A Design of Diagonally circular Slotted Fractal Patch Antenna for Multi Band Applications

Prashant Singodiya, Devendra Soni , Sanjay Gurjar, Saurabh Sharma

Abstract—In this paper, a novel design of Diagonally circular Slotted Fractal Patch Antenna is presented. It is a compact design of 30 × 30 mm² area on FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm and fed by a probe feeding technique. Microstrip patch antenna consists of a fractal patch with circular-shaped meandered lines to provide multi band operations. The proposed antenna resonates at four different frequencies 2.2933GHz, 4.68GHz, 5.21GHz and 6.81GHz with high return loss of -14.48 dB, -15.71 dB, -10.70dB and -18.88 dB respectively with satisfactory radiation properties. The antenna operated in quad band, viz. 2.25-2.34GHz with percentage bandwidth of 3.92 % at 4.60-4.76 GHz with percentage bandwidth of 3.41%, at 5.2-5.23 GHz with percentage bandwidth of 0.57%, and 6.70-6.90 GHz with percentage bandwidth of 2.94%. The parameters that affect the performance of the antenna in terms of its frequency domain characteristics are investigated. The antenna design has been simulated on IE3D, an electromagnetic (EM) simulation software tool. This antenna is good for mobile and wireless applications.

Index Terms— Fractal Antenna, Quad Band, IE3D Return Loss.

I. INTRODUCTION

Fractal shaped antennas exhibit some interesting features that stem from their inherent geometrical properties. The self-similarity of certain fractal structures results in a multiband behaviour of self-similar fractal antennas and frequency-selective surfaces (FSS) [1-3]. The interaction of electromagnetic waves with fractal bodies has been the study of many researchers in the recent years [4]. The word “Fractal” is outcome of Latin word “fractus” which means linguistically “broken” or “fractured”. Benoit Mandelbrot, a French mathematician, introduced the term about 20 years ago in his book “The fractal geometry of Nature” [5]. The term fractal was coined by Mandelbrot in 1975, but many types of fractal shapes have been proposed long before. Fractals are generally self-similar and independent of scale [6]. Microstrip patch Antennas are very popular in many fields as they are low-profile, low weight, robust and (l=30mm, w=30mm)

II. PROPOSED ANTENNA DESIGN

In this paper, the performance of space-filling Diagonally circular Slotted shaped meandered fractal lines on probe fed patch antennas has been investigated till third order. It may be contended that the bends and corners of these geometries would add to the radiation efficiency of the antenna, thereby improving its gain. [7] Advantage of these configurations is that they lead to multiband conformal antennas [6]. The proposed antenna is designed on FR4 epoxy substrate having the dielectric constant of 4.4 and 0.02 loss tangent. In the design of this type of antennas, the width „W‟ and length „L‟ of base shape (zero order) patch play a crucial role in determining the resonant frequency. Here for the zero order or base shape the length of rectangular patch is taken as l = 30 mm and width as w = 30 mm. The designed value of the antenna is optimized with IE3D tool. The first order design is created from first iteration by removal of one “circular” shaped slots placed as shown in the figure 2. In next second iteration to create order shape we will repeat this process and increase two “circular” shaped slots inside first and in second order increase twice more than first order. A ground plane of copper is printed on the back of the substrate as a ground plane for the probe feed line technique. Figure 1 shows the base shape of proposed antenna of dimension 30 × 30 mm² and figure 2 shows the first order shape after cutting the “circular” shaped meanders of radius 2.5 mm.

The main advantages of the proposed antenna are: (1) compact size, (2) multiband characteristics (3) size reduction.

Fig. 1:- Base Shape of Diagonally circular Slotted fractal Antenna (l=30mm, w=30mm)
Here the size of the antenna will be depending on the resonant frequency which will be reducing as we keep on iterating the first order design. The correct resonant frequencies and impedance matching of the proposed antenna can be established by adjusting the location of feed point and the distance between the Circular - shaped meandered portions. Figure 3 and 4 show the second and third order shape of the Diagonally circular Slotted - shaped meandered fractal antenna with dimension of Circular - shaped radius chosen as 1/2 of higher order circular - shaped dimensions.

