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Abstract— The paper investigates pullback the attractors for 

the Higher-order Kirchhoff-type equation with strong linear 

damping: 
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Firstly, we do priori estimation for the equations to obtain the 

existence and uniqueness of the solution 

in 0 1[ , ); )( ([ , ); )u C r V C r H      by some 

assumptions the Galerkin method. Then, we prove existence of 

the pullback attractors  ( )
t R

t


A in 

0 1[ , ); )( ([ , ); )u C r V C r H      . 
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I. INTRODUCTION 

In this paper, we are concerned with the existence of 
pullback attractors for the following nonlinear Higher-order 
Kirchhoff-type equations: 
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where m 1  is an integer constant, 0, 0   are 

constants and q is a real number, is the initial datum on the 

interval[ , ]r  where 0r  . Moreover, is a bounded 

domain in
nR with the smooth boundary and v is the unit 

outward normal on  . ( )g u is a nonlinear function 

specified later, and
tu is defined 

for [ ,0]r  as ( ) ( )tu u t   . 

It is known that Kirchhoff [1] first investigated the 
following nonlinear vibration of an elastic string 

for 0f   : 
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where ( , )u u x t is the lateral displacement at the space 

coordinate x and the time t ,  the mass density, h the 

cross-section area, L the length, E the Young modulus, 0p  

the initial axial tension,  the resistance modulus, and f the 

external force. 
  In [2], the existence of a pullback and forward attractors is 
proved for a damped wave equation with delays: 
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where , 1nR n  , be an open and bounded subset with 

smooth boundary    . ( , )tf h t u  is the source 

intensity which may depend on the history of the solution, 
 is a positive constant,  is the initial datum on the interval 

[ , ]r   where 0r  , and 
tu  is defined for [ ,0]r   

as ( ) ( )tu u t   . 

  In [3], Guoguang Lin, Fangfang Xia and Guigui Xu had 
studied the global and pullback attractors for a strongly 
damped wave equation with delays when the force term 
belongs to different space: 
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  In [4], authors consider non-autonomous dynamical 
behavior of wave-type evolutionary, on a bounded domain 

  in 
3R , with smooth boundary  : 
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where 
2 2( , ) ( ; ( ))locg x t L R L  ,and 

( ), :th u f R R and verify some of assumptions. 

  Authors establish a criterion for the existence of pullback 
attractors. Moreover, they show that the pullback  
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$k$-contraction is not equivalent to the pullback asymptotic 
compactness, unless the cocycle mapping has a nested 
bounded pullback absorbing set. 
  In [5], authors study existence of pullback attractors for the 
following functional Navier-Stokes problem: 
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where 
2R  is an open bounded set with regular 

boundary , 0   is the kinemtic viscosity, u  is the 

velocity field of the fluid, p  is the pressure, ,g f  are 

external force term,   is an adequate given delay function. 

  Authors prove the existence of a unique pullback attractor in 
higher regularity space for the multivalued process associated 
with the nonautonomous 2D-Navier-Stokes model with 
delays and without the uniqueness of solutions. 
  Some people have studied for equations of the form: 
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  For example, M.J.Garrido and J.Real of [5] had proved 
some results on the existence and uniqueness of solution for a 
class of evolution equations of second order in time, 
containing some hereditary characteristics. 
  At present, most people had investigated global attractors, 
exponential attractors and blow-up of Higher-order 
Kirchhoff-type equations, and we can see [6-32]. Because 

equations of the paper posses ( ) :g u R R  and ( , )th t u , 

they increase difficulties for existence of solutions. We 
establish pullback attractors omit [2]. 
   In order to make these equations more normal, in section 2, 
some assumptions, notations and the main lemmas are given. 
In section 3, Under these assumptions, we prove the existence 
and uniqueness of solution for the problems (1.1). In section 
4, we prove existence of the pullback attractor similar to [2]. 

