Field Theory of Metamaterials and Its Application in Antenna: A Review

Santanu Roy

Abstract—This paper demonstrates a review of electromagnetic field analysis of metamaterials. First it is verified that a double negative metamaterial (both permittivity and permeability negative) forms left handed triplet and consequently, in such a material, wave propagation vector is anti-parallel with Poynting vector. Furthermore, a purely left handed transmission line model has been verified and it is analytically shown that, in such a media, refractive index is negative. It is also investigated that an effective negative permittivity medium or single negative metamaterial can be analyzed by employing a simple equivalent transmission line model which enables us to formulate the wave equation for plasma medium. In the end, some of the applications of double negative and single negative metamaterials are also mentioned.

Keywords—Double Negative (DNG) Metamaterial (MTM), Left Handed Material (LHM), Composite Right and Left Handed (CRLH) Transmission Line (TL).

I. INTRODUCTION

Double Negative (DNG) Metamaterials (MTM) have simultaneously negative permittivity and permeability. From the Maxwell’s curl equation Veselago [1] first time (in 1968), explored that in a DNG MTM, electric field (E), magnetic field (H) and wave propagation vector (k) forms a left handed triplet. Thus such a material is also called as Left Handed Material (LHM). As a result the direction of wave propagation vector (k) in LHM is reversed with respect to Poynting vector (S) and refractive index in such a material is negative [1–4]. Although Veselago predicted the existence of the LHM earlier, experimental verification first time was done by D.R. Smith et.al [3], in 2001. His group at University of California San Diego (UCSD) designed LHM, comprised of repeated unit cells of Split Ring Resonators (SRRs) and thin copper strips, which exhibits negative refractive index. Since SRR structure is difficult to implement, several researchers, including Caloz and Itoh et.al, G.V. Eleftheriades et.al and A.A. Oliner simultaneously developed (in 2002) different non-resonant transmission line models of LHM [5–10] by which one can easily visualize the concept of left-handness and formulate the wave equation for LHM. The main advantage of using such non-resonant structure is that it will have lesser loss and broader bandwidth [6] than conventional resonant structure. Later J.B. Pendry revealed that a perfect lens [11] can be achieved by deploying LHM, which may focus entire spectrum of light onto an area smaller than the wavelength of light. Since the inception of negative refractive index transmission line, it has enabled to enhance the performance of antennas. Several scientists have employed metamaterials to achieve more directivity [13] in antenna, to miniaturize antenna structure and it can also be used in dual band [14, 15] antenna application.

II. VERIFICATION OF LEFT HANDEDNESS IN DOUBLE NEGATIVE METAMATERIALS

In this section we investigated a material, having simultaneously negative ε and μ, forms left handed triplet instead of right handed triplet.

From Helmholtz’s wave equation, we get

\[
\left(\nabla^2 - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi = 0
\]

(1.1)

where \(n\) is the refractive index and it can be represented by

\[
\eta = \sqrt{\mu \varepsilon}
\]

(1.2)

Where \(\varepsilon_r\) and \(\mu_r\) are effective permittivity and effective permeability of the material. C is the velocity of light in vacuum and it can be represented by

\[
C = \frac{1}{\sqrt{\mu \varepsilon}}
\]

(1.3)

Substituting \(\frac{n^2}{c^2} = \mu \varepsilon\) and \(\frac{\partial^2}{\partial t^2} = j \omega^2\) (in frequency domain), the wave equation (1.1) can also be written in the form of

\[
(\nabla^2 + \omega^2 \mu \varepsilon) \psi = 0
\]

(1.4)

Whereas wave propagation vector \(k^2 = \omega^2 \mu \varepsilon\) (1.5)

In both of the equations (1.1) and (1.4), it can be observed that simultaneous change of negative \(\varepsilon\) and \(\mu\) has no effect on those wave equations. In fact, from the equations (1.2) and (1.5), it can be observed that the refractive index and wave propagation vector both remain positive, in case of DNG metamaterial. The reason is that the material, having simultaneously negative \(\varepsilon\) and \(\mu\), may have some different properties from those conventional material. So it might contradict some of basic fundamental laws in nature which we do not consider. Thus we must explicitly consider those relations (Maxwell’s curl equations) in which \(\varepsilon\) and \(\mu\) appear separately. Maxwell’s curl equation can be written in the form of (frequency domain)

\[
\nabla \times E = -j \omega \mu H
\]

