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Abstract--The step response characteristics of first and 

second order systems are well known. On the other hand, 

the step response of fractional order systems (FOSs)  with 2-

term fractional denominator is like those of first and second 

order systems. But there are important differences between 

the two types of characteristics. Considering the step 

response, the behavior of simple FOS with a denominator 

polynomial having unity term and the other involves 

fractional power is investigated in this paper comparatively 

with 1st and 2nd order systems. The results bring light for 

the design of fractional order control systems (FOCSs). 
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I.    INTRODUCTION 

With increasing technology and high-speed computers, new 

numerical methods for modelling and solving physical 

systems have been presented. FOSs have founded many 

applications not only in this respect, but they also constitute 

more realistic models for physical phoneme. Therefore, 

plenty of literature has appeared for analyzing and 

designing these systems in the last two decades [1-5]. 

Especially, fractional order proportional integral derivative 

(FOPID) controllers have appeared extensively in control 

system design [6-8].  

As some examples on very recent literature, [9] presents a 

FO positive position feedback compensator and it is 

compared to the standard integer-order one for active 

vibration Control of a rectangular free-edged carbon fiber 

composite plate. In [10], FO control of dissimilar redundant 

actuating system is used in large passenger aircraft; two 

dissimilar actuators used for position control surface are 

modelled by fractional orders and three FO controllers are 

used to improve transient response of the system. In [11], it 

is aimed to solve the stability problem for some FO 

nonautonomous systems by linear state feedback control 

and adaptive control; a new property for Caputo fractional 

derivative is used to derive some sufficient conditions for 

the global asymptotical stabilization.  

Considering sophisticated and rather special applications 

[12-17], there are a huge number of publications about 

FOSs; so only very few of them are referred in this paper. On 

the other hand, a compact publication investigating the step 

response characteristics of even simple FOSs, namely rise 

time, settling time, delay time, overshoot, oscillation period, 

damping time constant of oscillations , and some others 

which do not exhibit similarity with those of integer order 

systems [18] is not yet present. The purpose of this paper is 

to draw attention to the differences between the step 

response characteristics of simple FOSs and 1st and 2nd 

order systems and thus to supply some ligh ts  fo r 

FOCSs ’ designers. 

For the mentioned purpose, time domain characteristics of 

first and second order systems are reviewed in Section 2. In  

Sect ion  3, the step response characteristics of o a FOS 

with 2-term denominator are presented depending on the 

fractional power. Section 4 discusses and lists the 

differences between 2nd order and fractional order 

characteristics. Section 5 covers the conclusions. 

 

II. REVIEW OF FIRST AND SECOND INTEGER 

ORDER SYSTEMS 

It is well known that the simple first order transfer function  

𝐻1
(𝑠) =

1

𝑝1𝑠 + 1
                            (1a ) 

has a step response 

𝑦1
(𝑡) = 1 − 𝑒−𝑡/𝑝1                          (1b) 

monotonically increasing from 0 to 1 with a time constant 

𝜏 = 𝑝1 [18]. The dc gain is assumed to be 1 which is not 

important for relative time domain characteristics. 

For the second order transfer function, 
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𝐻2
(𝑠) =

𝜔𝑛
2

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2

                 (2a) 

is the standard form where 𝜔𝑛  is undamped natural 

frequency and 𝜉 ≥ 0 is the damping ratio [18].  

Overdamped step response 

𝑦(𝑡) = 1 −
1

𝜏2 − 𝜏1

(𝜏2𝑒
−

𝑡
𝜏2 − 𝜏1𝑒

−
𝑡

𝜏1 ),         (2b) 

occurs for for 𝜉 > 1, where two time constants  are 𝜏1 =

1/𝜔𝑛(𝜉 + √𝜉2 − 1) and 𝜏2 = 1/𝜔𝑛(𝜉 − √𝜉2 − 1)  so that 

it increases monotonically from 0 to its final value 1. For ξ 

= 1, the response is similar in shape to the overdamped 

case, but the variation is described by 

𝑦(𝑡) = 1 − 𝑒−𝜔𝑛 𝑡(𝜔𝑛 + 1)                     (2c)  

which is known as critically damped case. 

