

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-8, Issue-6, June 2018

 26 www.erpublication.org

�

Abstract² Searching refers to the process of finding a data

value within some given set of data values in the form of list or

array or any other form. Searching has obtained so much

concern on a global scale the reason being the increasing amount

of data day by day so there is a need to reduce the searching time

and thus we require efficient searching methodology. Taking the

binary search as a base for the searching technique goal is to

find a required element within an ordered list by making

comparisons. Size of list reduces after each iteration. This paper

proposes a new algorithm for searching. The main point of

difference is that it uses variable partitioning within the list for

the first three iterations and again start repeating the same

procedure. Binary Search can be improved by increasing the

number of sublists but doing so will increase the number of

comparisons thus not a good idea. The proposed algorithm

overcomes this drawback of breaking into more sublists by

variable partitioning.

Index Terms² Binary search, Better variable partition

I. INTRODUCTION

In computer science, searching within an ordered data

structure is a very common problem that has various variants

but we need to have one that can give best results with

minimum time and space complexity and the number of

sublists should also be less. Here we are taking binary search

as the base but not referring to quadratic search as it will

increase the number of sublists.

In binary search after placing the items in an array, they are

sorted either in ascending or descending order and then after

that compare key with the middle element if a match is found

then return immediately otherwise check whether the key is

lesser or greater than a middle element of the array. If the key

is less then repeat the same procedure on the first half of list

else on the second half of list.

A. Analysis Of Binary Search

Fig 1. Analysis of binary search

Arihant Jain, B.Tech, in Krishna Institute of Engineering and

Technology, Ghaziabad
Hriday Kumar Gupta, Asst. Professor in Krishna Institute of

Engineering and Technology, Ghaziabad

 The complexity of linear search is O(n).

After every iteration, the list is divided into 2 equal parts.

Therefore n items can be divided into two parts almost log2n

times. Hence, running time of binary search is O (log2 n).

Binary Search: If we calculate the size of the obtained list

after 3 iterations from binary search:

0.5*0.5*0.5=0.125

12.5% (13% approximately)

Hence, in every three iterations the list size is reduced to the

13% of the original.

B. Performance Graph Of Binary Search

F(n)

 n ->

 n: number of elements

Fig 2. Performance graph of binary search

 2 Linear Search

 3 Binary Search

II. PROPOSED ALGORITHM- T SEARCH

In the proposed algorithm after placing the items in an array,

they are sorted either in ascending or descending order and

then compare key with P1 and P2 position elements of the

array. If there is a match then return it immediately else check

whether the key is lesser or greater than P1 and P2 position

elements of the array. After this, we will get the sublist in

which key will lie and then repeat the same procedure on that

sublist. Here, same procedure refers to the process of finding

P1 and P2 again and then check in which sublist key will be

T-Search: An advancement of binary search

Arihant Jain, Hriday Kumar Gupta

T-Search: An advancement of binary search

 27 www.erpublication.org

present. As in this algorithm, we are using variable

partitioning in each and every iteration so basically, after

three sub-iterations the process repeats again. Every iteration

comprises three sub-iterations.

The first sub-iteration divides the list in the ratio as 25:50:25.

Second sub-iteration divides the list in the ratio as 35:30:35.

The third sub-iteration divides the list in the ratio as 45:10:45.

After performing these three sub-iterations we are done with

one iteration of the proposed algorithm. If till this step we are

unable to find the key then we will perform this procedure

again to get the position of the key.

Certain conditions used in the algorithm are given below:

 P1 = first + (25 + I) * (last ± first) / 100;

 P2 = first + last - p1;

Here,

FIRST: start index

LAST: end index

I: a parameter that varies partition with each iteration

A. Algorithm

int i=0;

TSearch (int FIRST, int LAST)

{

 if(FIRST <= LAST)

 {

 i=i+10;

 if(i==30)

 i=0;

int p1= FIRST + (25 + i) * (LAST ± FIRST) /100;

 int p2= FIRST + LAST -p1;

 if(a[p1]==x)

 {

 return p1;

 }

 else if(a[p2]==x)

 {

 return p2;

 }

 else if(x>a[p1] &&x<a[p2])

 {

 FIRST = p1+1;

 LAST=p2-1;

 return TSearch (FIRST,LAST);

 }

 else if(a[p1]>x)

 {

 LAST=p1-1;

 return TSearch (FIRST,LAST);

 }

 else if(a[p2]<x)

 {

 FIRST = p2+1;

 return TSearch (FIRST,LAST);

 }

 }

 return -1;

}

The function will return -1 if element not found and if the

element is found at P1 or P2 then it will return the index of the

key. The given Algorithm will check 3 conditions after

calculating P1, P2 when the key is not found at the P1 and P2

:

Condition 1: IF KEY is less than P2 and also greater than

P1.Then (P1 + 1) will become the FIRST and (P2 - 1) will

become the LAST and the procedure will be repeated for

sublist.

Condition 2: IF KEY is greater than P2. Then (P2+1) will

become the FIRST and then the procedure will be repeated for

sublist.

Condition 3: IF KEY is less than P1.Then (P1 -1) will

become the LAST procedure will be repeated for sublist.

B. T-Search Overview

T-Search Overview: In this algorithm, we proceed as

follows:

Step-1

 1 2 3

 25% 50% 25%

The only 1/3
rd

 probability of getting 50% part of the list in

worst case, while in Binary Search 50% of the list is always

obtained after partition.

Step-2

 1 2 3

 35% 30% 35%

Step-3

 1 2 3

 45% 10% 45%

Everytime partition % from start and end is increased by 10%

to 45% and then repeats from 25% again.

x We are given a list of sorted records.

x Given sorted list is divided into 3 sublists with the

variable partition.

