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Abstract— The paper investigates pullback the attractors for
the Higher-order Kirchhoff-type equation with strong linear
damping:

2—23 + 07" S Aol | oy g = +hca)-

Firstly, we do priori estimation for the equations to obtain the
existence and uniqueness of the solution
in 4 < C°(Ilz—r,oonVYNC'(z—r,0); H) by some
assumptions the Galerkin method. Then, we prove existence of
the pullback { /(t )}tE R in

usC’°(r—r,o:xVINC'(z—r,):;H)-

attractors
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I. INTRODUCTION

In this paper, we are concerned with the existence of
pullback attractors for the following nonlinear Higher-order
Kirchhoft- type equations:

@ reay (a+ﬂHVmqu)q (=AY u+ g = F(O)+h(tu),t> 7,

u(x 1) =¢(x, t—f),er,te[r—r,r],

o

—( t)——(xt 7),xeQtelr—r,1],

ou

u(x,t)=0,—=0,i=1,..
(x,0)= P

Lm—1,xe0Q,t €[r—r,+0),

(1.1)
where M>1 is an integer constant, & >0, L >0 are

constants and ¢ is a real number, ¢ is the initial datum on the

interval [z —r, 7] where » > (. Moreover, (2is a bounded

domain in R" with the smooth boundary 0Q and V is the unit
outward normal on 0Q . g(u) is a nonlinear function

and u is defined

later, 3

specified

for @ e[—r,0]asu, (0) =u(t+0).

It is known that Kirchhoff [1] first investigated the
following nonlinear vibration of an elastic string

foro=f =0:
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(1.2)

where u =u(x,t) is the lateral displacement at the space

coordinate X and the time f, O the mass density, /i the

cross-section area, L the length, £ the Young modulus, p,

the initial axial tension, O the resistance modulus, and f the

external force.
In [2], the existence of a pullback and forward attractors is
proved for a damped wave equation with delays:

o’u ou
a—-—-Au=f+h(tu)t>rt,
or’ ot Jhitu,),
ul=0,r27-r,

u(x H=¢x,t—71),xeQtelr—r,r],

—( =22 %9

(xt—r) xeQtelr—r,7],

. (1.3)
where Q  R",n >1, be an open and bounded subset with
smooth boundary 0Q=1". f+h(t,u,) is the source

intensity which may depend on the history of the solution,
(! is a positive constant, ¢ is the initial datum on the interval

[z—r,7] where r >0, and u, is defined for 6 €[—r,0]
as ut(é’) =u(t+0).

In [3], Guoguang Lin, Fangfang Xia and Guigui Xu had
studied the global and pullback attractors for a strongly
damped wave equation with delays when the force term
belongs to different space:

2
a_ a—u—ﬂA——Au+g(u) FO)+h(t,u),t>.
or’ Ot ot

(1.4)
In [4], authors consider non-autonomous dynamical

behavior of wave-type evolutionary, on a bounded domain
Q in R’, with smooth boundary 0Q:
u, +h(u,)—Au+ f(u,t)=g(x,t),x e,
Uul,=0,xe€0Q,
u(x,0) =u,(x),u,(x,0) =v,(x), x € €,
(1.5)

,and

g(x.n el (R L(Q))
h(u,), f : R— R and verify some of assumptions.

where

Authors establish a criterion for the existence of pullback
attractors. Moreover, they show that the pullback
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$k$-contraction is not equivalent to the pullback asymptotic
compactness, unless the cocycle mapping has a nested
bounded pullback absorbing set.

In [5], authors study existence of pullback attractors for the
following functional Navier-Stokes problem:

Z—I:— Au+iui2—u:f(t,u(t—p(t)))—Vp+g(l),(x,l)e (7,40)xQ,
i=1 X;

divu =0,(x,t) € (r,40)x Q,

u=0,(x,t) e (r,40)xI",

u(t+t,x) = ¢(t,x),t €[-h,0],x € Q,

. (1.6)
where Qc R” is an open bounded set with regular
boundary I',0 >0 is the kinemtic viscosity, U is the

velocity field of the fluid, p is the pressure, g, f are
external force term, O is an adequate given delay function.

Authors prove the existence of a unique pullback attractor in
higher regularity space for the multivalued process associated
with the nonautonomous 2D-Navier-Stokes model with
delays and without the uniqueness of solutions.

Some people have studied for equations of the form:

u'+ Atu(t) = F(t,u,),t >0,

u(t)=y(t),t €[-h,0].

