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 
Abstract— We consider the learning processes in collective 

dynamics of optimization search.  The self-organizing behavior 

in meta-heuristic learning and the role of entropy are presented.    

A quantitative measure of the degree of self-organization as a 

function of coupling parameter is given through information 

measures.    Our assumption in this paper is that an abstract and 

generic model exists that unifies some population-based 

meta-heuristics.  The model system described here is a coupled 

map lattice which serves as a paradigm for the spatiotemporal 

behavior of coupled nonlinear systems.  The self-organization 

processes are investigated in the framework of coupled learning 

dynamics, which also governs the mechanisms underlying the 

learning processes.  This paper is mainly devoted to aspects of 

self-organization and evolution associated with these concepts.  

We have presented a way to analyze the mechanism of collective 

dynamics on the basis of the spatial KS entropy for the 

measurement of the transition from spatially disordered to 

ordered behavior. 

 
Index Terms— Meta-heuristic Optimization, Information 

Theory, Learning Dynamics, Self-organization 

I. INTRODUCTION 

  Systems are usually called complex when they have great 

number of elements that interact among each other in a 

complicated fashion, and among these elements there are 

probabilistic relations.  The processes of self-organization 

take place by the transformation of the existing relations and 

the rise of new relations between the elements of the system.  

Self-organization is characterized by the process in which the 

organization of complex systems is being created, reproduced 

or improved.  Self-organization is conditioned by the effects 

of nonlinearity and dissipation.  The onset of structures in the 

self-organization processes is a specific type of evolution: the 

evolution from disorder to order.  Like symmetry and 

asymmetry, the concepts of disorder and order complement 

each other, there is no sharp distinction between them.  The 

self-organizing processes can be considered as a form of 

transition into ordered states in complex dynamics.  

According to the Second Law of Thermodynamics, in 

equilibrium, any isolated system tends to achieve a state of 

maximum disorganization.  Entropy is quantitative measure 

of disorganization.  Following the traditional interpretation of 

entropy, it is disorder that is taken to be measured by entropy.  

The identification of entropy with disorder is related to the 

concept of information as a decrease in entropy.  A higher 

value of entropy results from a more even distribution for the 

probability density.  Entropy is evidently a good measure for 

disorder, and consequently some sort of inverse of entropy 

should be a measure for order.  The entropy decreases while 

the system becomes organized.  In this way the conclusion 

was derived that entropy is an appropriate measure for the  
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description of self-organization.  On the other hand, 

synchronization is a key concept to the understanding of 

self-organization phenomena occurring in the fields of two 

coupled oscillators.  The self-organizing principle underlying 

the collective behavior of coupled oscillators is that of 

synchronization or mutual entrainment.  As a result of this 

phenomenon the interacting subsystems demonstrate the 

tendency to oscillations with equal or rationally related 

frequencies.  Natural systems are often constituted by several 

nonlinear units connected in complex topologies.  It can be 

observed how natural complex systems are intrinsically 

adaptive and cooperative.  In particular, synchronization 

emerges as one of the main issues concerning adaptation and 

cooperation.  Coupled oscillators are spatiotemporal 

dynamical systems.  Large assemblies of oscillating elements 

can spontaneously evolve to a collective organization even if 

each element has a complex dynamical behavior.  In order to 

stress the specific role of cooperative, collective effects in the 

processes of self-organization, we consider global 

synchronization in lattice dynamical systems and propose a 

measure of the self-organizing process in this paper.  

II. GLOBALLY COUPLED LEARNING DYNAMICS 

 

The study of complex dynamical behavior in spatially 

extended systems is of interest in a wide variety of contexts.  

Spatiotemporal structures can arise when large numbers of 

dynamical elements are coupled.  As discrete analogs to 

coupled oscillators and partial differential equations, coupled 

map lattice have been attracted much attention in the study of 

spatiotemporal chaos and pattern formation as models of 

spatially extended systems.  Coupled map lattice (CML) 

systems, first introduced by Kaneko [1] are simple and 

popular models for studying spatial-temporal behavior of 

systems and seem to be gaining popularity as tools for 

modeling complex phenomena in physics, engineering, 

biology, chemistry, social sciences, economics, etc.  A 

coupled map lattice is an N-dimensional dynamical system of 

interconnected units where each unit evolves in time through 

a map or recurrence equation of the discrete form 

                    (1) 

where  denotes the field value (N-dimensional vector) at 

the indicated time k.  In the case of a globally coupled map, 

with a global coupling factor ε , the dynamics can be 

rewritten as 

      (2) 

where n and j are the labels of lattice sites ( ).  The term L 

indicates over how many neighbors we are averaging.  The 

local dynamics of coupled map lattice is giving by a nonlinear 

map and a coupling factor.  Kaneko proposes globally 

coupled map (GCM) systems.  GCM systems consist of 
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chaotic elements that are globally coupled.  He has 

