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ABSTRACT

Natural mortality of trees is extremely variable due to the uncertainty and complexity of the functioning of forest
ecosystems. To overcome this uncertainty, a two-step mortality model was applied for unthined stands of Acacia
manginm species. The model was developed using data from 197 permanent sample plots measured periodically at 1-yr
time intervals from 2-4 yrs until 8-11 yrs after planting in South Sumatra, Indonesia. The model consists of two
complementary equations. The first equation is a logistic function predicting the probability of mortality incidence
depending on stand density, site index and stand age. The second equation estimates the reduction in the number of
surviving stems observed in a stand where natural mortality occurs. Nine equations were fitted using data from
permanent sample plots where trees died over the time period and the best model was selected. Estimates from this
second model are then adjusted by a factor equal to the probability of mortality applying three different approaches:
probabilistic two-step, deterministic threshold and stochastic. All methods reveal no significant difference between the
observed and the predicted number of surviving stems per ha. The probabilistic two-step approach, however,
produces more consistent and the most accurate estimates. This method should provide reliable prediction when it is
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to be used in forest productivity prediction and management system for the species.

Keywords: logistic function, mangium, mortality model, stand density, survival.

INTRODUCTION

Mortality of trees is a natural process that plays
important roles in forest ecosystems and has a
strong impact on stand production. This
information needs to be accurately estimated as
forest productivity may be sensitive to periodic
lost due to mortality, especially over longer period
of time with changing climate (Zhang e# a/. 2015,
Ma et al. 2016). However, natural mortality of trees
is extremely variable and difficult to predict due to
the uncertainty and complexity of the functioning
of forest ecosystems (Monserud and Sterba 1999,
Fridman & Stahl 2001, Ma e# al. 2016). Natural
mortality of trees can be distinguished into two
types: regular (non-catastrophic) and irregular
(catastrophic) mortality. Regular mortalities, can
be defined as being due to suppression and
competition between trees for light, water and soil
nutrients within a stand; while irregular mortality
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is caused by random disturbances or hazards such
as fire, wind, landslide, pest and disease outbreaks
(Vanclay 1994).

Generally, only regular mortality is considered
when modelling survival or stand density and data
from sample plots showing excessive mortality
caused by catastrophic events are usually excluded
from analyses (Amateis ez al. 1997, Woollons 1998,
Diéguez-Aranda ez al. 2005). Regular mortality is
more predictable than irregular mortality (Murty
& McMurtrie 2000), particularly at tree and stand
levels, but not necessarily at a landscape level
(Alenius ezal. 2003).

In an attempt to simplify an approach to such a
complex phenomenon, mortality has been
commonly modelled within individual tree or
stand level, either as regular or irregular mortality.
Models for predicting mortality or survival have
been developed, particularly for some species
growing in temperate forests, such as Pinus taeda
(Avila & Burkhart 1992, Amateis ezal. 1997, Lee &
Coble 2002), Pinus elliottii (Pienaar & Shiver 1981,
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Bailey e al. 1985, Pienaar et al. 1990), Pinus radiata
(Woollons 1998, Gonzalez et al. 2004), Pinus
sylvestris (Diéguez-Aranda et al. 2005), and Picea
glanca (BEvert 1981, Yang ez a/. 2003). In contrast, a
very few mortality models have been published
for tropical plantation species (Forss ezal. 19906).

In Indonesia, natural mortality of trees in a
stand has usually been predicted simply as a mean
annual mortality rate. Accurate prediction of
natural mortality at the stand level is important,
particularly for tropical species such as Acacia
manginm which has been planted largely to meet
the demand for wood industries. This prediction
should be included in the management system to
maintain the forest productivity and mitigate the
risk of potential loss due to mortality. Forss ez a.
(1996) developed a model for predicting survival
of A. manginm species in South Kalimantan, but it
was based on data from only a small number of
semi-permanent sample plots and covered young
ages only. To provide reliable information for
estimating forest productivity, a more accurate
mortality model for various stand conditions and
covers the longer time period needs to be
developed.

This study aimed to develop a stand level
mortality model for Acacia manginm, one of the
most commonly tropical species planted in
Indonesia (FAO 2002, Krisnawati e a/ 2011,
Krisnawati 20106), by relating mortality to stand
variables that affect the natural mortality process.
Different causes of mortality are not separated so
the model combines regular mortality due to
suppression or normal competition and irregular
mortality from random disturbances.