Underdamped response occurs for 0 < 𝜉 < 1. The response  

  𝑦(𝑡)  = 1 −
𝑒−𝜉𝜔𝑛𝑡

√1−𝜉2 𝑠𝑖𝑛 (√1 − 𝜉2𝜔𝑛𝑡 +

𝑠𝑖𝑛−1√1 − 𝜉2)(2d) 

is stable and approaches to the reference value 1 with 

damped oscillations with frequency √1 − 𝜉2𝜔𝑛  and 

damping time constant 1/𝜉𝜔𝑛 . The special case of 

oscillatory response occurs for 𝜉 = 0, the system is 

undamped, and the step response is  

𝑦(𝑡) = 1 − 𝑐𝑜𝑠𝜔𝑛𝑡                      (2e) 

which represents sustained oscillations with frequency 𝜔𝑛  

and undamped oscillation period 𝑇𝑛 = 2𝜋/𝜔𝑛 . 

All the step responses considered so far stars from 0 at time 

𝑡 = 0 and approaches to 1 monotonically or oscillatory 

manner as 𝐿𝑖𝑚 𝑡 → ∞ (except the undamped case 𝜉 = 0). 

The following time domain characteristics are defined for 

these responses: 

Time constant 𝜏: Time required for the response to 

reach 1 − (1/𝑒) of its final value.  

Rise time Tr: Time required for the response to reach 

from 10 % to 90 % of its final value. 

Settling time Ts: Time required for the response to 

stay around its final value with an error less than 2 %. 

Oscillation period 𝑇𝑜: Period of oscillations for 

underdamped case. 

Peak time 𝑇𝑚𝑎𝑥 : The time the response reaches its 

maximum value. 

Peak value 𝑦𝑚𝑎𝑥 : Maximum value of the response; 

y(Tmax). 

Overshoot 𝑦𝑜𝑠ℎ : 𝑦𝑚𝑎𝑥 − 1;   How much the response 

exceeds the final reference 1. 

Percent overshoot POSH: It is defined by  (𝑦𝑜𝑠ℎ /

𝑦𝑟𝑒𝑓 )100. 

Reduction Ratio: 𝑅𝑅: Ratio of successive overshoots .  

From Eq. (1b), it is straightforward to show that  

𝜏 = 𝑝1,                                  (3a) 

𝑇𝑟 = 𝑙𝑛9𝑝1 = 2.197225 𝑝1,                 (3b) 

𝑇𝑠 = 𝑙𝑛50 𝑝1 = 3.912023𝑝1 .                (3c)  

In summary for a first order system; i) The s tep  response 

increases exponentially to its steady state value without 

any oscillations, ii) Rise time and settling time are some 

multiples of time constant  𝜏 = 𝑝1. 

From Eq. (2b), the over damped response of a second order 

systems has  

𝜏: 𝑒 −𝜏𝜔𝑛𝜉𝑠𝑖𝑛ℎ [𝜏𝜔𝑛√𝜉2 − 1 + 𝑐𝑜𝑠ℎ−1𝜉] 

= 𝑒−1√𝜉2 − 1 ,                            (4a) 

𝑇𝑟 = 𝑡2 − 𝑡1,𝑤ℎ𝑒𝑟𝑒                      (4b) 

𝑒−𝑡1𝜔𝑛 𝜉𝑠𝑖𝑛ℎ [𝑡1𝜔𝑛√𝜉2 − 1 + 𝑐𝑜𝑠ℎ−1𝜉] = 0.9√𝜉2 − 1,  

 𝑒 −𝑡2𝜔𝑛𝜉𝑠𝑖𝑛ℎ [𝑡2𝜔𝑛√𝜉2 − 1 + 𝑐𝑜𝑠ℎ−1𝜉] = 0.1√𝜉2 − 1 

𝑇𝑠:  𝑒−𝑇𝑆 𝜔𝑛𝜉 𝑠𝑖𝑛ℎ [𝑇𝑆𝜔𝑛√𝜉2 − 1 + 𝑐𝑜𝑠ℎ−1𝜉] 