. (1.7)
For example, M.J.Garrido and J.Real of [5] had proved
some results on the existence and uniqueness of solution for a
class of evolution equations of second order in time,
containing some hereditary characteristics.

At present, most people had investigated global attractors,
exponential attractors and blow-up of Higher-order
Kirchhoff-type equations, and we can see [6-32]. Because

equations of the paper posses g(u): R — R and h(t,u,),

they increase difficulties for existence of solutions. We
establish pullback attractors omit [2].

In order to make these equations more normal, in section 2,
some assumptions, notations and the main lemmas are given.
In section 3, Under these assumptions, we prove the existence
and uniqueness of solution for the problems (1.1). In section
4, we prove existence of the pullback attractor similar to [2].

II. PRELIMINARIES

2.1 Assumptions and some of lemmas
In this section, we introduce material needed in the proof our

main result. We use the standard Lebesgue space L (£2) and

Sobolev space H™(€2) with their usual scalar products and

norms. Meanwhile we define:

H:(Q):{ueH'"(Q);a—Lf=o,i=o,1 ..... m—l}’
ov

and introduce the following abbreviations:

E, = H}'(Q)x(Q),E, = H"(QNH (Q)x HJ' (Q),H = (Q),V = H' (),

A=A,

=H HH”’(Q) ’H HH(,” = H HH(,”(Q) ’H H =H ”LJLQ) ’H Hp = H HL”(Q)

for any real number p >1, and 21 is the first eigenvalue of

A.

(1.1) can be written as a second order differential equation in

H:

u"+(=A)"u'+ (a + ,[)" V"u
u(t)=¢@—7),telr—rl,
u'@)=¢'(t—1),t €[z —rl.
2.1

In general, if (X ,

z)q (A" u+ g(u) = F )+ h(tou, ).t > 7,

[" X) is a Banach space, we denote by
C, the space C’ ([—r, 0];X) with the sup-norm, i.e.

[P

Banach space (Y ,

o = sup ||¢(0)||X , for ¢ C, . Given another
X Ge[-r,0]

0||Y) such that the injection X C Y is

continuous, we denote by C,, the Banach space

C, N C' ([—r, O];Y) with the norm ”.”c defined by:
X,y

peCyy

. (2.2)
According to [2] and [8], we present some assumptions and
notations needed in the proof of our results. For this reason,

2

[ 7 P

(:X Y

we assume nonlinear term g(u) € C' (QQ) satisfies that:

(H,) Setting G(s) = [ g(r)dr then

G
lim inf @ >0; (2.3)
§|—>00 KY
(H,) 1t
lim sup _|g (S)| =0, 2.4)
Is] >0 | Sl
where

0<r<+0(n<2m),0<r<2m<n<2m+1),r =0n=2m+2).

(H,) There exist constant C, >0, such that

5| —>00 S
. (2.5)
(H,) There exist constant C, >0, such that
lg(s)|<C, (1+|s|”), (2.6)
gl <G (1+]),
2.7
where 1<p< " (n>2m) and

1< p<+oo(n<2m).
Now, we make the following hypotheses on the function

h:RxC, > H:
(G) V&eC,,teR—>N(t,&) e H is continuous;
(G,) VteR,h(t,0)=0;
(G;) 3L, >0 suchthat Ve R, V¢, neCy,,
|a(.&) = (.|| < L, |~
(2.8)
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such that

G,) 3k, >0,C, >0
Vkel0,k)],7<t,u,ve C’ ([z‘—r,t];H) ,
2ds < C, J';_re’“ ||u(s) — v(s)"2 ds.

[
(2.9

For every ¥ >0, by (Hl)—(H3) and apply Poincare

h(s,u,)—h(s,v,)

inequality, there exist constants C(y) >0, such that

Ja)+y |Vl +C() 2 0,Yu e H" (),

(2.10)

(8@).u)—CI @)+ y |V"ul +C(7)=0.Yu e H" (€,
@.11)

Jw) = [ Guydx,0<C, < %q+% is

where

independent of } .

Lemma 2.1. (Young's Inequality)(See [26]) Forany & >0
and a,b >0, then
g’ 1
ab<—a” +—,

5 e 2.12)

where l—|—l=1,p>l,q>1.
P 4
Lemma 2.2. (Sobolev-Poincare inequality)(See [20]) Let §
be a number with

2<s<4+o,n<2m and 2<s5<

,n>2m
n—2m

Then there is a constant k depending on €2 and § such that

(=8)u

|, < K \VYueH,'(Q).