(1.6)
The plane wave fields can be written in the form of

\[E = E_0 e^{-jkr} \]
\[H = \frac{E_0}{\eta} e^{-jkr} \]

(1.8)
(1.9)

Let's assume

\[k = k_x i + k_y j + k_z k \]

(1.10)

\[r = xi + yj + zk \]

(1.11)

Taking the dot product of two vectors \(k \) and \(r \), we get a scalar quantity.

\[k \cdot r = k_x x + k_y y + k_z z \]

(1.12)

Therefore from equation (1.8) and (1.12) we get

\[E = E_0 e^{-jkx x - jky y - jkz z} \]

(1.13)

Similarly from equation (1.9) and (1.12) we get

\[H = \frac{E_0}{\eta} e^{-jkr} \]

(1.14)

Putting this value of \(E \) in Maxwell's equation (1.6), we get

\[
\nabla \times E = \frac{i}{\omega} \frac{\partial E}{\partial t} - \frac{\partial H}{\partial \phi}
\]

(1.19)

Fig. 1. A. medium with positive \(\epsilon \) and \(\mu \) forms right handed triplet

B. medium with negative \(\epsilon \) and \(\mu \) forms left handed triplet

\(S \) is known as Poynting vector or time averaged flux of energy which can be expressed by

\[S = \frac{1}{2} E \times H \]

(1.19)

From equation (1.19), it is observed that Poynting vector \(S \) is unaffected by a simultaneous change of sign \(\epsilon \) and \(\mu \).

Thus in case of LHM, \(E, H \) and \(S \) still forms a right handed triplet. Therefore in LHM, Poynting vector and wave propagation vector are anti-parallel. In other words, in such a material energy and wavefronts travel in opposite direction.

III. VERIFICATION OF PURELY LEFT HANDED TRANSMISSION LINE MODEL

Fig. 2 shows a purely Left Handed (LH) transmission line model which is hypothetical in nature. It is based on the dual version of conventional Right Handed (RH) transmission line in which the series/parallel arrangements of inductor and capacitor are interchanged. For the simplicity of calculation lossless case is considered.

Applying KVL in the circuit shown in fig.1,

\[V(z) - \frac{1}{j\omega L} I(z) \Delta z - V(z + \Delta z) = 0 \]

(2.1)

Applying KCL in the above circuit,

\[I(z) - I(z + \Delta z) - \frac{v(z + \Delta z) \Delta z}{j\omega C} = 0 \]

(2.2)

From equations (1.17) and (1.18) it is observed that \(E, H \) and \(k \) now forms a left-handed triplet which is shown in fig.1. That is why such material is called Left Handed Material (LHM).
Differentiating equation (2.3) with respect to \(z \), and substituting \(\frac{\partial I}{\partial z} \) from equation (2.4), we get Telegrapher’s equation

\[
\frac{\partial^2 V}{\partial z^2} = V \left(\frac{1}{j \omega L'} \right) = \gamma^2 V
\]

(2.5)

From equation (2.5), we get propagation constant

\[
\gamma = j \beta = \frac{1}{j \omega L'}
\]

(2.6)

Thus \(\beta \) is a negative real number. That means the wave propagation will be in backward direction compared to conventional right handed transmission line. Also phase velocity and group velocity will be anti-parallel which is calculated below from the equation (2.6).

\[
V_p = \frac{\omega}{\beta} = -\omega^2 \sqrt{LC'}
\]

(2.7)

\[
V_g = \frac{\partial \omega}{\partial \beta} = \omega^2 \sqrt{L'C'}
\]

(2.8)

Propagation constant \(\beta \) can be written as

\[
\beta = \frac{2 \pi f}{\lambda_f} = \frac{\omega}{c}
\]

(2.9)

From equation (2.9) it is observed that if \(\beta \) is negative then must be negative (because frequency and velocity cannot be negative). Hence in a purely LH transmission line refractive index is negative.

