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Abstract— The paper studies the longtime behavior of 

solutions to the initial boundary value problem for a class of 

Higher-order Kirchhoff models: 
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For strong nonlinear damping  and  , we make assumptions 

(H1)-(H3).  uxg ,  are nonlinear function specified later , we 

make assumptions (G1)-(G3). Under of the proper assume, the 

main results are existence and uniqueness of the solution are 

proved , and deal with the global attractors in natural energy 

space HHX m  0 . 

 

Index Terms— strongly nonlinear damped, Higher-order 

Kirchhoff equation, the global attractors. 2010 Mathematics 

Classification: 35B41, 35G31 

I. INTRODUCTION 

  We consider the following Higher-order 

Kirchhoff-type equation with nonlinear strongly damping: 
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where is a bounded domain of 
nR  with a smooth dirichlet 

boundary  and initial value, and 1m   is an integer 

constant. Moreover,   is the unit outward normal on 

 . ( )s  and ( )s  are scalar functions specified later, 

 uxg ,  are nonlinear function specified later.  And  xf is 

an external force term. 

                                                          

  This kind of wave models goes back to G. Kirchhoff Error! 

Reference source not found.. In 1883,Kirchhoff proposed 

the following model in the study of elastic string free 

vibration: 
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where  is associated with the initial tension, M is related 

to the material properties of the rope, and  txu ,  indicates 

the vertical displacement at the x  point on the t . The 

equation is more accurate than the classical wave equation to 

describe the motion of an elastic rod. 

    This kind of wave models has been studied by many 

authors under different types of hypotheses. There have been 

many researchers on the global attractors existence of 

Kirchhoff equation, we can refer 0 0 Error! Reference 

source not found. Error! Reference source not found. 

Error! Reference source not found.. What’s more, the 
global attractors for the Higher-order Kirchhoff-type equation 

are investigated and we refer to Error! Reference source not 

found. Error! Reference source not found.. 

    Igor Chueshov Error! Reference source not found. 

studied the longtime dynamics of Kirchhoff wave models with 

strong nonlinear damping:  
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in natural energy space 

         211

0 LLHH p . His results allow 

that the growth exponent p of the nonlinearity  ug is 

supercritical, that is, 
  ppp . Here the growth 

exponent 
p  is called critical for     11 pLH  as 

 pp . He established a finite-dimensional global attractor 

in the sense of partially strong topology in  H . In 

particular, in nonsupercritical case: (i) the partially strong 

topology becomes strong; (ii) an exponential attractor is 

obtained in  H  by virtue of the strong quasi-stability 

estimates. Moreover, Chueshov[3] also studied the global 

well-posedness and the longtime dynamics for the Kirchhoff 

equations with a structural damping of the form 

   tuu
  2

, with 1
2

1  , at an abstract level. 

For the related works on the quasilinear wave equations 

(rather than the semilinear ones) with strong damping. 

Recently, Yang, Ding and Liu[4] put forward a 

functional analysis method and used it to construct a a 

bounded absorbing set in  H , which is of higher 
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global-regularity. They removed the restriction of “partially 
strong topology” for  H  in [2] and established a strong 

global attractor in supercritical nonlinearity case. 

About Higher-order Kirchhoff-type equation, Ling 

Chen, Wei Wang and Guoguang Lin[7] investigate the global 

well-posedness and the longtime dynamics of solution for the 

higher-order Kirchhoff-type equation with nonlinear strongly 

dissipation:  

2
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tt t

        

         .                                                                             (1.6) 

Under of the proper assume, the main results are that 

existence and uniqueness of the solution is prove by using 

priori estimate and Galerkin method, the existence of the 

global attractor with finite-dimension, and estimation 

Hausdorff and fractal dimension of the global. 

Subsequently, Yuting Sun, Yunlong Gao and Guoguang 

Lin[8] investigate the global well-posedness and the global 

attractors of the solutions for the Higher-order Kirchhoff-type 

wave equation with nonlinear strongly damping:  

               
2 2m mm m

tt tu u u u u f x        .     

         .                                                                              (1.7) 

For strong nonlinear damping   and  , we make 

assumptions (H1) - (H4). Under of the proper assume, the main 

results are existence and uniqueness of the solution in 

   2

0

m m
H H    are proved by Galerkin method, and deal 

with the global attractors. 

     At present, most Higher-order Kirchhoff-type equations 

investigate the global. On the basis of Yang, we investigate 

the global attractor of the higher-order Kirchhoff-type 

equation (1.1) with strong nonlinear damping. Such problems 

have been studied by many authors, but 
2

( )m
u   is a 

definite constant and even 
2

( ) 0m
u   . Generally, the 

equation exist a nonlinear  g u . But in the paper, 

2

( )m
u  is a scalar function and exist a 

nonlinear ( , )g x u .  In section 2, we give some proper 

assumes. In section 3, the existence and uniqueness of 

solution is proved. In section 4, we deal with the global 

attractor. 

II. PRELIMINARIES 

For brevity, we denote the simple symbol,   2
LH , 

  mm HH 00 , 1

0

mH  

 1

0

mH , HHX m  0 , )(xff  ,  represents 

norm,  ，  represents inner product. is the first eigenvalue 

of the operator   . C is a constant. 

In this section, we present some assumptions need in the proof 

of our results. For this reason, we assume nonlinear term 

  20, Lg  ,satisfies that 
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We make the following hypotheses on the function  s  and 

 s : 

(H1)     11 CsandCs   ; 

(H2)     00  samds  ; 

(h3)     0,0  sands  . 