investigated their dynamic behavior and information 

processing ability thoroughly [2].  The spatially extended 

nature of the system permits the appearance of complex 

spatiotemporal behavior.  Though CML models are idealized 

systems, they are sufficiently complex to be capable of 

capturing the essential features of the dynamics of the system, 

and at the same time have the advantage of being 

mathematically tractable and computationally efficient.  Due 

to the large number of degrees of freedom in such spatially 

extended systems, a variety of spatiotemporal phenomena, 

like synchronization, intermittency, and spatiotemporal chaos, 

are observed [1].  One of the most important and interesting 

modes which can arise in such systems is the mode 

corresponding to synchronized behavior, i.e., behavior in 

which evolution at each spatial location is identical with that 

at every other spatial location at any arbitrary instant of time.  

In this section we focus our attention on the interesting and 

widely observed phenomenon of synchronization, i.e., 

spatially homogeneous behavior in coupled systems and study 

this phenomenon in the context of synchronization in a 

coupled map lattice.   

One of the most studied versions of CML is the 

nearest-neighbor coupling case in one space dimension which 

can be given by 

))]1(()),1(()),(([))(()(1  ixfixfixfgixfix nnnnn 
where n is a discrete time step and i is a lattice point (i= 1, 2,…,  

N = system size).   

The function f(x) is a nonlinear mapping and the function g 

can, for instance, be chosen as the diffusive 

coupling ))((2))1(())1(( ixfixfixfg nnn  ,  

one-way coupling ))1(())((  ixfixfg nn
, or models 

with global coupling, 



N

j

n jxfg
1

))(( , and so on.   

A typical example is the following diffusively coupled model 

[9]: 

))]1(())1(([
2

))(()1()(1  ixfixfixfix nnnn

      (3) 

The model has been investigated as a prototype for chaos in 

spatially extended systems, including extensions to a 

high-dimensional lattice, a different choice of nonlinear 

function f(x), and different types of couplings.  Note that the 

equivalent dynamics to equation (1) is obtained by the 

transformation ))(()( ixfiy nn  ,  

)])1())1([
2

)()1(()(1  iyiyiyfiy nnnn

         (4) 

This form may be more familiar with researchers in artificial 

neural networks, if one chooses a sigmoid function (e.g., 

)tan( x ) as f(x) and the coupling term   depending on 

elements.  Such extended nonlinear dynamical systems are 

capable of irregular behavior such as spatiotemporal chaos as 

well as a variety of ordered and regular behavior in space and 

time.  They demonstrate a rich variety of self-oscillating 

regimes from simple regular to complex ones. This challenges 

to introduce a quantitative complexity criterion that allows 

evaluating the degree of order in such different regimes. 

 

Contrarily, we consider some population-based meta- 

heuristic optimization search models as one class of GCM 

systems. 

Particle swarm optimization (PSO) is a population-based 

evolutionary computation technique, and was originally 

developed by Kennedy and Eberhart [3].  It is inspired by 

social behavior among individuals.  These individuals, called 

particles, are moving through an n-dimensional search space, 

each particle represents a possible solution of the problem, 

and can remember the best position (so1ution) which they 

have reached.  All the particles can share their information 

about the search space, so there is a global best solution.  

Bat-inspired algorithm is an another meta-heuristic 

optimization algorithm developed by Xin-She Yang [4].  This 

bat algorithm is based on the echolocation behavior of 

microbats with varying pulse rates of emission and loudness.  

Furthermore, the firefly algorithm [5] is also a meta-heuristic 

algorithm, inspired by the flashing behavior of fireflies.  The 

primary purpose for a firefly's flash is to act as a signal system 

to attract other fireflies.  In firefly algorithm, the flashing light 

can be formulated in such a way that it is associated with the 

objective function to be optimized, which makes it possible to 

formulate the firefly algorithm.  Many other algorithms have 

been devised to improve its performances for the optimization 

problems.  Furthermore, to enrich the searching behavior and 

to avoid being trapped into local optimum, some 

meta-heuristic search algorithms intended to introduce 

chaotic dynamics and Levy flights into the algorithm are 

presented in our paper [6].  We proposed some synergistic 

approaches to meta-heuristic search optimization algorithms.  

Some new approaches to bat algorithm and firefly algorithm 

as the synergistic meta-heuristics are developed. 

