

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-7, Issue-10, October 2017

 32 www.erpublication.org


Abstract— Designing an efficient Distributed Database

System (DDBS) is considered as one of the most challenging

problems because of multiple interdependent factors which are

affecting its performance. Allocation and fragmentation are two

processes which their efficiency and correctness influence the

performance of DDBS. Therefore, efficient data fragmentation

and allocation of fragments across the network sites are

considered as an important research area in distributed

database design. In this paper presents an approach which

simultaneously fragments data vertically and allocates the

fragments to appropriate sites across the network. Bond Energy

Algorithm (BEA) is applied with a better affinity measure that

improves the generated clusters of attributes.

Index Terms— BEA, Fragmentation, Distributed Database

System, Slop Based Partitioning Algorithm.

I. INTRODUCTION

 In distributed computing environments, each unit of data
(item) which is accessed at the station, (site) is not usually a
relationship but part of the relationship. Therefore, to
optimize the performance of the query, the relations of global
schema are fragmented into items.
The primary concern of distributed database systems is to

design the fragmentation and allocation of the underlying
database. The distribution design involves making decisions
on the fragmentation and placement of data across the sites of
a computer network. The first phase of the distribution design
in a top-down approach is the fragmentation phase, which is
the process of clustering into fragments the information
accessed simultaneously by applications. The fragmentation
phase is then followed by the allocation phase, which handles
the physical storage of the generated fragments among the
nodes of a computer network, and the replication of
fragments.
A Distributed database [1] is a database that is under the
control of a central database management system (DBMS) in
which storage devices are not all attached to a common CPU.
It may be stored in multiple computer located in the same
physical location, or may be dispersed over a network of
interconnected computers. There are multiple sites

(computers) in a distributed database so if one site fails then
system will not be useless, because other sites can do their job
because same copy of data is installed on every location

 Sunil Kumar Verma, Asst. Professor (Sr. Scale), Department Of

Computer Science & Engineering, Feroze Gandhi Institute of Engineering&
Technology Raebareli UP

Dr. Neelendra Badal, Associate Professor, Department Of Computer
Science & Engineering, Kamala Nehru Institute of Engineering &
Technology Sultanpur UP

II. RELATED WORK

Most of the vertical splitting algorithms have started from
constructing an attribute affinity matrix from the attribute
usage matrix: the Attribute affinity matrix is an m x m matrix
for the m-attribute problem whose (i, j) element equals the
“between attributes” affinity which is the total number of
accesses of transactions referencing both attributes i and j. An

iterative binary partitioning method has been used in [8] and
[5] based on first clustering the attributes and then applying
empirical objective functions or mathematical cost functions
to perform the fragmentation. The concept of using
fragmentation of data as a means of improving the
performance of a database management system has often
appeared in the literature on file design and optimization.
Attribute partitioning and attribute clustering have been
studied earlier by [4], [3], [6], [8], [9] has discussed the
implementation of a self-reorganizing database management
system that carries out attribute clustering. They also show
that in a database management system where storage cost is
low compared to the cost of accessing the sub files, it is
beneficial to cluster the attributes, since the increase in
storage cost will be more than offset by the saving in access
cost. Hoffer [6] developed a non-linear, zero-one program,

which minimizes a linear combination of storage, retrieval
and update costs, with capacity constraints for each file.
Navathe et al [8] used a two-step approach for vertical
partitioning. In the first step, they used the given input
parameters in the form of an attribute usage matrix to
construct the attribute affinity matrix on which clustering is
performed. After clustering, an empirical objective function is
used to perform iterative binary partitioning. In the second
step, estimated cost factors reflecting the physical
environment of fragment storage are considered for further
refinement of the partitioning scheme. Cornell and Yu [5]
proposed an algorithm, as an extension of Navathe et al [8]
approach, which decreases the number of disk accesses to
obtain an optimal binary partitioning. This algorithm uses
specific physical factors such as number of attributes, their
length and selectivity, cardinality of the relation etc.

Navathe and Ra have developed a new algorithm based on a
graphical technique [7]. This algorithm starts from the
attribute affinity matrix by considering it as a complete graph
called the “affinity graph” in which an edge value represents
the affinity 1-4244-1364-8/07/$25.00 ©2007 IEEE between
the two attributes, and then forms a linearly connected
spanning tree. The algorithm generates all meaningful
fragments in single iteration by considering a cycle as a
fragment. A linearly connected tree has only two ends. By a
“linearly connected tree” we imply a tree that is constructed
by including one edge at a time such that only edges at the

A Novel Approach for Multiple Vertical
Fragmentations of Datasets Using Affinity Matrix in

Distributed Environment: A Survey

Sunil Kumar Verma, Dr. Neelendra Badal

A Novel Approach for Multiple Vertical Fragmentations of Datasets Using Affinity Matrix in Distributed

Environment: A Survey

 33 www.erpublication.org

“first” and the “last” node of the tree would be considered for
inclusion. We then form “affinity cycles” in this spanning tree
by including the edges of high affinity value around the nodes

and “growing” these cycles as large as possible. After the
cycles are formed, partitions are easily generated by cutting
the cycles apart along “cut-edges”. In this paper we will use an
algorithm to cluster the database i.e. Bond Energy Algorithm
(BEA). And use these cluster affinity as input to find final
fragments using PARTITION algorithm. Then using
prototypes we reach to the goal of reducing response time of
query using fragmentation and show the mathematical result
for proof.