MATERIALS AND METHODS

Data Description

Data for this study were based on
measurement of 197 permanent sample plots
established subjectively in A. mangium unthinned
stands in South Sumatra, Indonesia. The study
area has a lowland humid environment which well
suited for growing 4. mangium. The plots are good
representative for the study site representing the
range of ages, stand densities and site qualities. All
plots were 0.1 ha in size but their initial planting
spacing varied. Almost all of the plots were re-
measured at 1-yr time intervals until 8-11 yrs of

age. Por each measurement, the following stand
variables were calculated: stand density in terms
of total number of stems per ha (IN), basal area
per ha (B), dominant height (H), site index ()
which follows a function of Krisnawati e .
(2009), and relative spacing index (RS) which is a
function of the number of stems per ha and the
mean dominant height (Husch e a/ 2003).
Summary statistics including mean, minimum
(min), maximum (max) and standard deviation
(SD) of these variables for the initial
measurement of each period are presented
(Table 1). The data were split randomly into two
set: 75% was used for model fitting and 25% was
used for model validation.

Proportion of dead stems in the plots was
recorded during the re-measurement times.
Natural mortality (at least one stem dying in a
plot) occurred in 75.1% of the measurement
periods of the fitting plots and 72.8% for the
validation plots. For a few plots having
measurement periods of 2 yrs, data were
transformed into 1-yr using linear interpolation.
The overall annual mortality rates of all available
plots ranged from 0.4 to 38.3% with a mean value
of 5.7%. High mortality occurred mainly in plots
with very high stand densities, consistent with its
resulting from extreme inter-tree competition.

Modelling Mortality

A stand level difference equation was used as
the base model for modelling mortality to predict
stand density ata specified projection age:

N2=/N1,42,41() M

where NN, is number of surviving stems per ha at
age A,, N, is number of surviving stems per ha at
age A, and the difference between A, and A, is
the projection interval.

This type of equation has been commonly
used for projecting stand density because of its
desirable properties, including consistency, path-
invariance and the asymptotic limit of stand
density approaching zero when the projected
stand age (A,) becomes very large (Clutter e/ al.
1983). However, Woollons (1998) argued that a
conflict exists between the mathematical
characteristics of the difference equations for
stand density projection and the data used to
estimate their parameters. As the most common
data used for estimating mortality models are
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Table.1. Summary statistics of the main stand variables at the initial measurement of each period

Fitting data

Validation data

Stand variable

Mean Min Max SD Mean Min Max SD
Stand age (yrs) 5.5 2.0 10.0 1.8 52 2.0 9.0 1.7
Dominant height (m) 16.2 3.6 27.0 4.7 15.1 5.0 25.5 4.3
Site index (m) 17.8 8.4 23.9 2.7 17.1 11.7 22.8 2.3
Stand density (stems ha') 966 390 2020 282 882 390 1930 290
Basal area (m?ha'!) 15.7 0.7 31.6 7.2 15.2 1.8 30.4 7.4
Relative spacing index 19.0 11.1 69.5 7.5 25.8 11.8 76.2 11.1

from repeated measurements of permanent plots,
in some plots mortality may not occur, even over
periods of several years (Monserud & Sterba
1999, Eid & Tuhus 2001, Fridman & Stahl 2001).
For example, in this study no mortality occurred
between two successive measurements in 25.5%
of the available time intervals in the full data set. If
data from all plots, i.e. those in which mortality
had not occurred as well as those in which it had
occurred in that time interval, were included in
model development, certain problems related to
the binomial nature of mortality and fitting of the
above model are likely to appear (Woollons 1998,
Eid & @Qyen 2003). On the other hand, if only data
from those plots where mortality had occurred
were used in model development, mortality would
be overestimated.

To overcome these problems, this study
followed Woollons (1998) suggestion by applying
a two-step modelling approach similar to the
decision theory or a probabilistic two-step
approach (Hamilton & Brickell 1983) for
estimating the defective volume of timber in a
stand. In the first step, a model is fitted using all
sample plots to predict the probability of a plot
experiencing any mortality. In the second step, a
model to estimate the number of surviving stems
(stand density) is fitted only to the sample plots in
which some mortality has occurred. Finally, the
estimates derived from the second step are
adjusted by a factor equal to the probability of
mortality estimated in the first step to produce the
overall prediction of the number of surviving
stems per ha.

Predicting probability of mortality incidence

The first step in modelling mortality was
estimating the probability of mortality incidence
in a plot (atleast one stem dying in a plot) overa 1-
yt period. Incidence of mortalityis considered asa
discrete event with only two possible values, i.e. 0
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(absence of mortality) or 1 (presence of
mortality). The logistic regression model
(Hosmer ez al. 2013, Chutinantakul ez a/. 2014) was
applied to predict the probability of mortality
incidence:

bX
”(x) = 1+ eb’x

where 7 (x) is the probability of mortality
incidence in a plot over a 1-yr period (and the
probability of no mortality is 1- 7 (x)), x is the
vector of explanatory variables which
characterise the stand conditions at the initial
measurement, /' is the vector of parameters to be
estimated, and & is a random error.

