2.4, ΓG has a vertex

of degree 1. So t = 1 or t = 2. If t = 1, then n is odd, which is false. If t = 2, then

γ(ΓG) =
n−2
2

and γ(ΓG) =
n−6
2
. Thus n 6 10. By Figures 2, 3 and 4, we have a contradic-

tion.

Case 3. Let γ(ΓG) <
n−t−4

2
. Then γ(ΓG) >

n−t
2

and so ΓG has at least one isolated vertex.

Thus t = 1, γ(ΓG) = 1 and γ(ΓG) = n − 4. Let u ∈ V (ΓG). If degΓG
(u) > 3, then

γ(ΓG) < n− 4, which is not true. Hence for every u ∈ V (ΓG), degΓG
(u) 6 3 and o(u) 6 5.

We have the following subcases.

Subcase 1. Let degΓG
(u) 6 1, where u ∈ V (ΓG). Then ΓG is isomorphic to union of 3

copies of P2 and n − 7 isolated vertices. It is clear that isolated vertices are of order 2. By

Lemma 2.3, G is an abelian acceptable group. By Theorem 2.5, T∪{1} ≤ G or S∪{1} ≤ G.

Since 3 does not divide | T ∪{1} |, then T ∪{1} is not a subgroup of G. Hence S∗ = S∪{1}

is a subgroup of G. Since |S∗| 6 |G|
2

, then |G| 6 12. We know that there is no group of

order less than 12 with exactly 6 elements of order 3, which implies that |G| = 12. Hence

G ∼= A4, D12 or L = 〈a , b | a6 = 1 , a3 = b2 , b−1ab = a−1〉. Since G has exactly 6

elements of order 3, we have G /∈ {A4, D12}. Also in L we have o(b) = 4. So G ≇ L.

Subcase 2. For each u ∈ V (ΓG), degΓG
(u) 6 2. Let u, v ∈ V (ΓG) and degΓG

(u) =

degΓG
(v) = 2. If u and v are not adjacent in ΓG, then by Lemmas 2.3 and 2.4, γ(ΓG) < n−4,

which is not true. If u and v are adjacent in ΓG, then by Lemmas 2.3 and 2.4, u and v are

vertices of a K3. Since γ(ΓG) = n − 4, then ΓG is isomorphic to union of exactly one

copy of K3, one copy of P2 and some isolated vertices. Suppose V (K3) = {u1, u2, u3},

V (P2) = {v1, v2} and isolated vertices are denoted by xi, where 1 6 i 6 n − 6. We have
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CG(ui) = {1, u1, u2, u3}. So o(ui) ∈ {2, 4}. By Lemma 2.3, o(v1) = o(v2) = 3. Also

we have o(xi) = 2. So |G| = 2ℓ3, where ℓ is natural. By Sylow Theorem, there are two

subgroup H and K of G such that |H| = 2ℓ and K = {e, v1, v
−1
1 = v2}.

If h ∈ H and o(h) = 2, then o(hv1h) = o(v1) = 3. So hv1h = v1 or v−1
1 . If hv1h = v1,

then v1h = hv1 and so o(v1h) = 6, which is false. If hv1h = v−1
1 , then v1h = hv−1

1 or

hv1 = v−1
1 h. It is well known that |Z(H)| > 1.

Let z ∈ Z(H) and o(z) = 2. Then for every h ∈ H \ {z}, we have

(zh)v1 = (hz)v1 = h(zv1) = h(v−1
1 z) = (hv−1

1 )z = (v1h)z = v1(hz) = v1(zh) Hence

zh ∈ CG(v1). So zh ∈ {v1, v
−1
1 }.

If |H| > 4, then |H| > 8. Thus there are h1, h2 ∈ H , h1 6= h2 such that zh1 = zh2. Hence

h1 = h2, which is a contradiction. Thus |H| = 4 and so |G| = 12. Since G has exactly two

elements of order 3, then |cl(v1)| = 1 or 2. Since |CG(v1)| = 3 and [G : CG(v1)] = |cl(v1)|,
we have 4 = 1 or 4 = 2, which is not true.

Subcase 3. Let u ∈ V (ΓG), degΓG
(u) = 3 and NΓG

(u) = {x, y, z}. Then CG(u) =
{1, u, x, y, z} and so o(u) = 5. Hence induced subgraph on NΓG

[u] is isomorphic to K4.

Since γ(ΓG) = n − 4, then ΓG
∼= K4 ∪ (n − 5)K1. On the other hand if x is a isolated

vertex in ΓG, then o(x) = 2. Since xu /∈ {1, u, u2, u3, u4}, we have o(xu) = 2. Thus

xux = u−1 and so 〈x, u〉 ∼= D10. Now let y ∈ G \ 〈x, u〉 and y be an isolated vertex in ΓG.
Then o(yu) = 2. Hence yuy = xux. This implies that xy ∈ CG(u) = {1, u, u2, u3, u4}.

Therefore y ∈ {x, xu, xu2, xu3, xu4} and so y ∈ 〈x, u〉, which is a contradiction. Hence

G ∼= 〈x, u〉 ∼= D10.

Conversely, if G ∼= D10, then t = 1 and by Figure 4, γ(ΓG) + γ(ΓG) = 7 and the proof is

complete.
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