III. DDBMS

The design of a distributed database system involves making
decisions on the architecture of DDBMS . Two major
strategies proposed by Ceri and pelagatti for designing
distributed databases are : top-down approach and bottom-up
approach. In the case of tightly integrated distributed database

design proceed stop-down form requirements analysis and
logical design of the global database to physical design of
each local database. In the case of distributed multi database
systems, the design process is bottom-up and involves the
integration of exiting databases. But real applications are
rarely simple enough to fit nicely in either of these
approaches. The two approaches may need to be applied
together to complement each other.

A. Top-down Approach

In the top-down approach, the process starts with a
requirement Analysis that defines the environment to the
system and elicits both the data and processing needs of all
potential database users [8]. The requirements analysis also
specifies where the final system is expected to stand with
respect to the objectives of the DDBMS. The objective is

defined with respect to performance, reliability and
availability, economics, and expandability (flexibility).The
requirement documents are the inputs to two parallel
activities: view design and Conceptual design. The outputs of
view design are the user, and the output of conceptual design
is entity types and relationship types which are used to
construct an externals schema.

B. Bottom-Up Approach

The top-down design is suitable for the systems which are
developed from scratch. But when the distributed data base is
developed as the aggregation of exiting databases, it is not
easy to follow the top-down approach. The bottom-up
approach, which starts with individual local conceptual
schemata, is more suitable for this environment explained
that the bottom-up approach is based on the integration of
existing schemata into a single, global schema. Integration is

the process of the merging of common data definitions and the
resolution of conflicts among different representation that are
given to the same data. The global conceptual schema is the
product of the process concluded that there are three
requirements for bottom-up design.
1. The selection of a common database model for describing
the global schema of the database.
2. The transaction of each local schema into the common data
model.
 3. The integration of the local schema into a common global
schema.

IV. BACKGROUND OF SPLITTING ALGORITHM

Today, mostly centralized databases are used to store and
manage data [11]. They carry the advantages of high degree

of security, concurrency, backup and recovery control.
However, they also have the disadvantages of high
communication costs (when the client is far away and
communication is very frequent in between the client &
server), unavailability in case of system failure and a single
source bottleneck [3].
Research conducted in 1991 for distributed databases
predicted a huge shift from traditional databases to distributed
databases in the coming arena, due to organizational needs to
manage huge amounts of data [11]
The telecommunication sector also wants to embrace this
technology of data distribution. But before distribution of
data, fragmentation is a very important and critical task that
needs to be done.
Most of the telecom industries are using centralized technique
in storage of their database. Centralized database has its

disadvantage of high communication cost. Some data is
unavailable due to problem in server. To resolve these issues
we are moving from centralized database to distribution of the
database.

V. DATABASE FRAGMENTATION

Multiple Vertical fragmentation schemes is being described.
Further this chapter is going to describe the clustering method
to make the cluster of attributes of a database table. In this
chapter Bond Energy Algorithm (BEA) is going to be used for
clustering of attributes. Further a new algorithm is being
described for fragmentation of clusters of attributes of
database table. Vertical partitioning is used during design of a
database to enhance the performance of query execution. In
order to obtain improved performance, fragments must
closely match the requirements of the query workload.

Vertical partitioning involves splitting the relations along the
columns into partitions all having equal number of rows. Each
partition now acts as a separate relation but we preserve the
row ordering in all the partitions as it was in the original
relation. It should be noted that each partition may contain
more than one column. However, when columns in multiple
partitions are accessed instead of join we just need to do
pasting of columns.

The advantages of multiple vertical partitioning are as
follows: If query involves only few columns then we avoid
unnecessary fetching of other columns. This saves the I/O
bandwidth and avoids unnecessary processing. Moreover
data in a column belongs to the same domain e.g., values in
salary column will be numeric within some range. This
similarity in data can be well exploited by compression
algorithms and better compression ratios can be achieved.