Fig. 2: First Order Shape Diagonally circular Slotted fractal antenna

Fig. 3: Second Order Shape of Diagonally circular Slotted fractal antenna

Fig. 4: Third Order Shape of Diagonally circular Slotted fractal antenna

III. RESULTS AND DISCUSSION

The results for the three iterations performed on the rectangular patch to get the desired Diagonally circular Slotted - shaped meandered fractal antenna are as follows:

Fig. 5: Return Loss for Base Shape

Fig. 7: Return Loss of First Order

Fig. 5 shows that the antenna resonates at 4.56 GHz with Return loss of -11.1971 dB. This design can be used in Fixed Satellite Service, Defence systems, Mobile applications, UWB applications and Radio determination applications.

Fig. 6: VSWR of Base Shape
For first iteration three bands are occurring with resonance frequencies at 2.2933 GHz, 4.68 GHz and 6.81333 GHz.

For second iteration three bands are occurring with resonance frequencies at 2.2933 GHz, 4.68 GHz, 5.21333 GHz and 6.81333 GHz.

For third iteration three bands are occurring with resonance frequencies at 2.2933 GHz, 4.68 GHz, 5.21333 GHz and 6.81333 GHz.

The proposed antenna resonates at four different frequencies 2.2933 GHz, 4.68 GHz, 5.21333 GHz and 6.81333 GHz with high return loss of -14.48 dB, -15.71 dB, -10.70 dB and -18.88 dB respectively with satisfactory radiation properties. The antenna operated in quad band, viz. 2.25-2.34 GHz with percentage bandwidth of 3.92%, at 4.60-4.76 GHz with percentage bandwidth of 3.41%, at 5.2-5.23 GHz with percentage bandwidth of 0.57%, and 6.70-6.90 GHz with percentage bandwidth of 2.94%. The table below shows the frequency detail of the third order of the Diagonally circular Slotted fractal antenna. Frequency detail table we see that the antenna gives the gain of 3.9176 dBi with directivity of 10.9284 dBi. A Comparative table for all the iterations is given in appendix-I for detailed performance evaluation of the proposed design.
In this paper, the Diagonally circular Slotted fractal antenna up to third order has been designed & simulated using the IE3D. It has been observed that with the increase in number of orders the band-width of the antenna, VSWR and return loss also increased. In third order, antenna is showing multiband results at higher bandwidth and maximum return loss. The self-similarity properties of the fractal shape are translated into its multiband behavior. The simulation shows a size reduction is achieved by the proposed fractal antenna, without degrading the antenna performance, such as return loss and radiation pattern due to the meandered circular shaped slots which have increased the length of the current path.

REFERENCES


APPENDIX

Comparative Table of Diagonally circular Slotted - Shaped Meandered Quad Band Fractal Patch Antenna

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Shape</th>
<th>Resonant Freq. (GHz)</th>
<th>Return Loss (db)</th>
<th>Bandwidth (% )</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Base Shape</td>
<td>Fr1 =4.56</td>
<td>-11.1971</td>
<td>1.798</td>
<td>1.76777</td>
</tr>
<tr>
<td>2</td>
<td>1st Iteration</td>
<td>Fr1 =2.2933</td>
<td>-15.3145</td>
<td>4.23</td>
<td>1.72859</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr2 =4.68</td>
<td>-17.0629</td>
<td>3.52</td>
<td>1.37795</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr3 =6.81333</td>
<td>-17.7389</td>
<td>2.49</td>
<td>1.35279</td>
</tr>
<tr>
<td>3</td>
<td>2nd Iteration</td>
<td>Fr1 =2.2933</td>
<td>-14.63</td>
<td>3.92</td>
<td>1.76057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr2 =4.68</td>
<td>-15.61</td>
<td>3.09</td>
<td>1.44074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr3 =5.21</td>
<td>-10.47</td>
<td>0.28</td>
<td>1.84397</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr4 =6.81</td>
<td>-18.93</td>
<td>2.79</td>
<td>1.31096</td>
</tr>
<tr>
<td>4</td>
<td>3rd Iteration</td>
<td>Fr1 = 2.2933</td>
<td>-14.48</td>
<td>3.92</td>
<td>1.76265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr2 =4.68</td>
<td>-15.71</td>
<td>3.41</td>
<td>1.52928</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr3 =5.21</td>
<td>-10.70</td>
<td>0.57</td>
<td>1.8125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr4=6.81</td>
<td>-18.88</td>
<td>2.94</td>
<td>1.3146</td>
</tr>
</tbody>
</table>