II. PRELIMINARIES 

2.1 Assumptions and some of lemmas 

  In this section, we introduce material needed in the proof our 

main result. We use the standard Lebesgue space ( )pL   and 

Sobolev space ( )mH   with their usual scalar products and 

norms. Meanwhile we define: 
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for any real number 1p  , and 1  is the first eigenvalue of 

A . 
  (1.1) can be written as a second order differential equation in 

H : 
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  In general, if  ,
X

X  is a Banach space, we denote by 

XC  the space  0 [ ,0];C r X  with the sup-norm, i.e. 
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 , for 
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Banach space  ,
Y

Y   such that the injection X Y  is 

continuous, we denote by ,X YC  the Banach space 

 1 [ ,0];XC C r Y  with the norm 
,X YC

  defined by: 
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  According to [2] and [8], we present some assumptions and 
notations needed in the proof of our results. For this reason, 

we assume nonlinear term 
1( ) ( )g u C   satisfies that:  

  1( )H  Setting 
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  Now, we make the following hypotheses on the function 

: Hh R C H  : 

  1( )G  , ( , )HC t R h t H       is continuous; 

  2( )G  , ( ,0) 0t R h t   ; 

  3( )G  0hL   such that , , Ht R C     , 
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  4( )G  0 0, 0hk C    such that 
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  For every 0  , by    1 3H H  and apply Poincare 

inequality, there exist constants ( ) 0C   , such that 
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  Lemma 2.3.(Gronwall's inequality)(See [26]) 
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where 0, 0g h   are constants. 

  Lemma 2.4. (See [7]) Let   be an absolutely continuous 

positive function on R
, which satisfies for some 0ò  the 

differential inequality 
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  2.2 Preliminaries on pullback attractors 

  We deal with the global attractors by semigroup ( )S t . 

Instead of a family of the one-parameter semigroup or 

process ( , )U t  on the complete metric space , ( , )X U t    

denotes the solution at time t  which was equal to the initial 
value   at time  . 

  The semigroup property is replaced by process composition 
property: 

                 ( , ) ( , ) ( , ),U t U r U t r   for all ,t r                      

.                                                                                         (2.18) 

and obviously, the initial condition implies ( , )U Id   . 

  Definition 2.1. (See [2]) Let U be the two-parameter 

semigroup or process on the complete metric space X . A 

family of compact set ( )t RA t   is said to be a pullback 

attractor for U ,if for all R  . It 

satisfies:(1) ( , ) ( ) ( )U t A A   ,for all t  ;        (2) 

 lim ( , ) , ( ) 0X
s
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  for all bounded 

D X , and all t R . 

  Definition 2.2. (See [2]) If the family ( )t RB t  satisfying:  

(1) pullback absorbing with respect to the processU ,if for 

all t R and all bounded D X ,there exists DT >0 such 

that ( , ) ( )U t t s D B t  for all Ds >T (t) ;  

(2) pullback attracting with respect to the processU , if for 

all t R , all bounded D X , and all 0  , there exists 

, ( ) 0DT t   such that for all , ( )Ds T t , 
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(3) pullback uniformly absorbing (respectively uniformly 

attracting) if DT (t)  in pact (1) (respectively , ( ) 0DT t   in 

part (2)) does not depend on time t . 

  Theorem 2.2. (See [2]) Let ( , )U t   be a two-parameter 

process, and suppose ( , ) :U t X X   is continuous for 

all t  . If there exists a family of compact pullback 

attracting sets ( )t RB t  , then there exists a pullback attractor 

( )t RA t  , such that ( ) ( )A t B t  for all t R , and which 

is given by 
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D X
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III. EXISTENCE AND UNIQUENESS OF THE SOLUTION 

  Lemma 3.1. Assume that ,, V Hf H C   

and  ug satisfies    1 3H H , h satisfies    1 5G G , 

and 
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Then, for any R  , there exists a unique solution 
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3C 0 ,such that 

                    
0 1[ , ); )( ([ , ); ),u C r V C r H                                                                                                                

.                                                                                         (3.2) 
and 

                           
2

3( ) , .m

t
t

u s ds C t 

                          

(3.3) 
  Proof. Step1: existence of the solution 

We take the scalar product in
2L of equation  1.1  

with v u u   
and 

1
22 4

2 1 2 1 11 1

2

2 (2 ) 162
min 2, , ,

2 2 4

m m mm q m

h
C CC q

C

    