The data under consideration is of the order of
terabytes. Since the data is large enough to be handled by
traditional relational database system we resort to file
system for storage. Each partition as described above is
stored as a separate file. Since the row ordering is
maintained we do not store the row identifiers in the file.
The meta data stores information regarding the partitions of
a given relation such as number of partitions, columns in
each.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-7, Issue-10, October 2017

 34 www.erpublication.org

Vertical fragmentation: Subsets of attributes (that is,
columns) form the fragments. Rows of the fragments that
correspond to each other have to be linked by a tuple

identifier. A vertical fragmentation corresponds to projection
operations on the table. [2]

 Horizontal fragmentation: Subsets of tuples (that is, rows)
form the fragments. A horizontal fragmentation can be
expressed by a selection condition on the table.

 Derived fragmentation: A given horizontal fragmentation
on a primary table (the primary fragmentation) induces a
horizontal fragmentation of another table based on the semi
join with the primary table.
In this case, the primary and derived fragments with matching
values for the join attributes can be stored on the same server;
this improves efficiency of a join on the primary and the
derived fragments.

The following three properties are considered the important
correctness properties of a fragmentation:

Completeness: No data should be lost during fragmentation.
For vertical fragmentation, each column can be found in some
fragment; in horizontal fragmentation each row can be found
in a fragment.

Reconstructability: Data from the fragments can be
recombined to result in the original data set. For vertical
fragmentation, the join operator is used on the tuple identifier
to link the columns from the fragments; in horizontal
fragmentation, the union operator is used on the rows coming
from the fragments.

 Non-redundancy: To avoid duplicate storage of data, data

should be uniquely assigned to one fragment. In vertical
fragmentation, each column is contained in only one fragment
(except for the tuple identifier that links the fragments); in
horizontal fragmentation, each row is contained in only one
fragment.

In this paper we will compute semantically-guided multiple
vertical fragmentations of a primary table. Each of these
fragmentations will be based on clustering an attribute for
which values should be relaxed to allow for flexible query
answering. In contrast to the conventional applications of
fragmentation, the clustering-based fragmentations will
support flexible query answering in an efficient manner.
Fragmentation and allocation are usually performed
separately while these two steps of Distributed DBMS design
are closely related to each other. The reason for separating the

distribution design into two steps is to better deal with the
complexity of the problem [12].
Here we present a method for VF, which applies BEA
hierarchically with a modified similarity measure and
simultaneously allocates the fragments to the most
appropriate site.

VI. METHODS

Bond Energy Algorithm (BEA) has been used for clustering
of entities. BEA finds an ordering of entities (in our case

attributes) such that the global affinity measure is maximized.

 The bond energy algorithm (BEA) was developed and

has been used in the database design area to

determine how to group data and how to physically

place data on a disk.

 It can be used to cluster attributes based on usage and

then perform logical or physical design accordingly.

With BEA, the affinity (bond) between database

attributes is based on common usage.

 This bond is used by the clustering algorithm as a

similarity measure. The actual measure counts the

number of times the two attributes are used together

in a given time. To find this, all common queries

must be identified.

 The idea is that attributes that are used together form

a cluster and should be stored together. In a

distributed database, each resulting cluster is called a

vertical fragment and may be stored at different sites

from other fragments.

Allocation and fragmentation are interdependent problems
where solving them simultaneously is difficult but results in
better performance of applications. To the best of our
knowledge, BEA is not applied to simultaneous
fragmentation and allocation.
Since in vertical partitioning attributes which are usually

accessed together are placed in one fragment, defining a
precise measure of togetherness is critical. BEA uses affinity
of attributes to create clusters of attributes, which are the most
similar.
It starts with Attribute Usage (AU) and Query Access (QA)
matrices generates Attribute Affinity matrix (AFF) and finally
creates Clustered Affinity matrix (CA) by positioning and
repositioning columns and rows of attributes. The affinity
measure is too simple.
The basic steps of this clustering algorithm are:

i. Create an attribute affinity matrix in which

each entry indicates the affinity between the

two associate attributes. The entries in the

similarity matrix are based on the

frequency of common usage of attribute

pairs.

ii. The BEA then converts this similarity matrix

to a BOND matrix in which the entries

represent a type of nearest neighbor

bonding based on probability of co-access.

The BEA algorithm rearranges rows or

columns so that similar attributes appear

close together in the matrix.

iii. Finally, the designer draws boxes around

regions in the matrix with high similarity.

A Novel Approach for Multiple Vertical Fragmentations of Datasets Using Affinity Matrix in Distributed

Environment: A Survey

 35 www.erpublication.org

The resulting matrix, modified from, is illustrated in Figure 1.
The two shaded boxes represent the attributes that have been
grouped together into two clusters.

