

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-2, February 2017

 18 www.erpublication.org

Abstract— The most prevalent technique for Natural

Language parsing is done by using pattern matching through

references to a database with the aid of grammatical structures

models. But the huge variety of linguistical syntax and semantics

mean that accurate real time analysis is very difficult. We have

analyzed several optimization techniques to reduce the search

time, space for finding an accurate parse of a sentence where

individual words can have multiple possible syntactic categories,

and categories and phrases can combine together in different

ways. This paper is a comprehensive study of algorithms that we

have considered, includes mechanisms for ordering that reduce

the search time & cost without loss of completeness or accuracy

as well as mechanisms that prune the space & time and may

result in eliminating valid parses or returning a suboptimal as

the best parse.

Index Terms— Search, Sorting Technique, data, natural

language processing, syntactic and Symantec analysis,

algorithms, parsing techniques.

I. INTRODUCTION

 The convolution and the sizes of the lexical databases and

associated grammatical rules contribute to most of the

behavior of Natural Language parsers. By increasing the sizes

of the database or including a more complex set of

grammatical rules (i.e. ‘chandassu’), the parser is able to

handle the parsing of more complex sentences (i.e. ‘poems’)
or is able to include more accurate information to the parsed

sentences, but the introduction of these results in a more

complex parsing procedure and the capability to compute for

more cases is necessary for the parser. Even without the

extended database or associated business rules (‘chandassu’),
parsing of long sentences or poems is often avoided due to the

extremely large amount of different possibilities in parsing the

sentence. To counteract the increase in the parse time form the

application of complex grammatical rules, we explore the

effects of applying search algorithms to a parser to reduce the

search space and hence enhance the parsing speed/time. To

measure the accuracy of the parse, we use a simple scoring

system derived from the probability that a particular structure

would exist. This scoring system does not always parse the

sentence correctly, but it provides a good indication of the

likeliness of the structure from a statistical point of view

based on its complexity. The purpose of the project is to

provide a faster way of parsing Telugu language poetry

without losing the effect of grammatical structures i.e.

chandassu, or the semantic and syntactic information that

have been applied to or extracted from the parser. These areas

being the key focus of most research done in NLP and will

continue to increase in complexity in the future. One such

 TVVV Prasad, Rayalaseema University Kurnool – 518 002, A.P., India

Raghu B Korrapati, Rayalaseema University Kurnool – 518 002, A.P.,

India

example is “Application of Searching & Sorting techniques

for Telugu Language Poetry”

II. PARSING

The parser we have used is the rule based probabilistic,

lexicalized combinatory, categorical grammar embedded

parser that incorporates both top-down and bottom-up search

strategy. In the pilot stage, the parser builds up a statistical

model of the grammatical structure by learning from a

manually parsed corpus, which is used to assign the possible

categories (‘chandassu’), weightage and the probabilities of

the particular chandassu for a word, and also the probabilities

associated with the actual combination of two structures. The

CGE (Categorical grammar embedded i.e. ‘chandassu’)
incorporated in the parser defines the rules and methods used

in the combination stage of the parser, and implements an

extended set of the standard CGE combinatory ‘chandassu’
that makes the grammar more flexible. The nature in which a

combination occurs is very much like using the link grammar

rules to combine between the different states. Intelligent CGE

parser is used to find grammar (‘Chandassu’) of a given poem
and enables right prediction of words, while building a new

poem in Telugu literature. The key steps in this algorithm

include – Parsing, building a lexicon, syntactic analysis, with

the help of predefined rule base, determine ‘chandassu
(grammar) of a given poem. It also, builds a lexicon of all the

words derived from a poem. The parsing techniques include

leveraging statistical techniques to help the poet in finding an

appropriate grammar associated with the poem, while

composing a new poem. An intelligent hashing function is

used for faster searching. These techniques and algorithms

will enable linguists to analyze or study the ancient Telugu

language structure or any natural language processing.

III. OPTIMAL SEARCH

The major goal of this project was to explore alternative

standard and novel algorithms that were appropriate to the

NLP task and could relatively easily be slotted into the

existing lexical & CGE parser framework. The kind of

algorithms and optimizations that are reasonable is tightly

constrained by the nature of the CGE ‘Chandassu’ model for

Telugu poetry and the associated intelligent NLP parser

implementation. Another major constraint of the algorithm is

one that is often ignored, which is the overhead in the

execution of the algorithms. This factor plays an equally

important role in the search problem, but has often been

ignored due to the increase in the hardware performance rate.