= 0.02√𝜉2 − 1.                          (4c) 

From Eq. (2c), the critically damped response of a second 

order systems has 

𝜏 = [1 + ln(1 + 𝜔𝑛
)]/𝜔𝑛 ,                  (5𝑎) 

𝑇𝑟 = 𝑙𝑛9 /𝜔𝑛 , 𝑇𝑠 = ln[50(1 + 𝜔𝑛)] /𝜔𝑛 ,    (5b, c) 

𝑇𝑠 =
1

𝜉𝜔𝑛

𝑙𝑛
50

√1 − 𝜉2
=

𝜏𝑒

2𝜉2
𝑙𝑛

50

√1 − 𝜉2
.      (5d) 

From Eq. (2d), the under damped response of a second 

order systems has 

𝜏:    𝑒−𝜏𝜔𝑛𝜉𝑠𝑖𝑛 [𝜏𝜔𝑛√1 − 𝜉2 + 𝑠𝑖𝑛−1√1 − 𝜉2] 

= 𝑒−1√1 − 𝜉2 ,                          (6a) 

𝑇𝑟 = 𝑡2 − 𝑡1, 𝑤ℎ𝑒𝑟𝑒                                (6b) 

𝑒−𝑡1𝜔𝑛 𝜉𝑠𝑖𝑛 [𝑡1𝜔𝑛√1 − 𝜉2 + 𝑠𝑖𝑛−1√1 − 𝜉2]

= 0.9√1 − 𝜉2, 𝑒 −𝑡2𝜔𝑛𝜉𝑠𝑖𝑛 [𝑡2𝜔𝑛√1 − 𝜉2

+ 𝑠𝑖𝑛−1√1 − 𝜉2] = 0.1√1 − 𝜉2 ,  

𝑇𝑠 ≅
1

𝜉𝜔𝑛

𝑙𝑛
50

√1 − 𝜉2
 , 𝑇𝑜 =

2𝜋

√1 − 𝜉2𝜔𝑛

,       (6c, d) 

𝑇𝑚𝑎𝑥 =
𝜋

𝜔𝑛√1 − 𝜉2
 ,    𝑦𝑚𝑎𝑥 = 1 +

𝑒

−𝜉𝜋

√1−𝜉2

√1 − 𝜉2
,    (6e, f) 

𝑦𝑜𝑠ℎ =
𝑒

−𝜉𝜋

√1−𝜉2

√1 − 𝜉2
 ,   𝑃𝑂𝑆𝐻 =

100𝑒

−𝜉𝜋

√1−𝜉2

√1 − 𝜉2
 ,     (6g , h) 

𝑅𝑅 = 𝑒

−2𝜉𝜋

√1−𝜉2
.                               (6i)  

For the succeeding peaks, Eqs . (6e-i), should be modified 

by using (2𝑘 − 1) 𝜋  instead of  𝜋  where 𝑘 represents the 
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peak numbers; for the first peak 𝑘 = 1 and Eqs. (6e-i) are 

valid. 

From Eq. (2e), the un-damped response of a second order 

systems has 

𝜏 = 1 +
𝑐𝑜𝑠−1 (

1
𝑒

)

𝜔𝑛

,                          (7a)  

   𝑇𝑟 =
𝑐𝑜𝑠−1(0.1) − 𝑐𝑜𝑠−1(0.9)

𝜔𝑛

,              (7b) 

𝑇𝑠 = ∞,    𝑇𝑜 =
2𝜋

𝜔𝑛
,    𝑇𝑚𝑎𝑥 =

𝜋

𝜔𝑛
,      (7c, d, e)  

