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The theory analysis and design for large parameter weak 

signal detector based on bistable stochastic resonance 
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Abstract - We deduce the Kramers rate using the Fokker-

Planck (FP) equation with the adiabatic approximation 

condition (the amplitude and frequency of signal detected are 

small <<1) and prove that stochastic resonance (SR) could 

enhance the signal-to-noise ratio (SNR) of the output signal 

under the adiabatic approximation condition in bistable 

system. We employ the signal modulation technique to 

transform the large frequency components into a small 

parameter signal to meet the adiabatic approximation 

requirement because the large frequency weak periodic signal 

and multi-frequency harmonic signal, which are more 

common in engineering practice, are difficult to detect using 

SR theory. Furthermore, a mixing simulation model is 

designed to generate SR. Initially, the signal frequency is 

selected using the model based on the difference of the 

frequencies of the test signal and a scanning signal. Then, the 

output from the model is input into a bistable system for 

signal detection. The simulation result shows that the 

modulation method can generate SR in a bistable system and 

detect large parameter weak signals from strong noise 

background.   

 

Index Terms - Stochastic resonance, bistable system, 

probability equation, signal modulation, simulation 

experience 

PACS: 05.40.-a, 05.45.-a, 02.50.-r, 05.40.Ca 

1. INTRODUCTION 

The ability to detect weak signals from strong 

background noise effectively has always been a hot topic. 

Therefore, many studies using different approaches have 

been conducted. One such approach involves using the 

concept of stochastic resonance (SR) to detect weak 

signals[1-6]. 
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The concept of SR was first put forward by Benzi et al. in 

the early 1980s when the researchers were studying the 

glacial period in paleoclimatology. The cooperative 

phenomenon in which a small periodic signal and noise are 

combined in a nonlinear fashion was described[4-5]. In a 

linear system, the signal-to-noise ratio (SNR) at the output 

will decrease with increasing input noise. However, in a 

nonlinear system, when the input signal and noise are in a 

cooperative state, the energy stored in the noise can be 

transferred to the signal, resulting in a situation in which 

 the SNR will increase remarkably with the input noise 

increasing[4,9]. There is a rapidly increasing interest in 

signal detection using SR theory, and the topic has been 

extensively studied both theoretically and experimentally in 

many scientific fields[6,17]. From a theoretical perspective, 

theories such as the adiabatic approximation theory[6,8], 

linear response theory[9,10], and perturbation theory[11] 

have been employed to study the SR phenomenon. The 

effects of both internal and external noise have been 

investigated[12], and moreover, the design and 

performance analysis of a signal detector based on 

stochastic resonance[13]and the effects of time delay and 

noise correlation in an asymmetric bistable system have 

also been investigated[14,15]. From an experimental 

perspective, research has been carried out and advanced 

with respect to bistable Schmit triggers[16], optical 

systems[17], and simulations of weak signal detection[18]. 

The adiabatic approximation theory based on white 

noise can only describe the ideal system. As a result, 

colored noise, which is more similar to the noise observed 

in real systems, has recently been investigated 

extensively[19-21]. Research on SR has covered not only 

the scenario in which SR is riven by two different types of 

colored noise but also that in which SR with time-delayed 

feedback is driven by non-Gaussian noise in a bistable 

system[20-24].  

Although SR theory enables the detection of weak signals 

from strong background noise, many studies have shown 

that the application of the theory is limited to systems 

under small parameter conditions[5-11 ]i.e., systems in 

which the signal amplitude, frequency, and noise intensity 

are much smaller than 1. However, in engineering practice, 

the large frequency signals, periodic impulse signals, and 

high harmonics signals are much more common but more 

difficult to detect. The application of SR theory to the 

detection of large frequency signals is currently becoming 

one of the most interesting topics in weak signal detection. 

In this paper, we study SR with respect to weak signal 

detection against background noise. Specifically, (1) we 

more concisely deduce the Kramers escape rate using the 

FP equation; (2) we then obtain the solution of the 
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probability equation of a bistable system in the time and 

frequency domains and SNR by using the deduced Kramers 

escape rate. we prove that SR could enhance the SNR of 

the output signal under the conditions of only small 

parameters ( the adiabatic approximation condition)；(3) 

we modulate the large parameter weak periodic signal that 

satisfies the adiabatic approximation condition; (4) we use 

simulations to validate the feasibility of our method. 