(2.13)

Lemma 2.3.(Gronwall's inequality)(See [26])

IfVt €[t,,+0), y(t) 2 0 and % + gy < h, such that
t

y(&) < y(t,)e s +§,t >1,,

. (2.14)
where g >0,/ >0 are constants.
Lemma 2.4. (See [7]) Let i be an absolutely continuous

positive function on R™, which satisfies for some 0> 0 the
differential inequality

%w(t) +20p (1) < gy (1) + h(1),1 >0, (2.15)
where h € L;OC (R") and
J.[g(z')drﬁ(‘)(t—z')+m, for t 2720, (2.16)

with some 72 > (. Then

ISSN: 2321-0850, Volume-5, Issue-7, July 2017

w)<e" (l//(s)e_é(’_“) + J.r|h('r)| e""(’_”dy), Vt>s520.

. 2.17)
2.2 Preliminaries on pullback attractors
We deal with the global attractors by semigroup S (%) .

Instead of a family of the one-parameter semigroup or

process U (¢, 7) on the complete metric space X,U (t,7)y

denotes the solution at time / which was equal to the initial
value |/ attime 7 .

The semigroup property is replaced by process composition
property:
Ui, o)U(r,r)=U(t,r), for all t=2727,
. (2.18)
and obviously, the initial condition implies U (7,7) =1d .
Definition 2.1. (See [2]) Let U be the two-parameter
semigroup or process on the complete metric space X . A
family of compact set A(f),_ is said to be a pullback
attractor for U jif for all 7eR . It
satisfies:(1) U (t,7)A(7) = A(7) ,for allt > T ; 2)

limdist, (U(t,t—s)D,A(t))=0 for all bounded

Dc X ,andallt €R.

Definition 2.2. (See [2]) If the family B(f),_satisfying:
(1) pullback absorbing with respect to the process U ,if for
allf € R and all bounded D < X ,there exists T, >0 such
that U (¢, —s)D < B(t) for all's >T(t);

(2) pullback attracting with respect to the process U , if for
allt € R, all bounded D — X , and all & >0, there exists
T, ,(t) >0 such that for all s>T, ,(f),

dist,, (U(t,t -s)D, B(t)) <é&;
. (2.19)
(3) pullback uniformly absorbing (respectively uniformly
attracting) if T (t) in pact (1) (respectively T}, ;, () >0 in
part (2)) does not depend on time .

Theorem 2.2. (See [2]) Let U(Z,7) be a two-parameter
process, and suppose U(#,7): X — X is continuous for
all 27 . If there exists a family of compact pullback
attracting sets B(?)

A(?)

g then there exists a pullback attractor

such that A(t) < B(t) for all t € R, and which

teR’
is given by
A= U A, @) where
DcX
A,=Jue-5D. (2.20)

neN szn

III. EXISTENCE AND UNIQUENESS OF THE SOLUTION
Lemma  3.1. feH,peC,,
and g (u) satisfies (Hl ) - (H3 ) , h satisfies (Gl ) - (Gs ) ,

and

Assume that

www.erpublication.org
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[2Ch2j4<mm{ ai" '621 2-C,- A" +\/(2+C FA") +164" }

5 4
(3.1
Then, for any 7 € R, there exists a unique solution
u)=ullzr,@) of the problem (1.1)-(1.4) and

C, >0 ,such that

ueC([z—r,00:V)NC [z~ 1,00 H),
. (3.2)
and
© 2
J HV’"ut (S)H ds<C,,t>1.
. :
(3.3)
Proof. Stepl: existence of the solution
We take the scalar product in L’ of equation (1.1)

withv =u"+su
and

k)

2 2 4

Then

V"u

[u”+(—A)'”u’+(a+ﬂ T oy g, j ().

(3.4)

By using Poincare's inequality and Young's inequality, after
a computation in (3.4), we have

(u",v):(v'—eu',v)
_1d
=L e (v-ar)

1d

L e+ ()

1d

LA - S M-

(A" u'v)=((=8)"v=&(-A)"u,v)

= HV’”V”Z -& (Vmu, va)

(13)

)

(3.6)

vl

(3.5)

\vi 2
1%

5l

withO<e<?2.