Practically this model is not feasible because of unavoidable right handed parasitic components (i.e. series inductance and shunt capacitance). Therefore a Composite Right and Left Handed (CRLH) balanced transmission line model (1D) is explored by Caloz and Itoh [9-10]. This model is practically possible to implement. It is nothing but a series combination of purely RH and LH transmission line and therefore it sometimes behaves like a purely LH transmission line at lower frequencies and behaves like a purely RH transmission line at higher frequencies, which can be observed from the dispersion graph (\(\omega-\beta \)) shown in fig.3.

From equation (2.9) it is observed that if \(\beta \) is negative then must be negative (because frequency and velocity cannot be negative). Hence in a purely LH transmission line refractive index is negative.

Practically this model is not feasible because of unavoidable right handed parasitic components (i.e. series inductance and shunt capacitance). Therefore a Composite Right and Left Handed (CRLH) balanced transmission line model (1D) is explored by Caloz and Itoh [9-10]. This model is practically possible to implement. It is nothing but a series combination of purely RH and LH transmission line and therefore it sometimes behaves like a purely LH transmission line at lower frequencies and behaves like a purely RH transmission line at higher frequencies, which can be observed from the dispersion graph (\(\omega-\beta \)) shown in fig.3.
Field Theory of Metamaterials & Its application in Antenna: A review

![Equivalent Transmission Line model of lossless Plasma medium](Image)

Fig. 5. Equivalent Transmission Line model of lossless Plasma medium

\[\text{as } \Delta z \to 0, \text{ from equation (3.2) and (3.3), we get the following equations.} \]

\[\frac{\partial V}{\partial z} = j \omega L \frac{I}{I(z)} \]

\[\frac{\partial I}{\partial z} = V(z) \left[\frac{1}{j \omega C} + j \omega L \right] \]

Differentiating equation (3.4) with respect to \(z \) and substituting the value of \(\partial I/\partial z \) from equation (3.5) we get Telegrapher’s equation,

\[\frac{\partial^2 V}{\partial z^2} = V(z) \left[\frac{1}{j \omega C} + j \omega L \right] = \gamma^2 V \]

Hence propagation constant, calculating from equation (3.6),

\[\gamma = j \beta = \sqrt{\frac{L}{C}} - \omega^2 L C \]

or, \[\beta = -j \sqrt{\frac{L}{C}} - \omega^2 L C \]

From equation (3.7) it is observed that \(\beta \) is a purely imaginary no. Hence the wave will be evanescent which implies that the medium is plasmonic in nature.

V. APPLICATION OF METAMATERIAL

Metamaterials have attracted the attention of several researchers in antenna application, because of its unique properties. CRLH-TL resonator has zeroth order and negative order resonances [9], observed from its dispersion graph. By employing zeroth order CRLH TL, antenna size can be substantially reduced, as resonance frequency does not depend on the physical length of the antenna. Rather than zeroth order mode, in CRLH TL resonator each positive (+m) mode has a corresponding negative (-m) mode, with identical field distribution. Thus a dual band meta-resonator antenna can be achieved by using pair of CRLH TL [15] with single common feeding structure. A pair of SRRs can also be used [14] instead of CRLH TL, to obtain dual band meta-resonator antenna.

A combination of DNG MTM slab and double positive material slab can be used in the substrate of a microstrip antenna to miniaturize the size of antenna [16]. The reason is that, the dispersion relation is not dependent on the sum of thickness of those slabs but it depends only on the ratio of their thickness. A Single Negative metamaterial (with only \(\mu < 0 \) or, \(\epsilon < 0 \)) can be employed to enhance the directivity [13] of microstrip patch antenna. An SRR can be placed on the surface of the patch with zero refractive index (\(n = 0 \)). That means the electromagnetic wave, radiated from the patch, will be concentrated around the normal of the slab. Thus it is increasing the gain of the antenna.

References