2.  THE THEORY OF SR IN A BISTABLE SYSTEM 

2.1 The bistable system model 

A naive bistable system can be described by the 

Langevin equation as follows 

  

3

0( ) ( ) sin(Ω ) ( )
dx μx t x t A t φ η t
dt

                    (1) 

where μ is a parameter of the system, μ>0. 
0A and Ω are the 

signal amplitude and frequency, respectively, and 

( )η t denotes zero-mean, Gaussian white noise with the 

following autocorrelation function  

 ( ) 0

( ) ( ) 2 ( )

t

t t D


    

 
  

                                             (2)                                                                        

                                                                                                                                                                                                          
Here, τ is the time interval, and D is the noise intensity. 
The nonlinear bistable system is 

 

3( ) ( )
dx

x t x t
dt

 
        

                                                                                       (3) 
The potential of a simple symmetric bistable system can 

be expressed as follows 

2 41
( )

2 4
U x x x


  

 

                                                                                       (4)    
 

 

Fig. 1. The quartic bistable potential 

Eq. (3) and (4) indicate that there is an unstable state 

located at x = 0 and two stable states located at sx    . 

2 / 4U   is the height of the potential barrier under 

static conditions, as shown in Fig. 1. 

2.2  The solution of the FP equation and Kramers escape 

rate 

The FP equation of a bistable system [6] can be 

expressed as follows 

2

2

( , )
[ ( ) ( , )] ( , )

ρ x t
U x ρ x t D ρ x t

t x x

   
  

                 (5)   

where ),( tx  is the probability distribution function, 

)(xU   is the first derivative of the potential function with 

x , and D is the noise intensity. Suppose that the initial 

probability distribution meets the adiabatic approximation 

condition[6],  that is
0 1A  , 1D  , 1  , or when t = 

0, the probability distribution is concentrated in one 
potential well 

( ,0) ( )
s

ρ x δ x x                                                             (6) 

Additionally, suppose that the probability current does not 

vary with time, i.e., 
( , )

0
ρ x t

t





. Thus, we can obtain the 

following steady-state solution 

( ) ( , ) ( , )U x ρ x t D ρ x t J
x

  


                                       (7) 

Here, J is the intensity of the steady-state current. For the 

homogeneous solution (J = 0), which is equal to the steady-

state solution, Eq. (7) can be written as the t-independent 

form of the ordinary differential equation, as expressed 

below 

( )

( )
U x

Dρ x Ne


                                                     （8）

                                                                                               
                       

Because 
( )

( )
U x

D
s

x x Ne


  and 

( )

( )
U x

D
s

δ x x dx N e dx


   , 

we can obtain 

 

( )

1
U x

DN e dx


                                                      （9）                     

Then, by setting 

( )

( ) ( )
U x

Dx V x e


  in Eq. (7), we can 

obtain the non-homogeneous solution

( )

( )
U x

D
J

V x e dx
D

   

Therefore, 
( ) ( )

( )
U x U x

D D
J

x e dx e
D


 

  
 
                                        (10) 

                                                                 
By taking time t into consideration and letting 

( )

( , ) ( )
U x

Dx t N t e


 , we obtain 

( )

( )
s

U x
A

D

x
J DN t e dx                                                (11) 

                                                                      

Given the range ( , A ), the total probability ( )P t  at 

time t  is  
( )

( ) ( , ) ( )
U x

A A
DP t x t dx N t e dx



 
                        (12) 

                                                      

Because J  is the intensity of the steady-state current，i.e. , 

the  rate of total probability ( )P t  at the steady state, we 

can obtain  
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( ) ( ) ( )Rt
p t dP t dt Re RP t

    

( ) ( ) ( )

( ) ( ) ( )

s

U x U x U x
A A A

D D D

x

dP t DN t DP t
J

dt
e dx e dx e dx



 

  

  
       (13)

                                         
Therefore, 

( ) (0) Rt Rt
P t P e e

                                            (14)

                                                                              
Where 

1 ( ) / ( ) /1 A A
U x D U x D

R e dx e dx
D

 

 
                                 (15)

                                               

Here, R  is the Kramers escape rate of the probability 
flowing into the unstable region. 