Due to the binary nature of dependent
variable, a logit transformation is needed to
estimate the parameters:

L 1
o (b b 8K

+ &

)

)

The explanatory variables considered for
inclusion in the logistic regression model (Eq 3)
are stand attributes that potentially influence the
likelihood of a stem death: (1) stand density, (2)
site productivity, and (3) stand vitality. The most
commonly used stand density measure is the
number of stems per ha (IN) (Burgman ez a/. 1994,
Wang & Hamilton 2003, Gonzalez et al. 2004),
stand basal area (B) (Vanclay 1991b, Yang ez al.
2003, Diéguez-Aranda et al. 2005), and relative
spacing index (RS) (Gonzalez e al. 2004, Zhao et
al. 2000). Site productivity, usually characterised
by dominant height (H) or site index (), has also
been found to influence mortality (Woollons
1998, Eid & Tuhus 2001, Yao ¢z 4/ 2001, Bravo-
Oviedo ez al. 2006). Age (A), is considered as a
reasonable measure of vitality, particularly in
unthinned stands, also influences the likelihood
of a stem mortality (Gonzalez e al. 2004,
Diéguez-Aranda ez al. 2005, Zhao et al. 2006). All
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these variables and some combinations of them
were included for analysis in this study.

The generalized estimating equation (GEE)
method (Stokes ez al. 2012, Hosmer et al. 2013) was
employed to handle correlated data in the logistic
regression analysis due to serial correlation
between measurements in the same plots, which
has not been addressed in some previous studies
(Eid & Oyen 2003, Wang & Hamilton 2003,
Gonzalez et al. 2004, Diéguez-Aranda ez al. 2005,
Zhao et al. 2006). This method is an extension of
generalised linear model (GLM), suitable for
binomially distributed data with repeated
measurements.

Estimating stand density

The second step in modelling mortality was to
develop a model to estimate stand density for a
specified projection age using data from only
sample plots where mortality has occurred in that
time interval. Several algebraic difference
equations derived from four differential equations
were tested in this study as candidate models for
predicting stand density (Table 2). Comparison of
the model estimates was based on graphical and

numerical analyses of residuals, following the
criteria as used by Krisnawati e/ a/. (2009) for
modelling dominant height and site index for 4.
mangium.

Adjusting the Predicted Stand Density

Final prediction of stand density involves
combining the models from the two preceding
steps and adjusting the predicted survival. The
predictions can be calculated by deterministic and
stochastic approaches (Weber e al 1986,
Monserud & Sterba 1999). The most common
deterministic approach is based on decision
theory and called a “probabilistic two-step
approach” (Hamilton & Brickell 1983, Woollons
1998), where the predicted number of surviving

stems per ha (N,,,) is determined by:
N,yo =N, = 2(x)(N, =, (4)

where 7p(x) is the probability of mortality
incidence over the period estimated by the logistic
model (Eq.3), N, is the number of surviving
stems per ha at the initial age .4, and N2 is the
number of surviving stems per ha at the

Table 2. Difference-equation forms of stand mortality models tested in this study

Model Expression References
Mortality rate is constant, independent of age:
M1 — _ Clutter e al. (1983
N, =N, exp(c,(4, —4,)) (1983)

Mortality rate is proportional to a power function of age:
M2

M3

M4

N, = (NE“ +¢, ((A2 /100)" (4, /100)2))M
N, = (NEO-S +¢, ((A2 /100)" —(4,/100)" ))Lz

N, = (Nlm + CIS((AZ /100)" —(4,/100)" ))m

Mortality rate is proportional to a hyperbolic function of age:

Woollons (1998)

modification of M2

M3 with site index

M5 Nz _ Nl (Az/Al)bz exp(co (Az _A1)) Diéguez-Aranda ez al. (2005)
Mo N2 _ Nl (Az/Al)bz CXp(CIS(Az _A1)) M5 with site index
M7 N2 _ N1 (Az/Al)bz CXp(CO +CIS(A2 _Al)) Bailey ez al. (1985)

Mortality rate is proportional to an exponential function of age:

M8 N, =N, exp(co(bf2 — bt ))

M N, =N, exp(clS(bf12 —bst ))

Laar & Akga (1997)

MS8 with site index

Notes: A, is initial age (yr), A,is re-measurement age (yr), IN,is number of surviving stems per ha atage A4,, N,is number of surviving stems per ha atage A,

and b,, b,and ¢, are model parameters to be estimated.
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prediction age A, predicted by the selected
mortality model (Table 2).

Another deterministic approach is to use a
threshold value between 0 and 1. If Zp(x) exceeds
the threshold value, then natural mortality occurs
and the number of surviving stems per ha at age
A,1s estimated by the algebraic difference form of
the mortality model; otherwise natural mortality
does not occur and the number of surviving stems
per ha at age A, equals the initial number of
surviving stems per ha. The most logical choice of
a threshold is the average observed mortality rate
(Monserud & Sterba 1999) which, in this study is
equal to 0.745.