              
    
. 
Then 
        

   2
( ) ( ), ( ( ), ).

q
m m m

u u u u g u v f x v           
 
                                                                                        (3.4) 
   By using Poincare's inequality and Young's inequality, after 
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Next, some of the items are estimated in (3.10). By Young's 
inequality, we have 
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                                   (3.27) 

Therefore, we have 

   
2 ( )2

22 2 ( ) ( )

3 2
1

2 12
( ) 1 1 .
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m
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                                  (3.28) 

Further, we get 

              

2
2 2 2 2 ( )0

0
ˆ , ,

2
m k t
u v d e t

                                                                                                                      (3.29) 

where

2 2
12 2 11 1

0 03 4

4 22 ˆ,
m mm m

h
f C rC

k k

   
   

    . 

Then (3.29) yields that 

           

2
2 2 2 2 ( )0

0
ˆ( ; , ) ( ; , ) , ,

2
m k t
u t u t d e t

                                                                                              (3.30) 

and, in particular, 

           

2
2 2 2 20

0
ˆ( ; , ) ( ; , ) , ,

2
mu t u t d t

                                                                                                                    (3.31) 

Moreover, as ( ; , ) ( )u t t     and ( ; , ) ( )u t t      for [ , ]t r   , then (3.30) holds true for t r  . 

By Galerkin method, we get
0 1[ , ); )( ([ , ); )u C r V C r H      . 

  Step 2: uniqueness of the solution 

Assume that ( ) ( ; , )u u   and ( ) ( ; , )v v   are two solutions of the initial boundary value problem (1.1), ,  are the 

corresponding initial value, we denote ( ) ( ) ( )w u v  . Therefore we have 

      ( ) ( ) ( ), ( ) ( ) ( ) ( , ) ( , ), ,

( ) ( ) ( ), [ , ],

( ) ( ) ( ), [ , ],

m m mm m

t tw w M t w M t u v w u v g u g v h t u h t v t

w t t t t r

w t t t t r



     
     

               

     
       

                                   (3.32) 

where 

            2 21
( ) ,

2

q q
m m q

M t u v             
                                                                                                         (3.33) 

           1
1 2 2

0

1
( ) (1 ) 0.

2

q
m mM t q u v d     


                                                                                     (3.34) 
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Using the multiplier w w ò in (3.32), we have 

   2
( ) ( ) ( ) ( ), ( , ) ( , ),m

t t

d
H t w K t g u g v w w h t u h t v w w

dt
          ò ò ,                                           (3.35) 

with 

                221
( ) , ,

2
m

H t w w w w    ò                                                                                                                    (3.36) 
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      ò ò
                                                         (3.37) 

Obviously, there exists 0b a  and 4 0C  , such that 

                 2 22 2
( ) ,m ma w w H t b w w                                                                                                              (3.38) 
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1
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8
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By 4( )H , we know
1
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By 3( )G , we get 
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                                                                  (3.41) 
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òò

ò
                                                          (3.42) 

with 10 .m ò  

  Inserting (3.38)-(3.42) into (3.35), we obtain 

    2 22 2

4 5

3 1
( ) ( , ) ( , ) .

4 2
m m

t t

d
H t w h t u h t v C C w w

dt

           
 

                                                (3.43) 

By (3.38), (3.41), integrating (3.43) over ( , )t , we can get 

 
   

   
,

,
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2 2 22 2 22 2
4 5 1 1

22 22 2
1 4 5 1

3
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4

1
( ) ( ) ( ) ( ) ( )

2

1
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2
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t
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t
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h hC
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b w w C C w s w s ds C r C w s ds
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                                     (3.44) 

Combining the Gronwall lemma, we get 

            
4 5

,

2 2 12
( )22 21 2 .

V H

C Cm
t

m h a

C

b C r
w w e

a

  
                                                                                                           (3.45) 

If  and  stand for the same initial value, there has 

                      
22

0.mw w                                                                                                                                       (3.46) 
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Therefore, u v . 