Figure 1: Clustered Affinity Matrix for BEA

Two attributes Ai and Aj have a high affinity if they are
frequently used together in database applications. At the heart
of the BEA algorithm is the global affinity measure. Suppose
that a database schema consists of n attributes {A1, A2, , An}.
The global affinity measure, AM, is defined as

VII. CONCLUSION

Distributed databases reduce cost of update and retrieval of
information and increase performance and availability, but
the design of DDBMS is more complicated than designing
centralized database. One of the major challenges which
greatly affect DDBS performance is fragmentation and

allocation of fragments to sites. Fragmentation can logically
be merged and done simultaneously. In this paper we
proposed a method that merges vertical fragmentation. To
achieve this goal we applied Bond Energy Algorithm with a
modified affinity measure in a hierarchical process and
simultaneously calculated the cost of data allocation for each
site and assigned fragment to the appropriate site. The use of
the hierarchical process resulted in clustering sets of more
similar attributes and better data fragmentation. On the other
hand, by performing simultaneous cost calculation we took
interdependency of data fragmentation and allocation into
account.
An extension to the work could cover optimizing the cost
function for data allocation considering the retrieval and
update frequency for each attribute and applying better
approach to calculate weights for similarity measure.

REFERENCES

[1] Ceri, S. and Pelagatti, G. Distributed DatabasesPrinciples and Systems.
NY, McGraw Hill, 1984. .

[2] Ezeife, C. I. and Barker, K. Vertical Class Fragmentation in a Distributed
Object Based Svstem. TR 94-03, Univ. of Manitoba DeRt. ofCbmputer
Science, 1993.

[3] H.o ffer. 1. A.. and Severance. D. G. The Use of Cluster Analysis in
Physical Database Design.In Proceedings of 1st VLDB Conference,
Mass., 1975.

[4] Karlapalem, K. and Li, 8. Partitioning Schemes for Object Oriented
Database. In 5th InternationalWorkshop on Research Issues on Data
Engineering: Distributed Object Management, 1995.

[5] Karlapalem, K., Li, 8. and Vieweg,, S. Method Induced Partitioning
Schemes in Object OrientedDatabases. In 16th intemational conference
on Distributed Computing System, Hong Kong, 1996.

[6] Karlapalem, K., Navathe, S. B. and Morsi, M. M.A. Issues in Distribution

design. of object-oriented databases, in Distributed Object
Management, Morgan Kaufmann Publishers, 1994.

[7] Lee, S. and Lim, H., Extension of Vertical Technical Conference on
Circuits/systems, Computers And Communications, Japan, 1997.

[8] Navathe, S. B., Ceri, S. Wiederhold, G. and Dou, J.Vertical partitioning
algorithms for database design.in ACM TODS 9(4), 1984.

[9] Farhi Marir, Yahiya Najjar, Mahmoud Y. AlFaress, Hassan I. Abdalla,
“An Enhanced Grouping Algorithm for Vertical Partitioning Problem in
DDBs.

[10] Wiederhold, G., and Dou, J.,“Vertical Partitioning Algorithms for
Database Design,” ACM Trans.on Database Systems, Vol. 9, No.4, Dec.
1984.

[11] Ashraf, Imran And Khokhar, A.S. 2010. Principles for Distributed
Databases in Telecom Environment., Sweden.

[12] M.T. Ozsu, P. Valduriez, Principles of Distributed Database Systems,
Alan Apt, New Jersey, 1999.

ABOUT THE AUTHOR

Sunil Kumar Verma Asst. Professor (Sr. Scale) Department Of

Computer Science & Engineering, Feroze Gandhi Institute of Engineering &
Technology Raebareli U.P. Sunil Kumar Verma is a Ph.D Scholar
Department of Computer Science & Engineering at Himalayan University
Itanagar Arunachal Pradesh(India. He has received Masters degree M.Tech
(Software System) , Department Of Computer Science & Engineering from
Birala Institute of Technology & Science (BITS) PILANI Rajasthan India
and he has received his Bachelor of Technology degree from Bundelkhand
Institute of Technology (BIET), Jhansi in Computer Science & Engineering
Pradesh(India) ,

 Dr. Neelendra Badal is an Associate Professor in the Department of

Computer Science & Engineering at Kamla Nehru Institute of Technology

(KNIT), Sultanpur (U.P), India. He received B.E. (1997) from Bundelkhand

Institute of Technology (BIET), Jhansi in Computer Science & Engineering,

M.E. (2001) in Communication, Control and Networking from Madhav

Institute of Technology and Science (MITS), Gwalior and PhD (2009) in

Computer Science & Engineering from Motilal Nehru National Institute of

Technology (MNNIT), Allahabad. He is Chartered Engineer (CE) from

Institution of Engineers (IE), India. He is a Life Member of IE, IETE, ISTE

and CSI-India. He has published about 60 papers in International/National

Journals, conferences and seminars. His research interests are Distributed

System, Parallel Processing, GIS, Data Warehouse & Data mining, Software

engineering and Networking