𝑦𝑚𝑎𝑥 = 2, 𝑦𝑜𝑠ℎ = 1,                     (7f, g) 

𝑃𝑂𝑆𝐻 = 100, 𝑅𝑅 = 1.                 (7h, i)  

To be able to make comparisons with the step response 

characteristics of the fractional order system dealt with in 

the next section, and as well as for the sake of 

completeness, the step responses of the second order 

system in Eq. (2a) are shown in Fig. 1 for a few values of 

𝜉. In the same respect, some of the time domain 

characteristics are plotted in Fig. 2. The derived 

transcendental equations for 𝜏 and 𝑇𝑟  (see Eqs. (4a,6a) and 

Eqs. (4a,6b), respectively) are solved numerically to obtain 

the plots for relevant characteristics in Fig. 2. This 

approach is not needed for obtaining the remaining 

characteristics in the figure for the necessary formulas are 

presented explicitly.   

 
Fig.1: Step responses of the system in Eq. (2a) for values of 𝜉 =2, 1, 0.2, 0;  𝜔𝑛 = 1. 

 

Fig.2: Some time domain characteristics of the system in Eq. (2a) for 𝜉 ∈ [0,3]. 
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III. INVESTIGATION OF THE SIMPLE 

FRACTIONAL ORDER SYSTEM 

Consider the fractional order transfer function with a 

constant numerator and 2-term fractional denominator 

𝐻(𝑠) =
1

𝑠𝛼 +1
.                               (8)  

When 𝛼 = 1 (2), the transfer function is a 1st order (2nd 

order with 𝜔𝑛 = 1, 𝜉 = 0) integer type system.; hence, 

the step response is an increasing exponential (sustained 

oscillation). But there are differences in the step 

responses for the general values of 𝛼: 

Fig. 3 shows the step responses for 𝛼 ∈ [0.01,1.99]. All 

the responses tend to the reference value 1 as 𝑡 → ∞, 

since inserting 𝑠 = 0 and assuming 𝛼 ≠ 0 in Eq. (8), dc 

gain of this system is seen as 1.  For small values of 𝛼 

(for eg. 𝛼 =0.01), the step response is almost equal to ½ 

(the transfer function is equal to a constant gain of ½ for 

𝛼 = 0); except 𝑡 = 0 and 𝑡 → ∞;  for these values, the 

response starts from 0 and tends to the reference value 1 

(this can not be seen in the figure since the final value of 

𝑡 is chosen 30 in simulations). In the figure, exponential 

like increase of step response for 0 < 𝛼 ≤ 1, exponential-

like decaying oscillations for large 𝛼 (for eq. 𝛼 = 1.99) 

are obviously seen. For 𝛼 > 1 but not too much, there is 

an overshoot in the response then after exponential-like 

decaying to 1 without oscillations are also seen. For 𝛼 >

2, the system is unstable, and the step response increases 

exponentially and oscillatory like manner, which is a case 

not shown in the figure. 

We note that those responses for 1 < 𝛼 ≤ 2 and 0 < 𝛼 ≤

1, although resemble to those of a second order and of a 

first order integer order systems, respectively, there are 

important differences. 

 

 

Fig.3: Step responses of the FOS in Eq. (8) for different values of 𝛼. 

 

For example, if there exist oscillations, the oscillation 

period is not constant and naturally the peak times do not 

occur uniformly as shown in Fig. 4. This figure shows the 

change of oscillation periods starting from each 𝑇𝑚𝑎𝑥 . 