  Step 3: Next, we need the further estimate of
2

( )m

t
t

u s ds

 . 

Multiplying (1.1) by 2u gives 

  12 22 1
2 ( ) 2( ( ), ) 2 0.

( 1)

q
m md

u u J u f x u u
dt q

 


           
                                                           (3.47) 

Integrating the above equality over ( ,inf)t . So, there exists 3 0C  , such that 

                 
2

3( ) , .m

t
t

u s ds C t 

                                                                                                                             (3.48) 

IV. EXISTENCE OF THE PULLBACK ATTRACTOR 

  In this subsection, we assume that f H , we aim to study 

the pullback attractor for the initial value problem (1.1). 
  From Theorem 3.1, the initial value problem (1.1) generates 

a family two-parameter semigroup ( , )U in ,V HC , which can 

be defined by 

                    ,( , )( ) ( , , ), , .t V HU t u t C                                                                                                                      

.                                                                                         (4.1) 

  Lemma 4.1. Let ,, V HC   be the two initial values for 

the problem (1.1), and R   is the initial time. Denote 

by ( ) ( ; , )u u   and ( ) ( ; , )v v   the corresponding 

solution to (1.1). Then, there exists a constant 6 0C  which 

does not depend on the initial data and time, such that 
   

6

,

2
2 2 2 ( )1( ) ( ) ( ) ( ) , ,

V H

m
C tm m h

C

b C r
u t v t u t v t e t
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                                                              (4.2) 

and 
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m
C th
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                                                                                        (4.3) 

with , 0a b  are given in (3.38). 

  Proof. We denote w u v  .By(3.32),we can get (4.2) easily with 4 5
6

2 2 1

2

C C
C

a

 
 in (3.46). If we 

consider t r  , then t    for any [ ,0]r  , and 
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m
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                                                       (4.4) 

Thus, 
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,
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2 2 ( )1 , .

V H

m
C th

t C

b C r
w e t r
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                                                                                                       (4.5) 

  Theorem 4.1. The mapping , ,( , ) : V H V HU t C C  is continuous for any t  . 

  Proof. Let ,, V HC   be the initial value for the problem (1.1) and t  . Denote by ( ) ( ; , )u u    

and ( ) ( ; , )v v    the corresponding solution to (1.1). Then, writing again w u v  , we obtain the following: 

If [ , ]t r   , then ( ) ( ) ( )w t t t       and 

                 
6

,

2 2 2 2

2
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( ) ( )

.

V H

V H

m
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m
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b C r
e
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                                                                                       (4.6) 

Thus, we have 
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,

2
2 2 2 ( )1( ) ( ) , ,

V H

m
C t rm h

C

b C r
w t w t e t r

a

   


                                                                              (4.7) 

whence 
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,

2
2 2 ( )1 , ,
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m
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b C r
w e t
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                                                                                           (4.8) 
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which implies the continuity of ( , )U t  . 

  Theorem 4.2. Assume that ,, V Hf H C  and ( )g u satisfies 1 3( ) ( )H H , h  satisfies 1 5( ) ( )G G with 0 0k  , and 

    

1
22 4

2 1 2 1 11 1

2

2 (2 ) 162
min 2, , , .

2 2 4

m m mm q m

h
C CC q

C

                 
    

                                                        (4.9) 

Then, there exists a family ( )
t R

B t


of bounded sets in ,V HC which is uniformly pullback absorbing for the process ( , )U . 

Moreover, 
0( )B t B for all t R , where

0B   is a bounded set in ,V HC . 

  Proof. By lemma 3.1, we know (3.30)-(3.31) for t  and t r  . 

  If we take now t r  , then for all [ ,0]r   we have t    and so 

             
2

2 2 2 2 ( )0
0

ˆ( ; , ) ( ; , ) ,
2

m kr k tu t u t d e e                                                                                         (4.10) 

or, in other words, 

             
,

2
2 2 2 ( )0

0
ˆ( , ) , , .