11

1
[ﬁj“qm‘z%ﬂw 2024'"+J<2+cz+4"’>-+1w] :

((a+/}HV’”uH2)q —A " u,vj

= (eslvmal | Svf ve( ey | ool

)
T G R T L ) A G
: (3.7)
(g(w),v) =%J () +&(g(w),u). (3.8)
(f(x),V)-F(h(t,ut),v) < ”f” ”h(t )“ ” ”
6‘
(3.9)

Substituting (3.5)-(3.9) into (3.4), then

%[HVUZ +2 (ql+ 5 (a + [;’HV'"uHZ)q+ +2J(u)}[241'" (24 4")e-26*
+2—;((z+ﬂHV"’uH2) H—%(OﬁﬁHV llH ) —[6‘+*JHV uH +2¢(g(u),u)

2L, 2lnce)f
2 2 :

(3.10)
Next, some of the items are estimated in (3.10). By Young's
inequality, we have

m L iom P
HV1423511W7u2q2+5%I, 3.11)
(2]
[l <Ll + 2L
4(g+1) q+1
((Hﬂ Viu z)qua(2+1)(“+ﬂ ”Vm””) (czl?lq
(3.13)

i%y (2.10)-(2.11), (3.11)-(3.13), we have

1 T g+ ]
ﬁ(q+1>(“+ﬁuv o) +21<u)+c<y)+%
va H +2J(“)+C(7/)+ﬂ
q+1 qg+1
Zﬂq V"u 2+2J(u)+2C(}/)

> %vauuz +2J () +2C(7)

g 2
> _‘ Vmu
m

>0,
(3.14)

www.erpublication.org
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2 as gl -2 sl 7[Hfjuv of +2(sw.a) : (3.15)
m qgqm
| 2a(gt+De 2ae '57 7’ - where 0 <e< Hlin q/ll ﬂ ﬂ‘l —
ﬁ(aJrﬁHV uH ) 7%6 ( ﬁHV H ) 7ﬂ g+ﬂ1’” HV uH +2£(g(u),u) 2 7 _2/11
> fecaln | -[“%]HVWH’+2s(g<u>,u)—(2‘?ﬁ : Since
) 441 2
22 (o plyf |+ L _[HEJHWHZ w26 1260222 3 3 2-C,- A"+ \/(2 +C,+A") +164"
al e 8 Y 0<C2<Zq+1’0<g< ; ,
3 2 e 40
Zé(MﬂHV | ) [qe——JHV [ +26€,0 () ZgC(/)—%— ﬂqs and

36‘( 2\ (2a)" ¢ 4“q5
>3 (o4 ) £26C,0 (1) -26C(y) -2 _41ae
risa : T

(3.14)-(3.15)are substituted into (3.10), then

d 2 g+1 q 2 q+1 q
E|:HVHZ+ﬁ(q1+l)(a+,8HV"’uH ) +2J(u)+C(;/)+ﬁ—ql:|+czg|:HvH2+ﬂ(q1+1)(a+ﬁHV”’uH ) +2J(u)+C(7)+%}

(a+[5’HV’"uH2) " +2J(u)+C(y)+ } (,[H I + " 2)“ reo+ B q}zgch(u)

< f[w - ! (a+
dt Llg+1) Blg+1D)

(a+ﬁHV"'14H2)+ +2](u)+C(;/)+ﬁ ‘1} (24" —(2+ 4" ) e =287 ||V + ﬁ( )q+ +2£C,J (1)

d 2 1
<o M 5
q+1

1

ST T PO 0 L DEPES [cwn%j
. (3.16)
) 3 1
with mO=mm{2/11’”—(2+21’”)8—252,%}.
We set
_ 5 1 2 g+1 'qu
y@ =|v| +—,5'(q+1)(a+'8||v u ) +2J(u)+C(7/)+—q+l,
(3.17)
- () e 4lqc Bq (3.18)
=2 . .
C eC(y)+ of —+ 5 +m,| C(y)+—= po
So, from (3.16) we get
2
d 20 2|\h(t,u,)
4 s s 20 el
(3.19)

2
" <0, we can then choose k €(0,k,) small enough such that

As our assumption ensure that —C28+

2
k— C &+ 2C < 0. For this choice, we have
%[ek’y(t)] =ke" y(t) + " % y(1), (3.20)
d 2 2 ~
E[e’“ Y0 < (k=Cye)e y(t) +e| I re |aGe,u)| +Ce". (3.21)

For (3.21), by integrating over the interval [7,?], we deduce

r ) 2k ke )
ekry([)gekry(z,)_l_(k_czg)j ek.\'y(s)ds_l_f]({eze)_l_zzj ekx
4 & &

h(t, us)szs +C rek“'ds

(3.22)

