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Abstract— In the present work, using reference values 

for the hydration enthalpies for a series of mono, di, tri 

and tetra cations, as well as reference values for the 

lattice energies of a series of nono, di, tri and 

tetrahalides, it is shown that reliable lattice energies for 

such halides can be calculated by   UPOT = (ΔHhyd
+ + 

ΔHhyd
-), by UPOT = (ΔHhyd

+ + 2ΔHhyd
-), by UPOT = (ΔHhyd

+ 

+ 3ΔHhyd
-) or by UPOT = (ΔHhyd

+ + 4ΔHhyd
-) for mono, di, 

tri and tetrahalides, respectively. Linearized improved 

versions of such simply equations, parametrized in order 

to take into account factors such as dilution and entropic 

contributions, were also obtained.  Lattice energies for a 

series of halides and other salts are calculated by using 

the obtained empirical equations, providing results in 

very good agreement with literature reference values. 

Furthermore, a series of empirical equations were 

derived, relating several acid-base parameters with 

lattice energy.  It is shown that the cation and anion 

volumes (obtained by X-ray data), are very closely related 

with the cation and anion absolute hardness, that is, are 

very closely relates with the frontier (HOMO and LUMO) 

orbitals energies. 

Keywords— Lattice energies, hydration enthalpies, 

empirical equations. 

 

I. INTRODUCTION 

Lattice energy is a prominent parameter in chemistry, 

since it could be related with a series of properties of a 

given compound, such as solubility, melting point, etc. 

(Dasent, 1982). Furthermore, hydration enthalpy is one of 

the fundamental quantities for the thermodynamics of 

aqueous systems. 

Most recently, we have been developed an empirical 

equation to calculate the lattice energies for metal 

monohalides from average orbital electronegativities (de 

Farias, 2017).  

In the present work, are derives empirical equation that 

allows the calculation of lattice energies for +1, +2, +3 

and +4 salts (specially halides) based only on hydration 

enthalpies.   

 

II. METHODOLOGY, RESULTS AND 

DISCUSSION 

The up to date hydration enthalpies for group 1 

monocations and group 17 monoanions (Housecroft, 

2017) as well as the lattice energies (UPOT) to the 

respective halides (Glasser, 2000; Mu, 2000) are 

summarized in Table 1. As can be verified, the sum of 

cations and anion hydrations enthalpies are in very good 

agreement with the lattice energies for the respective 

metal halides. Taking into account the uncertainties that 

there are in both, UPOT and ΔHhyd values, such agreement 

is really quite good. Hence, the following equation can be 

derived: 

(  )POT hyd hydU H H                                 (1)                                                                                           

where ΔHhyd
+ and ΔHhyd

- are the hydration enthalpies of 

the respective cation and anion.  

 

Table.1: Hydration enthalpies (kJmol-1) for group 1 

monocations and group 17 monoanions, and lattice 

energies (kJmol-1) for group 1 halides. 

 -ΔHhyd
o ΔHhyd

+ + 

ΔHhyd
- 

UPOT (Ref.) Δ% 

Li+ 578.1    

Na+ 463.3    

K+ 380.3    

Rb+ 355.2    

Cs+ 330.6    

F- 463.7    

Cl- 319.5    

Br- 288.7    

I- 246.8    

LiF  1042 1030 +1.2 

LiCl  898 834 +7.7 

LiBr  867 788 +10.0 

LiI  825 730 +13.0 

NaF  927 910 +1.9 

NaCl  783 769 +1.8 

NaBr  752 732 +2.7 

NaI  710 682 +4.1 

KF  844 808 +4.6 

KCl  700 701 -0.1 
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KBr  669 671 -0.3 

KI  627 632 -0.8 

RbF  819 774 +5.8 

RbCl  675 680 -0.7 

RbBr  644 632 +1.9 

RbI  602 617 -2.4 

CsF  794 759 +4.6 

CsCl  650 670 -3.0 

CsBr  619 647 -4.3 

CsI  577 613 -5.9 

 

When lattice energy is plotted as a function of 

the sum of the respective cation and anion hydration 

enthalpies, the curve shown in Figure 1 (r = 0.9687) is 

obtained, from which the following empirical equation is 

derived: .   