In the stochastic approach, the predicted
probability of mortality incidence is compared
with a random number between 0 and 1. If the
random number is less than 7p(x), natural
mortality occurs and the number of surviving
stems per ha at age 4, is estimated using the
algebraic difference form of the mortality model;
it not, then the prediction is for no natural
mortality.

Model Evaluation

Performance of the whole mortality models
based on the probabilistic two-step approach
(Eq4), the deterministic threshold and the
stochastic approaches were evaluated using the
validation data set, and scatter plots of observed
and predicted numbers of surviving stems per ha
were produced for each. A simple linear
regression was fitted for each approach and the
coefficients of determination were used to
compare the observed and the predicted number
of surviving stems per ha. The observed (IN) and
the predicted (IN") values were related following
the linear model: N6OIN10"+=. If the mortality
model estimated the number of surviving stems
per ha correctly, the intercept (4,) should not be
significantly different from zero and the slope (4))
should not be significantly different from one.

RESULTS AND DISCUSSION

Model for Predicting Probability of Mortality
Incidence

The probability of mortality incidence in the
stand was well explained by a logistic regression
model. The model is appropriate for dealing with
the binary nature of mortality data. In the logistic
model for predicting the probability of a stand
experiencing any mortality in a 1-yr period, the
best set of explanatory variables was stand
density, site index and stand age (Table 3). Other
variables (basal area, dominant height) were also
tested. However, these two variables were less
significant for predicting the probability of
mortality incidence (based on the probability level
of 0.05) allowing these to be removed from the
model. Variability of these variables, however,
may have been incorporated in the main
explanatory variables.

The selected model for predicting probability
of mortality incidence in a stand is:

. 1
Ax)= 1+exp(—(2.9+0.001N, +0.1215+0.184,))  (5)

where A, is stand age at the initial measurement
(yr), N, is number of stems per haatage A, and S
is site index (m).

The positive coefficient for the number of
stems per ha (stand density) indicates that for
stands of a given age and site index the predicted
probability of mortality incidence increases with
increasing stand density due to more intense
inter-tree competition. The degree of
competition may influence the survival likelihood
of each individual tree. In stands with high
density, trees compete for limited physical space
and resources such as light, water and soil
nutrients (Peet & Christensen 1987). Some trees
may fail the competition and die. The influence of

this variable was also shown in other stand or tree
mortality models (Woollons 1998, Yao ezal. 2001).

Table 3. Parameter estimates, standard errors and related fit statistics of the selected model for predicting the probability of

mortality incidence
Variable Estimate SE Wald 2 statistics p-value
Intercept -2.9 0.58 -5.07 0.000
Stand density (I\1) 0.0010 0.00037 2.85 0.004
Site index () 0.121 0.0290 4.15 0.000
Stand age (A1) 0.18 0.055 3.29 0.001
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The probability of mortality incidence in a
stand also tends to increase with increasing site
index, which is consistent with many previous
studies (Eid & Tuhus 2001, Yao ¢z a/. 2001, Eid &
Oyen 2003, Diéguez-Aranda e al. 2005). Yao ez al.
(2001) and Yang ez a/. (2003) explained that faster
tree growth on better sites may lead to more severe
competition and increased probability of
mortality, especially for small trees. The faster
growth in stand of higher site productivity also
triggers competition-induced mortality at earlier
ages (Oliver & Larson 1996). However, Vanclay
(1994) criticized that high quality sites should
support higher densities; therefore, stand
mortality should be lower for given age and stand
density. Woollons (1998) also found higher
mortality on lower production sites. This could be
attributed to the lower availability of water and
certain nutrients, which might be the case on
poorer sites (Jutras et al. 2003). For A. mangium,
water availability may not be a problem as this
species normally demands full light for good
development and stunted when grown in shade
(Lim et al., 2002). It may also be possible that the
higher mortality on higher site quality as being
partly an effect of higher local competition,
coupled with a strong tendency of A. mangium to
produce multiple leaders resulting in stand
densities high enough to cause self-thinning in
some plots, which cannot properly be accounted
for by robust stand-level mortality models.
Incorporating spatial competition measures may
help in understanding and modelling this
phenomenon, but it is beyond the scope of this
study as spatial data are not typically available in
forestinventory.

Probability of mortality incidence also
increases with stand age. This seems to be

explainable because the data were from unthinned
stands, which often exhibit increasing mortality,
particularly after 5 yrs from planting (Arisman e/
al. 2005). This result complies with the dynamic
process of the competition and natural mortality
of even-aged stands (Clutter ez a/. 1983, Gadow &
Hui 1999).