’ 2|f 20747 1
Sek’y(z’)+(k—C25)Le y ds+ H H ](682 )+ ;;f’l J‘Heb
=ek’y(r)+(k—ng)J ¢ y(s)ds+ H H ( ) 2C,122/11—m (I:_rek:

£

V'”u(s)szs + f(ek' -é" )

V”’u(s)H2 ds)+%(ekr —e" )

V"’u(s)H2 ds+ _Ee“

By (3.14), we have

12 www.erpublication.org
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219 -m 2
%J‘:re’“ V"’u(s)”2 L :ireksy(s)ds. (3.23)
Therefore, we have
2 2( k ke 2 =~
ey(t) < e'”y(r)+(k —C2£)rek‘yy(s)ds + ”f" l(j 5 ¢ )+ 26;" r " y(s)ds +%(ek’ —e’”). (3.24)
T & &’ T-r
By ¢ € C, y Jet D < C,, ,, be a bounded set, i.e. there exists d > O such that
||¢||i ZH <d’, (3.25)
y(p(0))<d’. (3.26)
From (3.25)-(3.26) and he integral value theorem, we obtain
" y(t) < ekry(1)+(k—ng+%3”2j£ " y(s)ds + 2l " (e ¢ ) gh J‘;eksy(S)ds+%(ek’ —e”)
o 2= 26 V1 : o e
<et dﬂ-% (k Ce+ ]I . (s)ds+ kdz k( - ) (3.27)
2C,2 2| 1] (e —e* 2¢,2 ¢
= [1+8—’;r}“d2 +—|| " /<<€2 ) +[k -C,e +8—3"JL ¢ y(s)ds +Z(ek’ —e’“)
2( k kt ~
S[1+2C’;2rjekrd2+ 2"f" (ez—e )_I_E(ekz _ekr).
£ ke k
Therefore, we have
2 o) 2 1— kD =
B +%vauuz < (1) < (1+ %jd%""‘” + il (kgze ) + %(l—e""‘” ). (3.28)
Further, we get
[V H | <2 po +pyd* eV V>, (3.29)
2CA" 4l fIr A" . mo2C A"
Whelrepo2 = kf + ” k|<|93 ,,002 = %-th—“}ﬁ'
Then (3.29) yields that
|V, ¢)H + P d* e Vi, (3.30)
and, in particular,
|V, ¢)H —+ p,2d? V't > (3.31)

Moreover, asu(t;7,0) = §(t —7) andu (t,’[,¢) =¢'(t—7)fort €[z —r, 7], then (3.30) holds true fort > 7 —r.

By Galerkin method, we getut € C°([7 —r,0);V)NC'([r—r,0); H) .

Step 2: uniqueness of the solution
Assume that u(l) =u(i7,¢)and v(1) = v({] 7, ) are two solutions of the initial boundary value problem (1.1), @,/ are the
corresponding initial value, we denote W([) = u([) —v([) . Therefore we have

w'+(=A)" WM (0)(-A)" w+A7I(t)(V’"(u + v),V'"w)(—A)m (u+v)+gu)—g(v)=h(t,u,)—hit,v,),t >,

wt)=¢(t—-1)-w(t-1)telr—r,7], (3.32)
w)=¢'t-1)-y'(t-1),telr-r,7],
where
2\4
o =3 (ar i) +(as o) 2o 03
_ 1 ¢t m 112 m 2 q-1
W=7 joqﬂ[a+ ﬁ(/IHV ulf +a-nv )} dA>0. (3.34

13 www.erpublication.org
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Using the multiplier w +Owin (3.32), we have
%H(r) +HV’"w’H2 = K(t)—(gw)—g(v),w +w)+(h(t,u,) —h(t,v,),w' +w),
with
HO = + 7] )+ ().
K(t)==-MO(V"w,V"w) =M @) (V" @+v). V"W ) (V" @ +v).V"w)

—<‘>(1\4(r)vawH2 + MOV +), VW) ) +olw

)

Obviously, there exists b > a >0 and C, >0, such that

a( Z)SH(I)Sb( w

K@) < %vawl

2 2
/ vmw / vmw

W +|

|

2 m 2
e, o

By(H,) ., we know H ' (Q) L’ (©Q) . So we have
(sG0 =g w+aw)[ <[ ("™ P ) wl(jw']+ o) dx
<G ([l + A0 Yl (71, + 00, )