T-Search: Considering worst case for obtaining maximum

possible list in three iterations so,

 50% , 35 % , 45% .

=0.50*0.35*0.45

=0.07875

=7.875 % (approximately 8 %)

x So, a total number of possible combinations of

dividing list are 3^3=27.

x After three iterations in t-search eight distinct

partitions are :-

25 * 35 * 45

25 * 35 * 10

25 * 30 * 45

25 * 30 * 10

50 * 35 * 45

50 * 35 * 10

50 * 30 * 45

50 * 30 * 10

x For 27 cases the result is reduced by 6.12 % in

comparison to equal ternary search which gives

3.9304% of list after 3 iterations.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-8, Issue-6, June 2018

 28 www.erpublication.org

C. Analysis Of T-Search

Fig 3. Analysis of T-search

D. Performance Graph Of T-Search

In worst case:

F(n)

 n Æ

 n: number of elements

Fig 4. Performance graph of T search

 Y = 3 log 12.69 (400 n / 63) - 2

In best case:

 F(n)

 n Æ

 n: number of elements

Fig 5. Performance graph of T search

 Y = 3 log 133.3 (n)

III. COMPARISON GRAPH OF LINEAR, BINARY, AND

T-SEARCH

This section will compare the performance of the linear,

binary, quadratic and t-search. The division of the list is

shown diagrammatically and the performance graph of all the

three approaches is also present. The performance is plotted

EHWZHHQ� 7LPH� ³� I�Q�´� DQG� D� number of elements. As the

number of elements is increased the time will decrease and it

will be clear to distinguish the difference of performance

among the Linear Search, Binary Search, the Quadratic

Search, and T-Search technique.

F(n)

 n Æ

n: number of elements

Fig 6. Comparison graph

1. Linear Search

2. Binary Search

3. T-search

IV. RESULTS AND DISCUSSION

We are using a sorted array of 5000 elements distributed

uniformly. Binary search and proposed algorithm are applied

to find the same element and result of approaches is shown

below along with a number of steps in comparison.

 ARRAY :

 INDEX:

 ��������������������«���������««�����������������������

 VALUE:

1 2 3 ««� «� 4999 5000

T-Search: An advancement of binary search

 29 www.erpublication.org

 Table 1: Search key = 2

Steps Binary T-Search

Initial Low=0 mid=2499

high=4999

Low=0 p1=1249

p2=3750 high=4999

1. Low=0 mid=1249

high=2498

Low=0 p1=436

p2=812 high=1248

2 Low=0 mid=624

high=1248

Low=0 p1=195

p2=240 high=435

3 Low=0 mid=311

high=623

Low=0 p1=48

p2=146 high=194

4 Low=0 mid=155

high=310

Low=0 p1=16

p2=31 high=47

5 Low=0 mid=77

high=154

Low=0 p1=6

p2=9 high=15

6 Low=0 mid=38

high=76

Low=0 p1=1

p2=4 high=5

7 Low=0 mid=18

high=37

8 Low=0 mid=8

high=17

9 Low=0 mid=3

high=7

10 Low=0 mid=1

high=2

Total: 10 6

 Table 2 : Search key = 4999

Steps Binary T-search

Initial Low=0 mid= 2499

high= 4999

Low= 0 p1= 1249

p2= 3750 high= 4999

1 Low=2500 mid=3749

high=4999

Low=3751 p1=4187

p2=4563 high=4999

2 Low=3750 mid=4374

high=4999

Low=4564 p1=4759

p2=4804 high=4999

3 Low=4375 mid=4687

high=4999

Low= 4805 p1=4853

p2=4951 high=4999

4 Low=4688 mid=4843

high=4999

Low=4952 p1=4968

p2=4983 high=4999

5 Low=4844 mid=4921

high=4999

Low= 4984 p1=4990

p2=4993 high=4999

6 Low=4922 mid=4960

high=4999

Low= 4994 p1=4995

p2=4998 high=4999

7 Low=4961 mid=4980

high=4999

8 Low=4981 mid=4990

high=4999

9 Low=4991 mid=4995

high=4999

10 Low=4996 mid=4997

high=4999

11 Low= 4998 mid=4999

high=4999

Total: 11 6

V. CONCLUSION

Here, in this paper, we present a new algorithm for searching

and had been implemented to search within the sorted linear

arrangement of items with worst-case complexity as

O(3log12.69(400n/63)±2). The technique that had been used to

implement this algorithm involves multiple splitting along

with variable partitioning. The performance graph for linear,

binary and t-search is also present along with their

comparison graph. Thus we see how efficient is to use this

algorithm it has minimum worst-case complexity. As we see it

has reduces the list to 7.8% in comparison to 12.5% in binary

search. Though it is true that in quadratic list reduces to

6.25% but the number of sublists is large which is a drawback

in the quadratic search algorithm. Hence, we are reducing list

keeping a number of sublists also minimum.

REFERENCES

[1] Quadratic Research Paper

International Journal of Computer Applications (0975 ± 8887) Volume

65± No.14, March 2013

[2] Binary Search Algorithm

https://en.wikipedia.org/wiki/Binary_search_algorithm

[3] Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clifford

Stein (2009).

Introduction To Algorithms, Third Edition. MIT Press

 Arihant Jain is a student in B.Tech, in Krishna Institute

of Engineering and Technology, Ghaziabad. He has done a lot of project in

Computer Science & Engineering field. He is a dedicated and compassionate

student committed to the field of research. He is the author of this Research

Paper.

 Hriday Kumar Gupta is an Asst. Professor in Krishna

Institute of Engineering and Technology, Ghaziabad. He is working in the

field of Computer Science & Applications.