Numerical data show that the first oscillatory like 

response (number of maximums= 2) occurs for 𝛼 =

1.34, for which the period of oscillation is 6.1750 . But 

this case is not observed on the graph. The plot starts 

from the case where there exists 3 maximums and 

resultantly 2 oscillation periods; this case occurs for 𝛼 =

1.49 for which the first period is 7.188 and the second 

one is 5.4470 . The plot for this case is indicated in the 

figure.  It is seen that the first oscillation period for each 

𝛼 is maximum and it decreases with increasing 𝛼. Further, 

for each 𝛼 the oscillation period decreases for subsequent 

oscillations. This decrease reaches to its highest value just 

before the oscillations stop. For 𝛼 = 1.99 ≅ 2, period of 

oscillations is almost constant being 6.284 for first 

https://dx.doi.org/10.22161/ijaers.5.10.10
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                       [Vol-5, Issue-10, Oct- 2018] 
https://dx.doi.org/10.22161/ijaers.5.10.10                                                                                       ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                                      Page | 84 

oscillation,  6.283, 6.283,6.284 for the following 3 

oscillations. The change in the 3rd digit after decimal, 

though expected since 𝛼 = 1.99, may originate from 

numerical errors. 

 

Fig.4: Change of oscillation period with 𝑇𝑚𝑎𝑥 . 

 

The exponential decays or increases do not have fixed 

time constants; hence reduction ratio decreases for 

succeeding maximum values as seen in Fig. 5. This figure 

shows the reduction ratio of subsequent peaks. Reduction 

ratio starts from 𝛼 = 1.34 where at least 2 peaks 

(maximums) occur for the first time (Reduction ratio  =

14.4192) and ends at  𝛼 = 1.99 where 5 peaks occur 

until 𝑡 = 30 𝑠. Hence, reduction ratio is defined for the 

first 4 peaks. In the figure, the plot for 𝛼 =

1.34, 1.35, … ,1.48, reduction ratio can’t be plotted (since 

point plot is not used). Therefore, the first curve starts 

from 𝛼 = 1.49 for which 3 peaks occur, and 2 reduction 

ratios are defined (20.0430 and 3.3023). It is seen that 

the reduction ratio from the first peak to the second one 

decreases as 𝛼 is changing from 1.49 to 1.99. Further, the 

ratio of the subsequent peaks for each 𝛼 decreases with 

time (or the oscillation number). 

 
Fig.5: Reduct ion  ra t io  o f subsequen t  peak s aga inst  peak  t imes 𝑇𝑚𝑎𝑥 . 
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· · · 

The size of overshoots is shown in Fig. 6. For 𝛼 = 1.2, 

there is a single overshoot which is 0.0744 ; this is not 

shown in the graph since there is not a second one so that 

response is not oscillatory. 

In Fig. 6, the values of overshoots are plotted against the 

time of maximums. The first maximum occurs for 𝛼 =

1.01; since a single point plot is not shown, the plot in the 

figure is started from 𝛼 = 1.34 where the second peak 

occurs for the first time; (for 𝛼 = 1.34, the first overshoot 

and the second one are 0.1640  and 0.0114, respectively). 

Hence, for 𝛼 ∈ [1.01,1.33]  there is one maximum in the 

step response and no other maximums occur until 𝛼 =

1.34. Note that this last statement is confined to the 

present numerical data. More elaborate numerical 

simulation covering values of 𝛼 to four decimal digits 

show that this interval is 𝛼 ∈ [1.0001,1.3395], and no 

other maximums occur until 𝛼 = 1.3396.  

In the simulation results shown in Fig. 6, for 𝛼 ∈
[1.63,1.99], there are five peaks in the step response. The 

overshoots, as a general rule, change so that for each 𝛼 

subsequent peaks decrease, while the rate of decrease gets 

stronger. Note that among the peaks occurring for 𝛼 =

1.67, the minimum one is the fifth one and it is equal to 

0.000101866 0; this point could not be data tipped due to 

the crowdedness of curves near to it, the minimum peak 

value is found from the workspace data. 

 
Fig.6: Overshoot against peak  t imes 𝑇𝑚𝑎𝑥 . 

 

Fig. 7 shows the maximum value of step response against 

its occurrence time. This figure is plotted for the case of 

responses that have at least 2 maximum values for  𝑡 ∈
[0, 30]. These responses are for 𝛼 = 1.34, 1.35, … ,1.99. 