<7+ ¢ (W + o)

By (G;), we get

I:||h(s,us) —h(s, vs)||2ds < Czj.t eeCs) —V(S)”2 ds
<% Cirlo-v,,

(h(t,u,)—h(t,v,),w +ow) < |ht,u,) - h(, vt)|| <1

e O S

O

<[t )~ ht,v)| +=

2
v

<||(e,u,) —h(e,v)| + %(||w'||2 + vawuz),

with0 <0< A",
Inserting (3.38)-(3.42) into (3.35), we obtain

d 3
Ly 2w <) —nie.v)f +( cC j(nw [+ o).
By (3.38), (3.41), integrating (3.43) over (7,1) , we can get

al b moff )+ [ v o

Sb(HW'(z-)H2+HVmw(T)H) (c +Cyt+ jj (Hw(s)H +[vrws)| )ds+/11’"C2rH¢ vl +4"C j:vaw(s)szs

vm WI

<(b+4"cir)lo-vl;, ( +C+ATCE )j (Hw'(s)H“+HV'"W(S)H‘)ds.
Combining the Gronwall lemma, we get
b+ﬂ1 C r 2C4+2C5+](t—r)

”¢ e 2

CV H
If ¢ and stand for the same mltlal value, there has

Wi+ v <o.

W+ v <

14

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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Therefore, u=v.

o 2
Step 3: Next, we need the further estimate of I va”t (S)H ds .
t

Multiplying (1.1) by 2u’ gives

d |y e 1 AT 2
—| +T)ﬂ(a+ﬂuv u ) +2J ()= 2(f (x),u) [+2|[V"u| =0. (3.47)
Integrating the above equality over (¢,1nf) . So, there exists C; >0, such that

LOOHV'"”,(S)HQCIS <C,t>. (3.48)

IV. EXISTENCE OF THE PULLBACK ATTRACTOR

In this subsection, we assume that f € H , we aim to study

the pullback attractor for the initial value problem (1.1).
From Theorem 3.1, the initial value problem (1.1) generates

a family two-parameter semigroup U (L] ) in C,, ,, , which can

Lemma 4.1. Let@, |y € CV,  be the two initial values for

the problem (1.1), and 7 € R is the initial time. Denote
byu() =u(3z,¢)and v(() =v((i7,y) the corresponding
solution to (1.1). Then, there exists a constant C6 > () which

does not depend on the initial data and time, such that

be defined by
U, o) @)=u,Cr,¢).t27,6€C, .
4.1)
2 b+ "Cir _
[V7u@) =@ +w'e vl < 21— e Vi 2T, (42)
and
b+A"Cr _
||ul -V, Z < —/11 ||¢ Z e N> T+, 4.3)
V.H V.H
with a, b > Qare given in (3.38).
) . 2C, +2C, +1
Proof. We denote w=u—v .By(3.32),we can get (4.2) easily with C6 T in (3.46). If we
considert > 7+7r,thent + 6 > 7 for any @ €[—r,0], and
2 b+ Cr _
[V wie+ ) +[wie+0)f < —‘1 [p—wlt ecsero
V.H
“4.4)
b+A"Cr _
—”1 vl e vizoar
Thus,
b+ A "C,r _
I < ‘1—||¢ 2O iz Ty, @5
Theorem 4.1. The mapping U (¢,7): CV,H - CV,H is continuous for any f > 7 .
Proof. Let ¢,y €C, ,, be the initial value for the problem (1.1) and =7 . Denote by u()=u(ir,d)
andv(1) =v({7,y) the corresponding solution to (1.1). Then, writing again W=1u —V, we obtain the following:
Ift e[z —r,7], thenw(t) =(t —7) —w(t —7) and
m 2 2 2
[Vl + ol <lo-vl,
(4.6)
b + //{1 mC r ||¢ || Cy(1—T+r)
CV H ’
Thus, we have
2 b+ C,r s
[V wo)| + W) < ﬂ“—||¢ v, e Vez -, 4.7)
whence
b+ A "C,r s
off <ZEATC ) e s, @)
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which implies the continuity of U (¢, 7).
Theorem 4.2. Assume that f € H,¢ € C,, , and g (u) satisfies (H,) — (H,) , h satisfies (G,) —(G;) withk, >0, and

1
(2ch2]4<min z’qﬂz,‘m’ﬁ‘%{" 2-C, = A" 42+ C+ A" 164"

R 4.9)
5 2 4
Then, there exists a family {B (t )}te R of bounded sets in C,, ,; which is uniformly pullback absorbing for the process U (L) .