 

Generally, the dynamics of move generations in these 

optimization search algorithms can all be rewritten as  

           (5) 

and can enable the analysis of their convergence behavior 

through GCM.  The meaning of these move generation 

models as the GCM lies in the variety of maps G.  The move 

generations of all these population-based meta-heuristic 

models are recognized to be one class of GCM systems.  The 

characteristic of the class is that the local solution is 

transformed by a nonlinear map and connected to other 

solutions through the control parameter of the map.  That is, in 

these models, the move generation that is a nonlinear 

transformation from  to   is decided by   

( ), at each discrete time n.  The model structure we have 

just described is abstract and generic.  This enables to make 

clear the involved mechanisms in the learning dynamics. 

III. A MEASURE OF SELF-ORGANIZING DYNAMICS 

The self-organizing learning processes in the collective 

dynamics of some population-based meta-heuristic 

optimization search described in Section Ⅱ are coupled map 

lattices which serve as a paradigm for the spatiotemporal 

behavior of coupled nonlinear systems.  A natural parameter 

for studying the self-organization of a system is the entropy.  

However, many forms of entropy have been identified: 

Information entropy, Kolmogorov entropy, etc.  How 

practical are these parameters in determining whether or not a 

system is spontaneously organizing?   Mutual information 

provides a measure of the quantitative changes in the 

synchronization of two coupled chaotic systems.  In this 

section, we propose to use the spatial Kolmogorov-Sinai (KS) 

entropy to quantify the degree of self-organization in lattice 
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dynamical systems.  In order to formulate a definition of the 

spatial KS entropy in spatially extended systems, the subspace 

Lyapunov spectrum and subspace KS entropy are defined as 

the following.   

A. Subspace Lyapunov spectrum and Subspace 

Kolmogorov-Sinai entropy 

 Lyapunov spectra [7] characterize how a small disturbance 

in tangential space is amplified or contracted.  In an 

N-dimensional dynamical system, there are N independent 

tangential vectors.  Corresponding to them there exist N 

eigenvalues, which form the spectrum.  In CML, Lyapunov 

spectra can be defined by the product of Jacobi matrices.  The 

logarithms of the eigenvalues of the product, divided by time 

steps n with the limit n give Lyapunov exponents [8].  

The exponents i  ordered from the largest to the smallest, 

give a spectrum.  Sum of the positive Lyapunov exponents 

give the amplification ratio of an N-dimensional tangential 

volume.  It is equal to KS entropy which quantifies the mean 

rate of information production in a system, or alternatively the 

mean rate of growth of uncertainty in a system subjected to 

small perturbations.  We take a 
SN -dimensional subsystem 

SNS  starting at any position j, subspace consisting of sites j, j 

+1,…, j+ 
SN -1, and define Lyapunov spectra at the subspace 

SNS .  The calculation of these subsystem exponents )(S

i  is in 

the same manner as usual Lyapunov exponents of the full 

system.  That is, given a N-dimensional dynamical system 

defined by a map NN
RRf : , the subspace Lyapunov 

exponents associated to the subspaces SS NNN
RR

  are 

defined by the logarithms of the eigenvalues of the matrix 
nn

N

Tn

NnN xfDxfD
SSS

2/1)])([)](([lim             (6) 

where n

N fD
S

 is the 
SS NN   diagonal block of the full 

Jacobian.  Here the amplification/contraction of small 

disturbances at the boundaries ( )1( jx and )( SNjx  ) 

is neglected.  Boundary effect comes in only through the 

motion of )( jx  and )1(  SNjx . 

From Pesin's formula, the sum of all positive Lyapunov 

exponents provides an estimate of KS entropy.  Therefore, 

subspace KS entropy 
)(S

KSh  is straight-forwardly defined by 

replacing Lyapunov spectra in equation (6) by the subspace 

Lyapunov spectra,  



0

)()(

)( S
i

S

i

S

KSh


            (7) 

B. Spatial Entropy Measurements of Collective Dynamics 

The Kolmogorov-Sinai entropy of a dynamical system 

measures the rate of information production per unit time.  

That is, it gives the amount of randomness in the system that is 

not explained by the defining equations.  Hence, the subspace 

KS entropies may be interpreted as a measure of the 

randomness that would be present if the two subsystems 
SNS  

and 
SNNS   were uncoupled.  The difference  

KS

NN

KS

N

KS hhh SS   )()(
 represents the effect of the coupling.  

For a N-dimensional dynamical system S with two subsystems 

SNS  and 
SNNS   , we define the spatial entropy )(S  for a 

measure of self-organizing dynamics as  

KS

NN

KS

N

KS

N

N

hhh
N

S SS

S

 


 )()(

1

1
)(              

 (8) 

where  KSh and 
)( SN

KSh  are the KS entropies for the system 

S and subsystem 
SNS , respectively.  

)( SNN

KSh


 denotes the 

subspace KS entropy of the complement of the subsystem 

SNS .  On the basis of the Lyapunov spectra, the KS entropies 

can be estimated.  The spatial entropy is similar to mutual 

information for a quantitative measure of the synchronization 

process between two chaotic systems.  )(S  provide a way of 

quantifying transition from disordered to ordered behavior in 

spatially extended systems. 