The mean predicted probabilities of mortality
incidence (at least one stem dying in a plot) with
respect to number of stems per ha, site index and
stand age in _A. mangium stands generally coincide
with the mean observed mortality within each
class, despite the occasional discrepancies (Figure
1). The differences between mean values of the
predicted and the observed probability of
mortality mainly occurred in the smallest and the
largest classes of each stand variable, where there
were small numbers of observations. Irregular or
stochastic conditions that may apply during the
measurement periods may have also contributed
to the lower or higher predicted mortality
incidence than observed. For all observations of
all plots, the mean predicted probability of
mortality incidence was 71.9%, while the actual
incidence was 72.8%.

Models for Predicting Stand Density

The final parameter estimates for the nine
fitted models as well as their standard errors (SE),
t-statistics, p-values for significance testing, model
root mean squared error (RMSE), and adjusted
coefficient of determination (Rzadi) are presented
in Table 4. All models produced similar fits with
values of RMSE and stdi almost identical. All
parameter estimates were found to be highly
significant (p 0.01), except for parameter ¢, in
Model M8 and parameter ¢, in Model M9. The

R’,, for all models were generally high (> 94%),

Figure 1. Predicted (line) and observed (bat) probability of mortality incidence computed for three stand variables:
number of stems per ha (a), site index (b), and stand age (c).
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compared with other studies for similar models
producing R’ ; for only 16-50% (Fridman & Stihl
2001, Eid & Oyen 2003, Pothier & Mailly 2000).
The RMSEs were relatively high at about 60 stems
perha (6.5%) overa period of 1-2yrs. This can be
explained by the occurrence of irregular mortality
during the measurement periods that may also
contribute to the model's errors. However, this is
not unusual for mortality models emphasizing the
fact that mortality is a complex and fairly
unpredictable process for which there are many
interrelated causes (Waring 1987).

Among the models that did not include site
index as explanatory variable (Models M1, M2,
M3, M5 and MS8), Model M3, which assumes
mortality rate is a power function of age
performed slightly better than the others. This
model is similar to Model M2 which was
recommended by Woollons (1998) but his model
included only one parameter. Model M1 proposed
by Clutter e# al. (1983) in which mortality rate is a
constant proportion for all ages, site indices and
stand densities does not appear to be suitable to
this study. Its validation performance was inferior
to all the others.

The inclusion of site index as an explanatory
variable slightly improved the fits in all models as
shown by Models M4, M6, M7 and M9. Model M7
proposed by Bailey e a/ (1985) generally

performed better than Models M4, M6 and M9.
Although Model M7 provided good fit, when it
was used for projecting number of stems from
age 1 to age 2 yrs it predicted an increase in the
number of stems per ha, which was clearly
illogical. This model should only be used for
projecting survival from starting ages of 2 yrs or
later. A similar problem occurs for Models M5
and MO, which also assume mortality rate is
proportional to a hyperbolic function of age. Due
to this limitation, the models that assume
mortality rate is proportional to a hyperbolic
function of age were rejected.

Models that consider the relative rate of
change in the number of stems is proportional to
an exponential function of age (Models M8 and
M9) performed worst in terms of overall bias.
One of the parameter estimates of each of these
models was also not significant (p > 0.05).
Although this type of model has been shown to
be more accurate than others for Pinus radiata
stands (Gonzéalez et al. 2004), it was less
appropriate for A. mangium in this study.

In general, the models that consider the
relative rate of change in the number of stems is
proportional to a power function of age (Models
M2, M3 and M4) seem to be most suitable. These
models behaved logically and fitted the data well.
Similar results were reported by Diéguez-Aranda

Table 4. Final parameter estimates, standard errors and related fit statistics of the fitted models for predicting stand density.

Model Parameter Estimate SE t p-value RMSE R2.
Mortality rate is constant, independent of age:
M1 @ -0.0539 0.00292 -18.45 0.000 61.010 0.946
Mortality rate is proportional to a power function of age:
M2 @ 0.65 0.036 18.36 0.000 60.221 0.947
M3 b 1.31 0.182 7.19 0.000 59.896 0.948
) 0.15 0.056 2.69 0.007
M4 b 1.29 0.184 7.03 0.000 59.401 0.949
o 0.0078 0.00292 2.68 0.004
Mortality rate is proportional to a hyperbolic function of age:
M5 h 0.13 0.041 3.18 0.002 60.508 0.946
@ -0.077 0.0079 -9.78 0.000
M6 bn 0.09 0.037 2.52 0.009 60.321 0.947
a -0.0038 0.00038 -9.97 0.000
M7 b 0.15 0.040 3.79 0.000 58.748 0.949
) -0.043 0.0082 -5.27 0.000
a -0.003 0.0043 -6.21 0.000
Mortality rate is proportional to an exponential function of age:
M8 by 1.064 0.0275 38.65 0.000 60.710 0.946
@ -0.6 0.35 -1.70 0.090
M9 b 1.057 0.0276 38.32 0.000 60.388 0.947
a -0.037 0.0236 -1.56 0.119