2V H

kr k t

C
U t d e e t r D

                                                                                              (4.11) 

Therefore, there exists
DT r such that 

             
,

2 2
0( , ) , , , ,

V H
DC

U t t s t R s T D                                                                                                               (4.12) 

which means that the ball
,

0
0 ,(0, )

V HC V HB B C   is uniformly pullback absorbing for the process ( , )U . 

  Remark (See [2]) On the one hand, observe that if 0t R  and 0t t , then    0 0; , ; ( ),u t t s u t t s t t           

and    0 0; , ; ( ),u t t s u t t s t t             with 0s t t s   . As a consequence of (4.12), we have 

                    
,

2 2
0 0 0 0, , , , , ,

V H
DC

U t t s t R t t s T D                                                                                          (4.13) 

or equivalently, we have 0 0, , [ ,0], , ,Dt R t t r s T D         

                      2 2 2
0 0 0; , ; , .mu t t s u t t s                                                                                                   (4.14) 

On the other hand, (3.30) implies, 0 0 0, , , , ,t R t t s R t t s r D         

                      2 2 2 2 2
0 0 0 0; , ; , .mu t t s u t t s d                                                                                   (4.15) 

  Theorem 4.3. In addition to the assumptions in Theorem 4.1. Then, there exists a compact set 2 ,V HB C which is uniformly 

pullback attracting for the process  ,U , and consequently, there exists the pullback attractor  
t R

t


A . Moreover, 

  2 ,mt R H V V
t C

 
A  for all t R . 

  Proof. For each R , the norm
2 2 2

,,
V H

V HC C
C


        is equivalent 

to
,0

:
V HC

 .This allows us to obtain absorbing ball for the original norm by proving the existence of absorbing balls for 

this new norm for some suitable value of .Indeed,let us denote  ,(0, ) :V HB C 
      . 

  Noticing that for  2
7 1max 2,1 2 mC    , it follows that 

   
,

2 2 2 2 2 2 22
72 2 ,

V H V H V H HC C C C C C
C


                                                                   (4.16) 

then we have

1

2
0 7(0, ) 0,B B C  
 

  
 

. 

  Let ,V HD C be a bounded set, i.e. there exists 0d  such that for any D it holds
2 2 2 2

V HC C
d


       , 

and so, 
,

2 2
7

V HC
C d  . 

  Denote, as usual, by ( ) ( ; , )u u   the solution of problem (2.1), and consider the following problems: 
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( ) 0, [ , ],

q
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                                                                  (4.17) 
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( ) ( ), [ , ],

( ) ( ), [ , ].

q
m m mw w u w t
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                                                                                  (4.18) 

From the uniqueness of the solution of problem (2.1), (4.17) and (4.18) it follows that 

             ( ) ( ) ( ), ,u v w t R     and .t r                                                                                                                    (4.19) 

Consequently, ( , )U t  can be written as 

           1 2 ,( , )( ) ( , )( ) ( , )( ), , .V HU t U t U t C t r                                                                                                    (4.20) 

where 1( , )( ) ( ) ( ; , )t tU t v v     and 2( , )( ) ( ) ( ; , )t tU t w w      are the solution of (4.17) and (4.18) 

respectively. 

First,thanks to (3.30), but with 0g f h   . Then, there exists 8 8 0( , , ) 0C C d   , it follows 

              
2 2 2

8( ; , ) ( ; , ) , , ,mw t w t C d t D                                                                                            (4.21) 

and by means of (4.10), then 

           
2 2 2 ( )

8( ; , ) ( ; , ) , , .
V H

kr k t

t tC C
w w C d e e t r D                                                                         (4.22) 

Furthermore, for 0 0,t R t t  and
Ds T r  , 

                       0 0; , ; ( ), ,w t t s w t t s t t                                                                                                                (4.23) 

with 0 Ds t t s T r     . 

  Thus, (4.22) implies in particular 

    0
2 ( )2 2

0 8 8 0 0; , , , , , .k t s tkr kr ks

Dw t t s C d e e C d e e t R t t s T D              (4.24) 

Then, (4.22) yields that 

              
,

2 2
2 8( , ) , , , .