The algorithmic design was modularized, so that an easy

switching of the algorithm could be done with a uniform

interface to the rest of the original parser. This meant that the

algorithm relied on some of the existing structure of the

parser, which was the cause of some limitations in the

Application of Search & Sorting Techniques – in

Natural Language Processing

TVVV Prasad, Raghu B Korrapati

Application of Search & Sorting Techniques – in Natural Language Processing

 19 www.erpublication.org

algorithms and is an area that could be modified in the future

to further increase the efficiency of the parser by adding the

grammar associated with any natural language for processing.

A. Design Approach

To apply the ranked weightage ordering, the list was

maintained in a sorted manner by their probability scores and

the pointer simply moved along the list, as more words were

used to combine with other words. The state being pointed to

by the pointer, which was the state being used to combine with

other words of higher scores, was called the pivot state. By

combining the pivot state with states of higher scores, the

algorithm guaranteed that resulting state of the combination

would be equal or lower scored than the pivot state. This

allowed for a simple algorithm for maintaining the ordered

list. In the initial phase, we determine the ‘Chandassu
(grammar)’ for a given input (i.e. given Telugu poem). We

will parse the inbound data feed, calculate the complexity of

the word and store it in the Lexicon. A letter code is assigned

based on complexity - simple with ‘S’, medium with ‘M’, and
complex with ‘C’. And the syntactical analysis will be

conducted simultaneously for the same feed based on the

predefined set of business rules, whereas the syntax for the

parsed string can be generated from the rules database. The

rules database has been designed by using the set of rules

based out of ‘Telugu’ grammar. The notation is similar to the

one used to generate the grammar (i.e. chandassu) for a given

poem in Telugu literature and the underlying data structure

example model is defined below.

B. Hashing & Predictive Analytic Techniques

Upon analyzing and implementing the above mentioned

design approach & following algorithms for parsing and

improving search time, we determine the predictability of

words to construct a poem with an appropriate Chandassu.

Predictability of the words is achieved with the help of

predictive techniques that encompass a variety of statistical

techniques to analyze and to pick up the appropriate word to

construct a poem. By using the Sequential & Binary Search

technique, we search the words with appropriate chandassu

from the lexicon and will be made available for the user to

select the suitable word. Following is the sequential search

structure that was embedded in the application design.

Here, we have used a hash map (i.e. a data structure) that uses

a hash function to map identifying values, known as keys,

(e.g., a poem pattern) to their associated values (e.g., their

respective VRUTTA). The hash function is used to transform

the key into the index (the hash) of an array element

(the slot or bucket) where the corresponding value is to be

sought. Here, we will derive the Chandassu of each word and

will store the same in the Lexicon by using a predefined data

structure i.e. data structure will contain the word, Chandassu,

Unicode, VRUTTA’s and word complexity. As and when a
given input matches to any of the predefined VRUTTAS i.e.

‘U’, ‘C’, ‘S’ & ‘M’, we’ll retrieve the same from the Lexicon

and will populate it on the screen to help the user. And the

same has been represented in the below data structure with an

example as well. Below is the Hash map function structure,

data structure that interprets the word complexity and

predictive word data structures.

Word Complexity Data Structure

Complexity Simple Medium Complex

Word – U I I S M C

Predictive Word Data Structure

Word Chandassu

evvani U I I

Unicode

ఎవ్వని

U C S M Complexity

1 0 0 0 M

Pre-Optimization

Once the rules database is formed, we need to update the

generated syntax into the words database formed using the

lexicon. The next step would be to generate the Unicode for

the grammar. Here, in this step if an error occurs in the syntax,

then the error will be sent to the error log. The ranking

weightage algorithm is essentially embodied by the following

pseudo-code:

1. Populate the list with grammar for every letter in

the word.

2. Sort the list by their probability scores.

3. Set pointer at the first word in the list.

4. While the list contains un-combined words

5. Set pivot as the next most probable word.

6. Return if pivot state is a terminal state.

7. Combine pivot with all adjacent words with

higher probability.

8. Insertion sort all newly created words or states in

to the list.