𝛼 = 1.34 is the first value of 𝛼 where at least 2 

maximums (hence oscillatory like response) occur. More 

elaborate numerical simulation shows that this value of α 

is 𝛼 = 1.3396 (as mentioned)  for which oscillatory 

damping starts with period of oscillation 6.0680 . After 

the oscillations start at 𝛼 = 1.34, the number of 

oscillations increases with increasing 𝛼 so that 5 

maximums occur for 𝛼 = 1.99 in [0, 30]. The time of 

occurrence of the maximums are not the same; they get 

near to each other as 𝛼 → 1.99, and they get more 

different values as 𝛼 → 1.34. 
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Fig.7: Maximum value of step response against the time of occurrence. 

 

Next, it is worth to observe the change of first oscillation 

period and the number of peak values in the first 30 𝑠. 

These are plotted in Fig. 8 . It is observed that there are 

no oscillations in the step response for 𝛼 = 0, 0.5, 1. For 

𝛼 = 1.2, there are no oscillations but there exist 1 

maximum with an overshoot of 0.0744  as mentioned 

before. For 𝛼 = 1.7, 𝛼 = 2, and 𝛼 = 2.018 there are 5 

maximums in the interval 𝑡 ∈ [0, 30]; whilst period of 

first oscillation changes with 𝛼, i.e., it is 6.543 for 𝛼 =

1.7, and it is 6.283 for both  𝛼 = 2  and 𝛼 = 2.018. Note 

also that period of succeeding oscillations is not constant 

for the same α. 

 

Fig.8: Period of first oscillation and number of peaks in 30 s against 𝛼. 

 

In Fig. 9, the variation of the time constant 𝜏, rise time 𝑇𝑟 , and settling time 𝑇𝑠 are plotted for 𝛼 = 0.5, 1, 1.2, 1.7. It 
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is seen that 𝜏  is the least effected by  𝛼.  𝑇𝑟  could not be 

recorded for 𝛼 = 0.5 since it is greater than total run time 

𝑡 = 30 𝑠. For  𝛼 = 1, 𝜏 < 𝑇𝑟 < 𝑇𝑠 ,  with values  1.001 <

 2.198 <  3.913. It   is important to note that the settling 

time gets large very rapidly with increasing 𝛼; infact for 

𝛼 ≥ 2 it is ∞. Therefore, the data for   𝛼 = 2 and 𝛼 =

2.018 is not included in the plot. 

 
Fig.9: Variation of time constant (𝜏 = 𝑇𝑎𝑢  ), risetime (𝑇𝑟) and settling time (𝑇𝑠) with 𝛼 included in the plot. 

 

Finally, in Fig. 10, the damping ratio 𝜉 of a 2nd order 

system and the fractional power 𝛼 of the fractional order 

system are compared with respect to the overshoot. The 

figure can be used for finding the values of 𝜉 and 𝛼 for 

the desired overshoot. 

 
Fig.10: β = 2 − α versus overshoot and ξ versus overshoot. 

 

The step response characteristic investigated so far are 

already enough to highlight the important properties and 

differences between some simple integer order and 

fractional order systems. Therefore, this section is ended 

at this step.  However, for a continuous variation of step 

response characteristics, such as period of oscillations, 

number of peaks, 𝜏, 𝑇𝑟 , 𝑇𝑠, POSH with the system 

parameters 𝛼 and 𝜉, as well as variation of α for fractional 

order, and ξ for second order systems with the overshoot can 

be obtained, these are not included for the length 
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limitations of the paper. Further, they are not vital to 

observe the following comparisons. 

 

IV. DIFFERENCES BETWEEN 2ND ORDER AND 

SIMPLE FRACTIONAL ORDER 

CHARACTERISTICS 

We have the apparent observation from the previous two 

sections that the following important similarities and 

differences appear between the step responses of a second 

order system and the simple FOS considered. The 

comparison is done on the base of the transfer functions 

in Eq. (2a) for a second order integer system and Eq. (8) 

for a FOS. Being considered before, the extreme cases 

𝛼 = 0,  𝛼 = 0 , and 𝛼 = 2 are not included in the 

comparison.  