V H

kr ks

C
U t t s C d e e t R s r D                                                                                            (4.25) 

Whence 

                      
,

2

2lim supsup ( , ) 0.
V HCs t R D

U t t s



  

                                                                                                              (4.26) 

  Let us now proceed with the other term. Let us fix 0 , ,Dt R s T D   and denote 

                0 0 0( ) ( ; , ), ( ) ( ; , ), ,u t u t t s v t v t t s t t s r                                                                                        (4.27) 

and 

                      0( ) ( ) ( ) ( , ), .tF t g u f x h t u t t s                                                                                                       (4.28) 

By 3( )G , then 

                           ( ) ( ) ( ) .
H

h t C
F t g u f x L u                                                                                                     (4.29) 

From 4( )H , Sobolev imbedding theory and (4.14), there exists 9 9 0( , ) 0C C d   , such that 

                         2
9 1 0 10 0( ) ( ) , ,

m

hF t C f x L C t t 


                                                                                        (4.30) 

and from (4.15), then 

      
1

2 2 22 22
9 1 0 0 10 1 0 0

ˆ( ) ( ) , .
m m

h hF t C f x L d C L d t t s    
 

                                                           (4.31) 

  Let q v v  with
11

3 9 4
0 min , ,

4 2 2

mq mq  
       
  

, then multiplying (4.17) by  m
q  gives 
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                                        (4.32) 

In (4.32), by Holder inequality and Young's inequality, then 

                    2 22 2
102 ( ), ( ) ( ) ,m m mF t q F t q C q                                                                                    (4.33) 
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                                         (4.34) 

Setting 

       2 2 2 2 2
( ) 0,

q
m m m m q m

z t q u v q v                   
                                            (4.35) 

then substituting (4.33)-(4.34) into (4.43), we have 

            

   
 

2 2 22
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2 .

q
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q
m m m m

d
z t q u v
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C q u u u v

     

  


       

      
                                                                       (4.36) 

Therefore, by (3.31) and (4.36) for 0 t t s  , there exists 11 11 0( , , , , ) 0C C d q     , such that 

                        
2

10 11( ) ( ) ( ).md
z t z t C C u z t

dt
                                                                                                           (4.37) 

Noticing that 0( ) 0y t s  , and for (4.37) in 0 0[ , ]t s t , by lemma 2.4 and (3.3), we obtain 

                            0 12 12 0
ˆ( ) ( , , ),hz t C C L d                        (4.38) 

and 

              3 0
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2
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t

C
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                                                                               (4.39) 

Then, there exists
D DT T  such that, if

Ds T  , 

                            

2
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13 0 0( ) , , .t C
z t C e t R t t


                                                                                                            (4.40) 

Recall that 0( ) ( ; , )z t z t t s   , if we fix 0t t , take
Ds T and denote 0 Ds t t T    , we have, provided t  is large 

enough, that 

              

2
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0 0

2
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C
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                                                                              (4.41) 

In conclusion, there exists 0DT   such that for all t R , and
D Ds T T   , 

                           

2
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C

z t t s D 


                         (4.42) 

Denoting D̂ D DT T T r    , we have for all ˆ, , DD t R s T   , 

                        

2
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102
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                                                                                                (4.43) 

and, by repeating once more the same argument previously used, 
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for all ˆ, , DD t R s T   . 

This means that the ball 2

2
1 10

,

2
0,mH V V

C
B B



 
  

 
is a bounded set in 

2 ,mH V V which, in addition, is uniformly pullback 

absorbing for the family of operators 1( , )U . As 1B  is a bounded set in ,V HC , then there exists 1B
T r such that 

                              1

1 1
1( , ) , , ,

B
U t t s B B t R s T                                                                                                               (4.45) 

and, therefore, the bounded set 2

2

,mH V V
B C


 given by 

                               

1

2 1 1
1( , ) , 

Bt R s T

B U t t s B B
 

                                                                                                          (4.46) 

is uniformly pullback absorbing for 1( , )U in ,V HC . 

  By Ascoli-Arzela theorem, we can prove that 
2B  is compact, so 2( )B t B is a family of compact subsets in ,V HC , which 

is also uniformly pullback attracting for  ,U , and the proof has been completed. 
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