Moreover, B(t) = B’forallf € R, where B® is a bounded set in CV, -

Proof. By lemma 3.1, we know (3.30)-(3.31) fort 2 Tandt 27 —r.
If we take now f > 7+, then for all @ € [—r,0] we havet +6 > 7 and so

[V ut+6:2.9) +|u'c+6:7. ) —+ pyd e e, (4.10)
or, in other words,
U, T)¢|| '020 +p, d*e" e T NVt >t +r,peD. (4.11)
Therefore, there exists TD 2 r such that
||U(t,t—s)¢||i” <p ,VteR,s>T,,peD, 4.12)
which means that the ball BCV‘H O, p,) = B’ c C, ,; is uniformly pullback absorbing for the process U (L[ .
Remark (See [2]) On the one hand, observe that if f; € R andf > 1, then u(t+0;t0 —s,¢) = u(t+9;t—(s+t—to),¢)
and u'(t +0;t, —s,¢) = u'(t +6;t—(s +t—l‘0),¢) with § +7 —7, = 5. As a consequence of (4.12), we have
U (2.1, —s)¢HZVH <pl,Vt,eR,t>t,,s€T,,peD, (4.13)
or equivalently, we have Vt, € R,t >t,,0 €[-r,0],s €T,,p € D,

HV’” t+0:t, s, ¢ H
On the other hand, (3.30) implies, Vt, € R,t >t ,s € R,t et,—s—r,pe D,

(t+651,—s5.9)| < P2 (4.14)

2 2
[V7u(t+0st,—s.9)| +|u' (4051, —5.8)| <5+ pyd. 4.15)
Theorem 4.3. In addition to the assumptions in Theorem 4.1. Then, there exists a compact set B, C Cv, g Which is uniformly

pullback attracting for the process U (DD) , and consequently, there exists the pullback attractor A (t)teR . Moreover,
A( ) cC

S forallf € R.

ZV +||¢! n g¢”; ,p € CV’H is equivalent

o[, =

this new norm for some suitable value of & .Indeed,let us denote B, (0, p) = {¢ eC, - ||¢||€ < p} :

c .This allows us to obtain absorbing ball for the original norm by proving the existence of absorbing balls for
V.H

Noticing that for C, = max {2, 1+ 28221_'"} , it follows that

lle, =lolk, +l¢+ep—zdl. <l +21¢ +2dl, +2& |4, <

(4.16)

CV H

1
then we have B, (0, p) C B, (0, Cfp} .

LetD C CV‘H

o o+ edlr, <d.
and so, ||¢||ZV , < C7d2 :

Denote, as usual, by #([) = u([3 7, @) the solution of problem (2.1), and consider the following problems:
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q
V' + (—A)mv’+(a +B|V"u \2) (=A)"v+ g(u) = f(x)+h(t,u),t> 7,
v(t)=0,te[r—r,7], 4.17)
V(e)=0,te[r—r,7],
q
W'+ (=A)"w + (a + ﬂHV’"uHZ) -A)"w=0,r 27,

w(t)=¢(t—1),telr—r,7], (4.18)

w()=¢'(t—1),telr—r,7].
From the uniqueness of the solution of problem (2.1), (4.17) and (4.18) it follows that

uD=vO+w@,VteR, and Vt =7 —r. (4.19)
Consequently, U (¢, 7T) can be written as
Ut, o)) =U,(t,0)(P)+U,(t,7)(p),p€C, .t 2T —T. (4.20)

where U, (2, 7)(@) =v,) =v,(37,¢) and U,(#,7)($) =w,()=w,(37,0) are the solution of (4.17) and (4.18)
respectively.
First,thanks to (3.30), but with g = f =h =0 Then, there exists C; = C;(0,,d, ) >0, it follows

[V wiez.p)| +|w e, <Cd*.Vizr.peD, “21)
and by means of (4.10), then
[w. @ r,¢)||iv +[|w/ Gz, ¢)”; <Cyd?e e " Ntz +r,peD. (4.22)

Furthermore, for #, € R,t >t ands >T, >r,
w(t:t,—s.0)=w(t;t—(s+1—1,),9), (4.23)
withs +f—f, >s2T,>r.
Thus, (4.22) implies in particular
[w(z:t,—s, ¢)||2 <Cd’e"e"" T <Cud’e"e ™ V1, e Rt 21,5 2T, peD. (4.24)
Then, (4.22) yields that
[U,@.t=s)dl, <Cd’e"e™ VieRs2rpeD. 4.25)
Whence
lim sup sup||U2 (t,t— s)¢||