2.3 The equation for a bistable system and its solution 

According to Eq.(14), we obtain 
 
 
 

Where ( )p t is the probability current, we define that 

_( )p t  is the probability current of the left potential well, 

and  ( )p t is that of the right potential well, ( )P t is the 

total probability of two potential wells. Considering that the 
flow of the two potential well is opposite, We can establish 
the probability equation for the bistable system shown in 
Fig. 1 as follows 
 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

dP t
p t R P t R P t

dt

dP t
p t R P t R P t

dt


    


    

    

    


                                

                           (16)
                                 

         
where 

R  is the escape rate from the left potential well to 

the right potential well, and R is opposite to 
R . 

 
The solution of Eq. (16) can be obtained as follows 
 

   

    

1 e

1 e

R R t

R R t

R R
P t

R R R

R
P t

R R

 

 

  


  

 


 

  
     

   

                           (17)  

                                        

When reaching the steady state, R R R   , the above 

equation can be written as follows 
 

2

2

1
( ) (1 )

2

1
( ) (1 )

2

Rt

Rt

P t e

P t e







  

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

                                                  (18)  

                                                  
 

Thus, the probability current in the time domain can be 

written as follows 

2

2

( )
( )

( )
( )

Rt

Rt

dP t
p t Re

dt

dP t
p t Re

dt







   

   


                                              (19)

                                             

In each potential well of a bistable system, the size of 

the modulus at any moment are ( )p  and ( )p  , thus 

we can obtain the probability current in the frequency 

domain by taking the Fourier transform as follows 

2 2

2
( ) ( ) ( )

(2 )

( ) arctan
2

R
p p p

R

R

  


 

 
   




      

                    (20)

                                     

where )(p and )( represent the modulus and phase 

angle of the probability current, respectively.  

2.4 The response of periodic driving and SNR[6] 

Assuming that the noise background contains periodic 

signal 
0( ) coss t A t  , when 

0A  is very small, the 

response of the bistable system to the periodic input signal 

can be expressed as follows 

( ) ( )cos( )x t x D t                                                  (21)

                                             

where ( )x t  represents the mean value of the response, 

( )x D  is the amplitude, and   is the phase lag. From Eq. 

(20), when the driving frequency equals the signal 

frequency detected, or    (the analog  resonance 

phenomena), ( )x D  can be written approximately as 

2

0 0

2 2

2
( )

(2 )

( ) arctan
2

A x R
x D

D R

D
R




 
 
    

 

                                     (22)

                                       

where 2

0
x  is the D-dependent variance of the stationary 

unperturbed system (
0A = 0). It is clear that the amplitude 

response is dependent on the change of  the noise. The 

power spectrum can be obtained through the Fourier 

transform of the autocorrelation function as follows 

j( ) ( ) ( ) eS x t x t d
  

 


                        (23)   

                                                          

where ( )S   is the power spectrum of the response. Before 

the periodic signal is input to the system, the output power 

spectrum can be expressed as follows 
0 2 2 2

0
( ) 4 (4 )

N
S R x R                                       (24)   
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After inputting the periodic signal to the system, which 

meets the small parameter condition 
0( 1, 1)A   , the 

output power spectrum can be expressed as follows 

 2( ) ( 2) ( ) ( ) ( ) ( )
N

S x D S                    (25)   

                                          

Here, 0 2

0( ) ( ) 0( )
N N

S S A   ; therefore, the SNR is 

20

0
2 lim ( ) ( ) ( )m

N

A x
SNR S d S R

D
  





             (26)   

                                            

For the bistable system, we can obtain 
m

x  and 
2

4

2

DR e





 . By substituting this expression into Eq. 

(26), we obtain 
2

2 2 4
0

2

2

2

DA e
SNR

D






                                                   (27)  

                                                   

According to Eq. (25) and Eq. (27), when the small 

parameter signal in a system are in a cooperative state (i.e., 

satisfy the requirement of the adiabatic approximation), the 

system is in a state of synergy and produces SR. In 

engineering practice, a large frequency periodic signal and 

multi-frequency harmonic signal are more common. 

However, these signals do not meet the adiabatic 

approximation requirement and therefore are difficult to 

detect. Thus, we use a signal modulation technique to 

transform the large frequency components into small 

parameter signals to enable the transfer of energy from 

noise to useful signals. 