IV. PRELIMINARY SIMULATION RESULTS – CML AS AN 

EXAMPLE 

Similar to the mutual information analysis of the 

synchronization of two coupled nonlinear dynamical systems, 

we propose a quantitative measure of self-organizing 

dynamics for the transition from spatiotemporal nonlinear 

dynamics to synchronized nonlinear dynamics in complex 

systems as described in the previous section.  As an 

illustrative example of the application of spatial KS entropy in 

a simple system, we would like to demonstrate the spatial KS 

entropy behavior during self-organizing processes in a lattice 

dynamical system of N coupled, one-dimensional maps.  The 

lattice evolution is described by 

))]1(())1(([
2

))(()1()(1  ixfixfixfix nnnn

  

where )(ixn
 is the variable associated with the ith lattice at 

time n taking values in a suitably bounded phase space.  f(x) is 

the function describing the local dynamics, for which 

)1(mod2)( xxf  .  This map has the property that any initial 

condition on the interval [0, 1] will remain on that interval 

under the action of the map.  It is a chaotic dynamical system 

with positive KS entropy equal to ln 2 [9].  

In Figure 1 (a)-(d), scaled Lyapunov spectra are plotted with 

parameter values   = 0.25, 0.45, 0.55 and 0.75, respectively.  

For large set of model parameters, spatiotemporal chaos is 

found.  These spatially extended systems exhibit chaotic 

motion with a large number of positive Lyapunov exponents. 

Figure 2 shows the spatial entropy measurement )(S  as a 

function of the coupling parameter   for N = 100.  Starting 

from random initial conditions, at   = 0.25 and   = 0.45, 

the evolutions of the system are disorganized (Figure 3 (a) and 

(b)). Above 5.0 , the system becomes fully synchronized 

(Figure 3 (c) and (d) for  = 0.55 and  = 0.75, respectively), 

after a short transition period.  At this range, the system shows 

an organizational structure.  Systems that display this 

behavior are temporally chaotic, but spatially ordered or 

coherent. Here the coherence is of a particular type - the 

dynamics is the same or nearly so for long periods of time for 

all coupled subsystems or large regions of them.  Figure 3 

shows the overlapped time series of )(ixn
 for the first 200 

time steps.  The space-time behavior with different parameter  

values is illustrated in Figure 4. These transitions result in 

more ordered state and the decrease of entropy which points  

to self-organization.  We find that there is a range of coupling  
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strength for which synchronized nonlinear dynamics exists.  

Outside that range, synchronization breaks down and the 

system enters a regime of spatiotemporal nonlinear dynamics.  

The loss of synchronization is accompanied by spatially 

disordered behavior.   

These figures shows that synchronized nonlinear dynamical 

time series can be generated spontaneously in a spatially 

distributed system.  Synchronization is possible only within a 

range of coupling strength.  When synchronization breaks 

down we observe spatiotemporal nonlinear dynamics.  These 

results may have relevance in other areas of science where 

coupled nonlinear systems are used to model 

self-organization and spatiotemporal complexity. 

 

 
 

Fig.1. Scaled Lyapunov spectra for coupled map lattices, with 

(a) 25.0  (b) 45.0  (c) 55.0  (d) 75.0  

 

 

 
Fig.2. Spatial entropy measurement of self-organizing 

dynamics for a CML 

 

 
 

Fig.3. The overlaid time series of )(ixn
, 100,...,1i , with (a) 

25.0  (b) 45.0  (c) 55.0  (d) 75.0  

 

 
 

Fig.4. Spatiotemporal evolution of the coupled map lattice, 

with (a) 25.0  (b) 45.0  (c) 55.0  (d) 75.0  
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V. CONCLUSION 

From a consideration of population-based meta-heuristic 

optimization search model as a globally coupled map, we 

investigated the self-organizing learning dynamics.  In this 

paper, entropy is used for the analysis of complex dynamical 

behavior in the spatially extended systems.  The 

characterization of spatiotemporal behavior in such systems 

can provide insights into the complex behavior found in 

diverse systems.  We have tested it on some small instances of 

the coupled map lattice with promising results.  When 

organization does not take place, the most interesting 

phenomenon is the spatiotemporal nonlinear dynamics, in 

which nonlinear dynamical trends appear both in time and in 

space.  We have presented a way to analyze the mechanism of 

self-organization on the basis of the spatial KS entropy for the 

measurement of the transition from spatially disordered to 

ordered behavior.  We think that insights gained from 

investigation into self-organizing learning dynamics in 

population-based meta-heuristic optimization will help in 

formulating similar coupled map lattice idea in more complex 

systems. 
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