176



Modelling natural mortality of tropical plantation species Acacia manginm

et al. (2005) for mortality model of Pinus
sylvestris. Within this group, however, Model M4
which includes site index was the best. Therefore,
this model was selected for estimating the number
of surviving stems per ha for A. mangium stands
in this study. The final model (fitted from plots
where mortality has occurred from the entire data
set) is:

N, = (v, +0.0115((4,/100)*" = (4,/100)*))*  (6)

Performance of the Selected Mortality Model

Scatter plots of the observed and predicted
values of the number of surviving stems per ha
were produced for the three different approaches
and a simple linear model was fitted for each
(Figure 2). In general, the three different
approaches produced no aberrant results and the
coefficients of determination were very similar
(0.975 - 0.980). The test also revealed that the
predicted number of surviving stems per ha of
the three approaches was not significantly
different from the observed number of surviving
stems per ha (p > 0.30). All approaches should
provide satisfactory predictions of the number of
surviving stems per ha.

The overall biases at the projection ages were
generally small, and were not significantly
different from zero. All methods predicted the
number of surviving stems per ha reasonably well.
Some discrepancies between the observed and the
predicted number of surviving stems per ha at the
projection ages were found for the highest density
class. Prediction problems in the highest density
class were not unexpected since few sample plots
were available at densities higher than 1500 stems
per ha and this is probably of little practical
concern because stand density in operational 4.
manginm stands typically does not exceed this
number.

The stand mortality models developed in this
study can be used for predicting stand density
through either deterministic or stochastic
approach. Deterministic prediction based on the
probabilistic two-step approach assumes that the
incidence of mortality over the plots or stands
will be affected equally according to the stand
conditions. The deterministic use of the model in
this way will smooth values of mortality trend for
the plots or stands. However, with a reasonably
large number of plots, the prediction of mortality
will still be unbiased at the stand level or even at
the forestlevel (Eid & OQyen 2003). The threshold
deterministic approach would avoid this
“smoothing” values but it always produces the
same estimate of stand mortality for a fixed
threshold value (Diéguez-Aranda ez al. 2005).

In real situations, mortality occurrence in the
plots having the same growing conditions may
not be the same due to the stochastic nature of
tree mortality. In order to mimic the real situation
more closely, the model may be used
stochastically, despite it is having been developed
for deterministic use. The probability of
mortality incidence for a particular plot may be
predicted from Eq. (6), and a random number
distributed uniformly between 0 and 1 is used to
determine whether or not the mortality occurred
in the plot. The stochastic approach is, however,
an alternative that allows different estimates for
the same stand depending on the random number
generated. The use of a random number may be a
reasonable approach to deal with the fact that
mortality is a stochastic phenomenon. This
assumption may be more useful when the
mortality model is used for large-scale
management simulation, taking into account the
stochastic nature of tree death (Woollons 1998).

Another alternative is to fit a model for
predicting stand density as has been applied in the
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Figure 2. Scatter plots of observed and predicted number of surviving stems per ha using three different approaches:
probabilistic two-step approach (a), deterministic threshold approach (b), and stochastic approach (c).
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second step but including all plots with and
without mortality incidence. The use of this one-
step modelling approach fitted to all data may be a
good alternative when natural mortality is
frequent, as may occur in unthinned dense stands.
However, this approach may create a problem
when no actual mortality is observed in many
plots (Woollons 1998, Eid & Oyen 2003). This
approach was also tested in this study (results not
shown), but some departure from normality and
presence of large bias in prediction were
indicated, which was consistent with the result of
Woollons's study.

Weber e a/ (1986) and Vanclay (1991a)
compared the deterministic and stochastic
approaches in predicting mortality and could not
find significance difference in their predictions.
However, Belcher e al (1982) noted that a
stochastic approach typically predicts high
mortality during some years and very little
mortality in others. Such patterns may be more
representative of actual events over short time
periods, but they may inflate the variance of
predictions over long projection periods (Pothier
& Mailly 20006). Consequently, the deterministic
prediction based on the probabilistic two-step
approach was preferred to a stochastic approach
for the application in this study. This approach has
also been shown to be most accurate among the
three approaches tested and thus should provide
reliable prediction when it is to be used in forest
productivity prediction and management system.