 

III. THE EXISTENCE AND UNIQUENESS OF SOLUTION 

    Lemma 3.1 [5](Gronwall-type lemma)  Let X be a Banach 

space, and let  XRCZ , . Let RX ： be a 

continuous function such that 

                      Kztz
Rt
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for some 0K， and every Zz . In addition, assume 

that for every Zz  the function   tzt   is 

continuously  differentiable, and satisfies the differentiable 

inequality 

                           ktztz
dt

d
X
 2                         

.                                                                                           (3.2) 

for some 0  and 0k independent of Zz . Then, 

for every 0 ,  there is 00 





 K
t  , such that  
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    Lemma 3.2[5] Let 
 RRy : be an absolutely 

continuous function satisfying 

                       0),()(2  ttztythtyty
dt
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for 0 st  and some 0m . Then  
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    Theorem 3.1[5]  Let assumption (G1)-(G3) and (H1)-(H3) 

be in force. Then problem (1.1)-(1.3) admits a unique solution 

);,0( 0

mHLu  
, with  2;,0 LLut  

 

 mHL 0

2 ;,0  . This solution possesses the following 

propertiess: 

(1)           
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(2)  For any 0a , 
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and there exists a small contant 02 a , such that 

               0,
1

2

2

2
22 


  tcce

t

t
uu

ta

tt

m

t                 

.                                                                                           (3.8) 

(3)  The following Lipschitz continuity holds: 
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for some 06 a , where 
2121 ,, uuuuz  are the 

solution of problem (1.1)-(1.3) corresponding to initial data 

  2,1, 10 iuu ii
, respectively. 

    Proof: (1)  We use uut   multiply both sides of equation 

(1.1) and obtain, 

                           0 tKt
dt

d
uu                        (3.10) 
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    Obviously, RX ： is continuous function. 

From hypothesis, we get  
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where 0, ba  and ba, is very small. 

Substituting (3.13), (3.14) into (3.10), we have 

                   fctat
dt

d
Xuu  2 .                      .                         

.                                                                                           (3.15) 

According to Lemma 3.1, we get 
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Hence, 
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Integrating (3.15) over the interval  t，0 , and 0tt  , we 

can get 
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Combining (3.17) and (3.18), when 0 , integrating (3.10) 

over the interval  t，0 , we obtain  
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According to (3.17), (3.18) and (3.19), we have 
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From assumption, we have 
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Combining (3.22)-(3.28), we receive, 

         

 

 
 

 

  222

222

22

22

2222

222

21

,

,

1

2

1
,

2

1

t

m

t

mm

R

m

t

m

t

m

mmmm

t

mm

Rt

m

R

mm

t

m

mm

tt

m

vvvvC

vCvvvu

vuuv

vvvCvvC

vuvu

vuvvv
dt

d














 






 








 





 







 





 













             

.                                                                                           (3.29) 

Let 

    222

2

1
,

2

1
vuvvvt

mm

tt

m 




     

Obviously,  

      

  




 





   2222

vvbtvva m

t

m

R

m

t

m

R
           

.                                                                                           (3.30) 

According to (3.29), we obtain, 
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and by Lemma 3.2, we have 
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When 1t , and according to (3.31) and Lemma 3.2, we will 

obtain 
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By multiplying (3.43) by z , we get 
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From the above, we get 
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Combining (3.51) and (3.56), we obtain 
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IV. THE GLOBAL ATTRACTOR 

Definition mapping   :S t X X , such that 
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problem (1.1). According to theorem 3.1,   S t  constitute 

the continuous operator semigroup in X . 

Theorem 4.1  Under the assume Theorem 3.1, the continuous 

operator semigroup  S t  exists the bounded absorbing set. 

Lemma 4.1 Let the assumption of Theorem 3.1 be in force, 
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Proof  The proof process of this part is similar to 

Theorem 3.1(3). 

Now, we deal with (3.44) again. 
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Theorem 4.2  Under the assume Theorem 3.1, the semigroup 
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 .                                                                                           (4.9) 

When t T , we receive 

 
6

2

2
1 1

0

( ) ( ), ( ) ( )

sup ( ) ( )

n m n m

n m t n t m
X

a T m n m m

n m
s T

u t u t u t u t

ce c u t s u t s
  

 

 

     
.        

.                                                                                           (4.10) 

Because 

     1 2 1

0 00, ; 0, ; 0, ;m mC c H C c L C c H  , for any 

0c  , we can pull out a subsequence  nu


 in 



                                                                                

International Journal of Modern Communication Technologies & Research (IJMCTR) 

 ISSN: 2321-0850, Volume-5, Issue-7, July 2017  

                                                                                                7                                                           www.erpublication.org 

 

 1

00, ; mC c H 
, and it is convergence. For any 0  , we 

set 0T  , firstly, such that 

                               6

2

a T
ce

   .                                (4.11) 

Then, when ,m n  is largh enough, we have 

2
1 1

0

sup ( ) ( )
2

m n m m

n m
s T

u t s u t s
  

 
 

     .        .                                                                                           

.                                                                                           (4.12) 

Therefore 

  2

( ) ( ), ( ) ( )n m n m

n m t n t m
X

u t u t u t u t    
       .          

(4.13) 

Thus, continuous operator semigroup  S t  is 

asymptotically compact. So, the semigroup  S t  in X  

exists the global attractor. 
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