SH0 1eR geD

2
= 0. (4.26)

Let us now proceed with the other term. Let us fix#, € R, s 2 T},,¢ € D and denote

u(t) =u(t;ty—s,9),v(@) =v(t;t, — s,9),t = t,—s—r, 4.27)
and
Ft)=—gw)+ f(x)+h(t,u,),t =1, —s. (4.28)
By (G;), then
ol <lswllr ol Lal,, 429
From (H,) , Sobolev imbedding theory and (4.14), there exists C, = Cy(d, p,) >0, such that
|F@)| < C,+|f )|+ LA py=Cyp, Yt 2 1, (4.30)
and from (4.15), then
- 1 -
|[FO|<C+|f o+ LA (o +pod? ) <Cy+ LA pd. Vi 21, ~s. 431)
a aqm _ [ m
Letg = V' +evwith0 < & < min %, d > 3 Z-'_ 4/11 , then multiplying (4.17) by (—A)m q gives
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%{llvmqnz ol [aaomf ) - g}||mv||2}+ st ~26l[mdlf +26% (v, %) 267 ||

(4.32)
fanff [qﬂ(a o) (vmu,vmu/)} 2e(a+ | uf | |anif =2(F-ara).
In (4.32), by Holder inequality and Young's inequality, then
2(F(@),(-a)"q) <|F@)f +|a"d] < +|amq] . 433)
2a"g| - 2¢[V7q] +26 (Vv.Vg)-287 [an] + g(a + BV ) [
el (320 ) o 58 -20° ] o HE -0
>[a"gf (4" 2647 |v"d
>0.
Setting
o =[qf {(a i) _g}HAmVHZ > [Vl +(a - )|am >0 39)
then substituting (4.33)-(4.34) into (4.43), we have
d m m ETEAL T
() +(Ar 26 )|V + g(a + v qu) lam .
2\27! 2 .
<G+ 2ap(a+ vl | [oul]vnflan
Therefore, by (3.31) and (4.36) for t >, —s, there exists C,, = C,,(d, g, t, 3, p,) >0, such that
% 2(t)+£2() < Gy + C, |V | 2(0). 437)
Noticing that y(#, —s) =0, and for (4.37) in[t, — 5,1, ], by lemma 2.4 and (3.3), we obtain
2(t)) £ C,, =C,(L,,d, p,), (4.38)
and
. . C,
2(t) < C, €% z(ty)e " + Cp j Ledy<Cuye + f (4.39)
Then, there exists 7}, > T}, such that, if s > 7},
2(t) < Che ™ + %120,% eR,t>1,. (4.40)

Recall that z(¢) = z(t;f, — 5, @), if we fixt >1,, take s =T}, and denote § =¢—7,+7,,, we have, provided ! is large
enough, that

2(t;t, =T, @) = z(t;t —(t —1,+T)),¢) = z(t;t = §, ) < 2%‘20 (4.41)
In conclusion, there exists TD" > (O such that for allz € R, and s > TD' +TD” ,
z2(t;t—s,9) S%ﬁ),v¢e D. (4.42)
Denotinng =T, +T,+r,wehaveforallp € D,t € R, s> fD ,
HA"’v(t, t— s,¢)”2 + HV’"V'(t,t —s, ¢5)H2 < 2%120 (4.43)
and, by repeating once more the same argument previously used,
2
v, GGt =s,0) i,z,w,v < %, (4.44)
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forall¢eD,teR,s2fD.
2

This means that the ball B' = BHZm . 0,—2 |is a bounded setin H>" NV, V which, in addition, is uniformly pullback
’ &

absorbing for the family of operators U, (L]) . As B, is a bounded set in C, , , then there exists T, 2 r such that

Ut,t-s)B'c B ,V1eR,5>T,, (4.45)
and, therefore, the bounded set B ‘cC H vy given by
B =JJu¢r-sB B, (4.46)
teR .&‘ZTBI

is uniformly pullback absorbing for U, (l1) in C, ,, .
By Ascoli-Arzela theorem, we can prove that B is compact, so {B (1= B 2} is a family of compact subsets in va u » Which

is also uniformly pullback attracting for U (DD) , and the proof has been completed.
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