3. MODULATED SR AND ITS REALIZATION 

3.1 The theory of modulated SR 

The modulation process is shown in Fig. 2. The signal 

and noise are input to one end of the mixer model. In 

addition, the scanning signal is input to the mixer model. 

The output signal of the mixer model is input to the 

nonlinear bistable system, in which the signal detection is 

realized using SR. 

 

 

Fig. 2. A diagram of modulation SR 

The signal containing noise can be described as follows 

0 0 0

1

0 0

1

( ) ( cos 2 sin2 ) ( )

cos(2 ) ( )

n n n

n

n n

n

x t a a nf t b nf t n t

a A nf t n t

 

 









   

   




        

                          （28）

 

Where 2 2

n n n
A a b  , n

n

n

b
arctg

a
   , and ( )n t  is noise. 

Let the scanning signal be ( ) cos2
c

y t f t . The output 

signal of the mixer model can be expressed as follows 

0 0

1

0 0

1

0

1

( ) ( ) ( )

[ cos(2 ) ( )]cos 2

1
cos 2 cos[2 ( ) ]

2

1
cos[2 ( ) ] ( ) cos 2

2

m n

n n c

n

c n c n

n

n c n c

n

x t x t y t

a A nf t n t f t

a f t A nf f t

A nf f t n t f t

  

  

  















   

   

   







                

                                        （29） 

                                                 

 

In Eq. (29), when we adjust the scanning frequency cf  

towards 0nf  gradually, 
0 1

c
f nf f    , the system will 

satisfy the condition of the adiabatic approximation theory, 

which means that it can realize SR. 

3.2 The model design of modulated SR  

Based on the technique described above, we design the 

mixer model of a bistable system in which we have an 

adjustable parameter μ to control the system’s behavior. 
The mixer model is used for multiplication of the 

measurable signal and the scanning signal. Therefore, the 

frequency of the output signal contains both the sum and 

the difference of the frequencies of the measurable signal 

and the scanning signal.  

 

Fig. 3. Modulating simulation model of SR 

The flow chart of the SR modulating simulation model 

is shown in Fig.3. The components in the dotted-line block 

are used to generate a noise-added signal to mimic the 

signal in practice. The test signal and the scanning signal 

are input into the mixer model, whose output signal is then 

input into a nonlinear bistable system, which consists of an 

integrator, an adder, an inverter, two multipliers, and two 

amplifiers. The amplification coefficients of the two 

amplifiers I and II are 1 and μ, respectively, where μ is 

adjustable. If we assume the output of the inverter is –x, 
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then the outputs of multiplier I and II are k1x
2 

and k1k2x
3
, 

respectively. Therefore, the outputs of amplifier I and II are 

k1k2x
3
 and μx, respectively. This entire system can be 

described by the following model 
3

1 2[ (t)] ( )
n

x x k k x x y t dt   
                   (30)    

                                                       
 

In this paper, we set μ= 0.8 and
0A  = 0.6 and 

1 2 1k k   

In practice, we should first adjust the frequency of the 

scanning signal until it is close to that of the test signal 

(
0 1/ 2

c
f nf f     ). Therefore, the output signal 

frequency spectrum can be obtained using SR theory. By 

successively stepping the scanning signal, we can obtain 

the peak of the frequency spectrum of the output signal, 

from which we can determine the frequency of the test 

signal. 

 

3.3 The simulation of the system 

We first carry out a simulation of the designed 

simulation model (as shown in Fig. 3) to make sure SR can 

be produced. 

 

3.3.1 The simulation of a single-frequency signal 
without modulation 

We input a single-frequency signal 

0( ) cos2 ( )s t A ft n t  , where
0A  is the amplitude of the 

test signal. We let f = 0.01 Hz and f = 10 Hz be the test 

signal frequencies. ( )n t  is the noise. The output waveform 

of the bistable system is shown in Fig. 4 and Fig. 5. 
 

 
 

Fig. 4. In this case, f = 0.01 Hz, μ = 0.8,
0 0.6A  , and D = 

2.The waveforms of the input and output of the bistable 

system are shown. (S(t) is the input in the time domain, X(t) 

is output in the time domain, S(f) is the input in the 

frequency domain, and X(f) is the output in the frequency 

domain.) 