CONCLUSIONS

A two-step modelling strategy was used to
develop a natural mortality model for A. mangium
stands. The probability of mortality incidence for
1-yr period in the first step is mainly influenced by
stand density, site index and stand age. The
estimates of the probability of mortality
incidence increase with increasing stand density,
site index and stand age. At the second step, the
best model for estimating stem number reduction
due to mortality was the model that included site
index as explanatory variable, in which the relative
rate of change in the number of stems was
proportional to a power function of age.

From the three different methods proposed
for projecting the number of surviving stems per
ha (i.e. probabilistic two-step, deterministic
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threshold and stochastic approaches), all methods
provided similar results and reliable predictions.
No important biases between the observed and
the predicted number of surviving stems per ha
were found. For inclusion in the forest
productivity prediction system, however, the
probabilistic two-step approach produces
consistent and the mostaccurate estimates.

ACKNOWLEDGEMENTS

The author thanks to the management and
field inventory team of PT Musi Hutan Persada
for providing acess to permanent sample plot data
for this study. Thanks also to reviewers who have
provided invaluable comments on the earlier draft
of this manuscript.

REFERENCES

Alenius V, Hokka H, Salminen H, Jutras S. 2003. Evaluating
estimation methods for logistic regression in
modelling individual-tree mortality. In: Amaro A,
Reed D, Soares P, editors. Modelling forest
systems. Wallingford: CAB International. p 225-
236.

Amateis RL, Burkhart HE, Liu J. 1997. Modeling survival in
juvenile and mature loblolly pine plantations. For.
Ecol. Manage. 90: 51-58.

Arisman H, Kurinobu S, Hardiyanto EB. 2005. A simple
step-wise procedure for predicting stand
development of Acacia manginm plantations based

on the maximum size-density line in South Sumatra,
Indonesia. J. For. Res 10: 313-318.

Avila OB, Burkhart HE. 1992. Modeling survival of loblolly
pine trees in thinned and unthinned plantations.
Can.]. For. Res. 22: 1878-1882.

Bailey RL, Borders BE, Ware KD, Jones EP. 1985. A
compatible model for slash pine plantation survival
to density, age, site index, and type and intensity of
thinning. For. Sci. 31: 180-189.

Belcher DW, Holdaway MR, Brand GJ. 1982. A description
of STEMS - the stand and tree evaluation and
modelling system. USDA For. Serv. GTR-NC 79.

Bravo-Oviedo A, Sterba H, Rio MD, Bravo E 2006.
Competition-induced mortality for Mediterranean
Pinus pinaster Ait. and P. sylyestris L. For. Ecol.
Manage. 222: 88-98.

Burgman MA, Incoll W, Ades PK, Ferguson I, Fletcher T,
Wohlers A. 1994. Mortality models for mountain
and alpine ash. For. Ecol. Manage. 67: 319-327.



Modelling natural mortality of tropical plantation species Acacia manginm

Chutinantakul A, Mayeng M, Tongkumchum P. 2014.
Estimation of mortality with missing data using
logistic regression. Songklanakarin J. Sci. Technol.
36:249-254.

Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL.
1983. Timber management: a quantitative approach.
New York: Wiley.

Diéguez-Aranda U, Castedo-Dorado T, Alvarez-Gonzélez
JG, Rodriguez-Soalleiro R. 2005. Modelling
mortality of Scots pine (Pinus sylvestris 1..) plantations
in the northwest of Spain. Eur. J. For. Res. 124: 143-
153.

Eid T, Oyen B-H. 2003. Models for prediction of mortality
in even-aged forest. Scand. ]. For. Res. 18: 64-77.

Eid T, Tuhus E. 2001. Models for individual tree mortality in
Norway. For. Ecol. Manage. 154: 69-84.

Evert F. 1981. A model for regular mortality in unthinned
white spruce plantations. For. Chron. 2: 77-32.

Food and Agriculture Organization (FAO). 2002. Tropical
forest plantation areas data set by D. Pandey. Forest
Plantations Working Paper 18. Rome: FAO.

Forss E, Gadow KV, Saborowski J. 1996. Growth models for
unthinned _Acacia mangium plantations in South
Kalimantan, Indonesia. J. Trop. For. Sci. 8: 449-462.

Fridman ], Stdhl G. 2001. A three-step approach for
modelling tree mortality in Swedish forests. Scand. J.
For. Res. 16: 455-466.

Gadow KV, Hui G. 1999. Modelling forest development.
Dordrecht: Kluwer Academic Publishers.

Gonzilez JGA, Dorado FC, Gonzéalez ADR, Sanchez CAL,
Gadow KV. 2004. A two-step mortality model for
even-aged stands of Pinus radiata D.Don in Galicia
(Northwestern Spain). Ann. For. Sci. 61: 439-448.

Hamilton DA, Brickell JE. 1983. Modeling methods for a
two-stage system with continuous responses. Can. J.
For.Res. 13: 1117-1121.