1) All the time domain characteristics of a second order 

system are expressed by analytic formulas as given 

in Eqs. (4-7). For FOS, there does not exist such 

analytical formulas; only graphical dependences on 

the fractional power 𝛼 are available. See Figs. 4-9. 

2) For 1 ≤ 𝜉 and 0 < 𝛼 ≤ 1, both of the systems 

exhibit monotonically increasing step responses 

starting from 0 and tending to the final value 1 as  

𝐿𝑖𝑚 𝑡 → ∞. There is no overshoot in the responses. 

See Fig. 1 for 2nd order system, and Fig. 2 for 

fractional one. 

3) For 0 ≤ 𝜉 < 1 and 1 < 𝛼 ≤ 2,  both systems generate 

overshoots which decay to zero and the step responses 

tend to the final value 1 as  𝐿𝑖𝑚 𝑡 → ∞. See Fig. 1 

and Fig. 2, respectively. 

4) For 0 < 𝜉 < 1 and 1 < 𝛼 ≤ 2, although the step 

responses of both the second order system and that 

of the FOS are similar in the sense that they are not 

monotonically increasing, they have overshoots , and 

they approach to unity at infinite time, they have 

completely different characteristics: 

a) There are infinitely many overshoots in the 

step response of the 2nd order system, whilst 

the number of overshoots in the step response 

of the fractional system increases with 𝛼. For 

example, there is only one overshoot and 

naturally one maximum for  1 < 𝛼 ≤ 1.3395, 

and the second overshoot starts for 𝛼 =

1.3396 . Refer to Fig. 8 to see how the number 

of maximums (oscillations) increases with  𝛼.  

b) The period of sustained oscillations and their 

damping rate, that is RR, are constant for each 

0 < 𝜉 < 1 and they do not change with time; 

they are given by Eqs. (6d) and (6i), 

respectively. On the other hand, these 

quantities change with time for FOS; see Fig. 4 

for the period of decaying oscillations  

(oscillation period decreases with time), and 

Fig. 5 for RR (RR decreases with time). 

c) As seen in Fig. 2, the period of oscillations 

monotonically increases with 𝜉 for the second 

order system. On the other hand, as seen in 

Fig. 5 for the FOS, starting from 6.175 at 𝛼 =

1.34 the duration of the first oscillations first 

increases and it reaches to its maximum value 

7.327 at 𝛼 ≤ 1.43 and then decreases to 6.284 

at 𝛼 = 1.99. 

 

V. CONCLUS IONS 

Time domain step response characteristics of the fractional 

order system with unity numerator and a 2-term 

denominator polynomial involving a single fractional 

power is studied in this paper. Many step response 

characteristics which are important for control 

engineering such as  rise time, settling time, delay time, 

overshoot, oscillation period, damping time constant of 

oscillations, and some others are investigated, and the 

results are presented in graphical forms by figures. The 

study is conducted comparatively by considering integer 

order systems of 1st and 2nd order types. It is shown that 

the same simplicity and explicitness present for second 

order systems do not exist between the transfer function 

parameters and the step response characteristics for low order 

fractional order control systems. The results bring light for 

the design such systems which has been a vacancy 

fulfilled by this paper. 

The derived transcendental equations for 𝜏 and 𝑇𝑟  in Eqs. 

(4a,6a) and Eqs. (4a,6b), respectively), which have, as far 

as author knowledge, not  been appeared in the literature 

before, are derived and solved numerically to obtain the 

plots for relevant characteristics in Fig. 2. This approach 

is not needed for obtaining the remaining characteristics 

in the figure for the necessary formulas are presented 

explicitly.  For the simulation of the FOS, the 

subprograms of FOMCON toolbox of Aleksei Tepljakov 

[1] integrated with MATLAB R2017 [7] is used. 
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