 
 

Fig. 5. In this case, f = 10 Hz, μ = 0.8, 
0 0.6A  , and D = 2. The 

waveforms of the input and output of the bistable system are shown. (S(t) 

is the input in the time domain, X(t) is output in the time domain, S(f) is 

the input in the frequency domain, and X(f) is the output in the frequency 

domain.) 

 

Fig. 4 shows that the peak of the frequency spectrum of 
the output occurs when the frequency is as low as 0.01 Hz, 
which meets the condition of small parameter. Fig.5 shows 
that the peak of the frequency spectrum of the output 
cannot be observed when the frequency is as high as 10 Hz, 
which does not meet the condition of small parameter; 
therefore, SR does not occur in the bistable system. 
Through the experiment, we can find that when the 
frequency and amplitude meet the small parameter 
condition, increasing the noise intensity in a certain rang, it 
also can realize the SR. 

 

3.3.2 The simulation of single-frequency signal 
modulation SR 
 

   We input the single-frequency signal 

0( ) cos2 ( )s t A ft n t  , where
0 0.6A  and 10f HZ are 

the amplitude and frequency of the test signal, respectively. 
( )n t  is the noise, and D = 2. Suppose the scanning signal is 

( ) cos2
c c

y t A f t , where
c

A and 
c

f  are the amplitude and 

frequency of the scanning signal, respectively. After the 
test signal is modulated by the mixer model, we can 
express it as follows 
 

0

0

( ) ( ) ( ) [ cos 2 ( )] ( cos 2 )

[cos 2 ( ) cos 2 ( ) ]
2

( )cos 2

m c c

c

c c

c c

x t s t y t A ft n t A f t

A A
f f t f f t

A n t f t

 

 



   

   



            

                                            (31) 
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Fig. 6. In this case, μ = 0.8, f = 10 Hz,
0A = 0.6, D = 2, and fc 

= 9.9 Hz. The output waveform of the modulating SR is 

shown. (X(t) is the output in the time domain, and X(f) is 

the output in the frequency domain.) 

The simulation result shown in Fig. 5 indicate that the 
system does not produce SR when the signal is directly 
input into the bistable system because the frequency is too 
high to meet the condition of SR. However, if the signal 
passes through the mixer model first, the system can 
produce SR when the scanning frequency is 9.9 

Hz ( 1/ 2 )
c

f f   , as shown in Fig. 6.  

 
3.3.3 The simulation of multi-frequency signal 

modulation SR 
 

We input a multi-frequency signal with noise 

0

1

( ) sin 2 ( ) , 1, 2,3...
2 1

n

n

A
s t πf t n t n

n





  
                 (32)

                                            

where 0
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                                   (33) 
 

For the multi-frequency signal, we cannot achieve the 
detection at once. We have to detect gradually from low 
frequency signals to higher ones. By using our method, the 
first three frequency components f1, f2, and f3 of the test 
signal are detected as shown in Fig.7 to Fig. 9. 

 

 

Fig. 7. The spectrum of the output of the SR system, 

where
0A =0.6, μ = 0.8, f1 = 10 Hz, D = 2, and fc = 9.9Hz. 

 
 

Fig.8. The spectrum of the output of the SR system, 

where
0A =0.6, μ = 0.8, f2 = 30 Hz, D = 2, and fc = 29.9 Hz. 
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Fig. 9. The spectrum of the output of the SR system, 

where
0A =0.6, μ = 0.8, f3 = 50 Hz, D = 2, and fc = 49.9 Hz. 

As shown in Fig. 7 to Fig. 9, when the scanning 
frequency is close to the test signal, the system produces 
the spectrum peak. That result indicates that when the 
difference between the scanning frequency fc and the 
measurable signal frequency fn is smaller 

( 1/ 2 )
n c

f f f     , the system can produce the SR. 

4. CONCLUSION 

Although SR can be used to detect weak signal from 
strong noise background, it can only when the small 
parameter signal meets the adiabatic approximation 
requirement. Although large frequency periodic signals and 
multi-frequency harmonic signals are common in 
engineering practice, they are difficult to detect using SR. 
In this paper, we use signal modulation to transform these 
signals into small parameter signals so that the weak signal 
detection technique based on SR theory can be 
implemented. The feasibility of our method is verified 
using simulations.  
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