Hosmer DW, Lemeshow S, Sturdivant RX. 2013. Applied
logistic regression, 3" edition. New York: Wiley.

Husch B, Beers TW, Kershaw JA. 2003. Forest mensuration.
New Jersey: John Wiley and Sons.

Jutras S, Hokka H, Alenius V, Salminen H. 2003. Modelling
mortality of individual trees in drained peatland sites
in Finland. Silva Fenn. 37: 235-251.

Krisnawati H. 2016. A compatible estimation model of stem
volume and taper for Acacia mangium Willd.
plantations. Indon. ]. For. Res. 3: 49-64.

Krisnawati H, Wang Y, Ades PK, Wild 1. 2009. Dominant
height and site index models for Acacia mangium
Willd. plantations. J.For.Res. 6: 148-165.

Krisnawati H, Kallio M, Kanninen M. 2011. Acacia manginm
Willd.: ecology, silviculture and productivity. Bogor:
CIFOR.

Laar A, Akca A. 1997. Forest mensuration. Gottingen:
Cuvillier Verlag;

Lee Y-, Coble DW. 2002. A survival model for unthinned
loblolly pine plantations that incorporates non-
planted tree competition, site quality, and
incidence of fusiform rust. Bioresour. Technol. 58:
301-308.

Lim SC, Gan KS, Choo KT. 2002. The characteristics,
properties and uses of plantation timbers -
rubberwood and Acacia mangium. Timber Tech. Bul.
26:1-11.

MaL, Lian ], Lin G, Cao H, Huang Z, Guan D. 2016. Forest
dynamics and its driving forces of sub-tropical
forest in South China. Sci. Rep. 6:22561.
Doi:10.1038/srep22561.

Monserud RA, Sterba H. 1999. Modeling individual tree
mortality for Austrian forest species. For. Ecol.
Manage. 113:109-123.

Murty D, McMurtrie RE. 2000. The decline of forest
productivity as stands age: a model-based method
for analysing causes for the decline. Ecol. Model.
134:185-205.

Oliver CD, Larson BC. 1996. Forest stand dynamics. New
York: Wiley.

Peet RK, Christensen NL. 1987. Competition and tree
death. BioSci. 37: 586-595.

Pienaar LV, Page HH, Rheney JW. 1990. Yield prediction for
mechanically site-prepared slash pine plantations.
South. ]. Appl. For. 14: 104-109.

Pienaar LV, Shiver BD. 1981. Survival functions for site-
prepared slash pine plantations in the flatwoods of
Georgia and northern Florida. South. ]. Appl. For. 5:
59-62.

Pothier D, Mailly D. 2006. Stand-level prediction of balsam
fir mortality in relation to spruce budworm
defoliation. Can. . For. Res. 36: 1631-1640.

Stokes ME, Davis CS, Koch GG. 2012. Categorical data
analysis using SAS, 3 edition. Cary: SAS Institute
Inc.

Vanclay JK. 1991a. Compatible deterministic and stochastic
predictions by probabilistic modeling of individual
trees. For. Sci. 37: 1656-1663.

Vanclay JK. 1991b. Mortality functions for north
Queensland rain forests. J. Trop. For. Sci. 4: 15-30.

Vanclay JK. 1994. Modelling forest growth and yield:
applications to mixed tropical forests. Wallingford:
CAB International.

Wang Y, Hamilton F. 2003. Projecting stand attributes of
regrowth ash cucalypts sampled in forest inventory.
Aus. For. 66: 75-86

Waring R.H., 1987. Characteristics of trees predisposed to
die. BioSci. 37: 569-574.

179



BIOTROPIA Vol. 25 No. 3, 2018

Weber L, Ek AR, Droessler TD. 1986. Comparison of
stochastic and deterministic mortality estimation in
an individual tree based stand growth model. Can. .
For.Res. 16: 1139-1141.

Woollons RC. 1998. Even-aged stand mortality estimation
through a two-step regression process. For. Ecol.
Manage. 105: 189-195.

Yang Y, Titus SJ, Huang S. 2003. Modeling individual tree
mortality for white spruce in Alberta. Ecol. Model.
163:209-222.

180

Yao X, Titus SJ, MacDonald SE. 2001. A generalized logistic
model of individual tree mortality for aspen, white
spruce, and lodgepole pine in Alberta mixedwood
forests. Can. J. For. Res. 31: 283-191.

Zhang J, Huang S, He I%. 2015. Half-century evidence from
western Canada shows forest dynamics are primarily
driven by competition followed by climate. PNAS.
www.pnas.org/cgi/doi/10.1073/pnas.1420844112.

Zhao D, Borders BE, Wang M. 2006. Survival model for
fusiform rust infected loblolly pine plantations with
and without mid-rotation understorey vegetation
control. For Ecol Manage. 235: 232-239.