9. Return failure

With the application of this ordering, the algorithm allowed

for early termination of the search, since the newly created

words (being of equal or lesser probability) must be inserted

below the pivot state due to the cascading effect of the product

of the probability. Any terminal state found later would have a

lower probability than the first one that was found, so the

algorithm guarantees the retrieval of the most probable state

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Array_data_type

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-2, February 2017

 20 www.erpublication.org

without having to exhaustively search all possible

combinations.

Post Optimization

 By only using a single list to maintain all possible derivation

of the words, traversals and maintenance of the ordering of the

list used up a lot of valuable time. To counteract this, we

re-introduce a charting behavior as the second improvement

to the algorithm. We implemented a table, called the indexed

table, in which all the words or lines of the poem that were in

the used section were placed, rather than keeping them in the

same list. The table also grouped together the words that

occupied the same starting and ending positions, to simplify

the decision process in determining which words were

adjacent to the pivot state. The ranked weightage list was

replaced by a table, which we called the sorted table that

handled the push and pop manipulations to simplify and to

modularize the algorithm for future use. The third major step

involved the use of a critical score, which is the score of the

currently most probable terminal state in the sorted table. By

not operating on states that are going to produce a lower

probability than the critical score, it allowed for a large

pruning of the search tree, weeding out states with very low

probability that would not contribute to the most probable

terminal state. The algorithm also provides a pre-processing

stage before a combination between states took place, which

contributed to a little overhead, but managed to cut down the

amount of unnecessary combinations and avoided the lengthy

combination stage of two words. The experimental tree-climb

algorithm used here shows an impressive parse time and huge

reduction in the search space & time, but has slight

inaccuracies parse compared to the other algorithms, which

can be seen in Table 1

 Exhaustive Optimal Sub-Optimal

Pre-Implementation %

Parse Time 100 15.2 1.7

Search Time 100 4.9 0.3

Most probable 100 100 84

Post

Implementation %

Parse Time 100 10.4 0.7

Search Time 100 2.1 0.1

Most probable 100 100 66.7

 Table 1: Statistics of parsing of the optimal and suboptimal

algorithms for both Pre and Post Optimization.

The parse time and the search space are represented as the

proportionality compared to the exhaustive algorithm and the

percentage that the algorithm retrieved the most probable

parse is indicated in the last row. The optimal algorithm is the

combined algorithm of all the algorithms that provided

benefits to the parsing speed without the loss of accuracy and

the suboptimal algorithm is the tree-climb algorithm, which

provided the fastest and also a reasonably accurate result from

all tested suboptimal algorithms. The optimal search

algorithm returns the most probable parse tree, but sometimes

varies in the tagging and bracketing of the parse due to the

cases when multiple parses have the same probability. The

tree-climb algorithm’s performance in the accuracy domain is
relatively poor, but some of the loss in the accuracy can be

recovered by altering the amount of states used in the seeding

stage. However, because the algorithm loses track of the

ranking of the words, the algorithm must exhaustively

combine all states to determine the most probable parse.

On Pre & Post optimization comparison, it is fairly easy to

see the improvements of the developed algorithms, but for

the task of NLP, it is probably more important to look at a per

sentence comparison, especially if it is in an environment

where human interaction is required. Figure 1 indicates the

relationship between the parsing time and the number of

words in the sentence for the exhaustive, optimal and the

suboptimal search algorithms. There is a huge reduction in

the parse time from the algorithm with the optimal algorithm,

and an even greater reduction from the suboptimal algorithm

Figure 1: Number of words in the sentence versus parsing

time on the post optimization for the exhaustive, optimal and

the suboptimal algorithm.

Context Based Search

The goal of a context-based search implementation (or

disambiguation) process is to find the most relevant search

result(s), T, given a main source query term, S, with the help

of L/R contexts. Intuitively, S and T tend to be a relevant

query-answer pair if many contexts are “matched”. The target

object, T*, with highest matching score (or probability) will

be the most possible target that S is referring to in the contexts

of <Ls, Rs>.

The degree of matching can be measured in terms of different

“matching strength” or “matching score” contributed by the

contexts. Normally, exact string match between two terms in

S/T or L/R contexts, such as “the Big Apple” vs. “the Big
Apple”, has the strongest match. But it is least robust since
S/T/L/R might be described in terms of other synonymous

form. Partial or fuzzy match, like “Big Apple” vs. “the Big
Apple”, provides some flexibility for matching. But it may
also introduce noise such as matching “the Big Apple” against
“Big Apple Pie”. The most robust and flexible way for
matching S/T and L/R contexts might be to assign a higher

matching score to a term pair if they are known to be

synonyms or highly related terms in the ontology. The idea

behind the current work is an extension of the thoughts

explained in the above research work areas. In the work

presented here, instead of using just a dictionary based search,

the search is conducted using the Meta data, a comprehensive

rule base, which will generate the result.

SYSTEM OUTPUTS

The following snapshots interpret the various steps of the

process involved in this application.

Application of Search & Sorting Techniques – in Natural Language Processing

 21 www.erpublication.org

Fig 1: Poem in Native Language (‘Telugu’)

Fig 2: Transliterated form of the Poem

Fig 3: Poetic Pattern

Fig 4: Poetic Analysis – Grammar Display

In the age of smart devices, the need for systems to be

accessible everywhere as well as at all the times is considered

and the application is delivered to meet these high-availability

and high-accessibility needs.

IV. SYSTEM IMPLEMENTATION

The system is implemented using Natural Language

Processing techniques. A knowledge base is created and is

dynamically updated based on the input database. A heuristic

searching and sorting technique is applied using hashing

technique to implement system performance.

This system can run on industry standard cloud based

platforms like Microsoft Azure, Amazon cloud (AWS) etc.

V. CONCLUSION AND SUMMARY

This paper describes the sorting and search techniques for an

application in natural language processing. Unlike most

modern search algorithms that take advantage of the

continuously increasing processing power of the modern day

computers and hence lose elegance in the search technique,

the developed search algorithm allows for the retrieval of the

best possible solution in a very efficient manner while also

taking into account of the overheads involved in execution of

the algorithm. The implementation of the algorithm as the

searching mechanism to find the most probable parse for the

target parser has dramatically reduced the parsing time

required to retrieve the same result as an exhaustive search

mechanism. The characteristics of the algorithm has the

potential to be converted into a simple chunk parser, which is

sometimes enough to extract the relevant grammar

‘chandassu’ from the sentences. The proposed algorithm

encourages the quick build-up of sub-parses, rather than the

linear build-up algorithm of the exhaustive algorithms, hence

the order in which the combination occurs allows for the

splitting of the sentence into sections or chunks by early

termination of the algorithm.

An example along with sample screen shots is presented for

reference. Further study includes algorithm analysis in terms

of complexity and system performance aspects, applicability

to other forms of Telugu poetry like prose, sonnets etc., and

applicability to other languages in the world such as

‘Sanskrit’, to analyze morphological and linguistic aspects.
Similar concepts can be extended to business applications

such as “Compliance and Regulatory” needs of an enterprise,

legal processing systems, product behavior, consumer

behavior, etc.

REFERENCES

[1] Krishna, N. S., & Murthy, H. A. (2004, October). A new prosodic

phrasing model for Indian language Telugu. In INTERSPEECH.

[2] Madhavi Ganapathiraju and Lori Levin, 2006, TelMore:

Morphological Generator for Telugu Nouns and Verbs. Proc.

Second International Conference on Universal Digital Library, Vol

Alexandria, Egypt, Nov 17-19, 2006.

[3] Takeshi Matsumoto, David M.W.Powers & Geoff Jarad -

Application of Search algorithms to NLP

[4] S. Rajendran, Ph.D. August 2006, PARSING IN TAMIL

–PRESENT STATE OF ART –LANGUAGE IN

 INDIA, Strength for Today and Bright Hope for

 Tomorrow, Volume 6 : 8

[5] ‘Andhra Mahabhagavatamu’ – Bammera Pothana, Potti Sreeramulu

Telugu University Press.

AUTHOR PROFILE

 TVVV Prasad has received the M.Tech degree in Computer Science and

Technology from Andhra University in Visakhapatnam. He has done

Executive Leadership Program at Ross Business School, University of

Michigan, USA. He has worked for Multinational Companies such as Tata

Consultancy Services, Motorola and has more than 25 years of experience in

implementing computer based solutions. He is now a Research Scholar at

Rayalaseema University. He has participated several international

conferences in knowledge based computing and business excellence.