 0.820   118.236( )POT hyd hydU H H         (2)                                                                          

Such phenomena (UPOT = ΔHhyd
+ + ΔHhyd

-) can 

be explained if we take into account that in the solid state 

(where cations are surrounded by anions and anions by 

cations, e.g. in a 6:6 environment, as in NaCl), or in 

solution (where both, cations and anions are surrounded 

by the solvent molecules), both, cations and anions are 

“looking for” (thermodynamic) stability .  

In these systems, stability means to interact with 

positive of negative species in order to equalize their 

electronic chemical potentials (Parr, 1978), and such 

stability is achieved by exothermic interactions, with the 

total amount of energy required by the cation (or by the 

anion) been the same, no matter if the interactions occurs 

with other anions (or cations) in the solid state or, as in a 

aqueous solutions, with the negative (or positive) poles of 

the solvent molecules.  

 
Fig. 1: Lattice energies for group 1 halides, as function of 

the sum of the hydration enthalpies to the respective 

cations and anions. 

 

The same procedures were repeated to group 2 

halides, and the respective data are summarized in Table 

2. The experimental hydration enthalpies for group 2 

dications are those provided by (Smith, 1977). The 

agreement between reference and lattice energies 

calculated by using the equation:  

   ( 2 )POT hyd hydU H H                                       (3)                                                                                                                                

are very good, as verified in Table 2 data, and Figure 2.                               

 

Table.2: Hydration enthalpies (kJmol-1) for group 2 

dications and group 17 monoanions, and lattice energies 

(kJmol-1) for group 2 halides. 

 -ΔHhyd
o ΔHhyd

2+ + 

2ΔHhyd
- 

UPOT (Ref.) Δ% 

Be2+ 2494    

Mg2+ 1921    

Ca2+ 1577    

Sr2+ 1443    

Ba2+ 1305    

F- 463.7    

Cl- 319.5    

Br- 288.7    

I- 246.8    

BeF2  3421 3526 -3.0 

BeCl2  3133 3033 +3.3 

BeBr2  3069 2914 +5.3 

BeI2  2988 2813 +6.2 

MgF2  2848 2978 -4.4 

MgCl2  2560 2540 +0.8 

MgBr2  2498 2451 +1.9 

MgI2  2415 2340 +3.2 

CaF2  2504 2651 -5.5 

CaCl2  2216 2271 -2.4 

CaBr2  2154 2134 +0.9 

CaI2  2071 2087 -0.8 

SrF2  2370 2513 -5.7 

SrCl2  2082 2170 -4.1 

SrBr2  2020 2040 -1.0 

SrI2  1937 1976 -2.0 

BaF2  2232 2373 -6.2 

BaCl2  1944 2069 -6.0 

BaBr2  1882 1995 -5.7 

BaI2  1799 1890 -4.8 
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Fig. 2: Lattice energies for group 2 halides, as function of 

the sum of the hydration enthalpies to the respective 

cations and (x 2) the hydration enthalpies to the anions. 

 

When lattice energy is plotted as a function of 

the sum of the respective cation and (plus 2) anion 

hydration enthalpies, the curve shown in Figure 2 (r = 

0.9775) is obtained, from which the following empirical 

equation is derived: 

 
2(  0.909  2   248.573)POT hyd hydU H H       (4)                                                                                            

The same procedures were repeated to group 

some halides, and the respective data are summarized in 

Table 3. The experimental hydration enthalpies for 

trications are those provided by (Smith, 1977). In Tables 

1-3, the UPOT values taken as references are those 

previously reported (Glasser, 2000; Mu, 2000).  

The agreement between reference and lattice 

enthalpies calculated by using the equation: 

   ( 3 )POT hyd hydU H H                                          

(5)                                                                                                                                       

is very good, as verified in Table 3 data.                               

 

Table.3: Hydration enthalpies (kJmol-1) for some 

trications and group 17 monoanions, and the lattice 

energies (kJmol-1) for the respective halides 

 -ΔHhyd
o ΔHhyd

3+ + 

3ΔHhyd
- 

UPOT (Ref.) Δ% 

Fe3+ 4430    

Al3+ 4665    

Ti3+ 4154    

Tl3+ 4105    

Cr3+ 4560    

Ga3+ 4700    

F- 463.7    

Cl- 319.5    

Br- 288.7    

I- 246.8    

FeCl3  5389 5436 -0.9 

AlF3  6056 6252 -3.1 

AlCl3  5624 5513 +2.3 

AlBr3  5531 5360 +3.2 

AlI3  5406 5227 +3.4 

TiF3  5545 5665 -2.1 

TiCl3  5113 5153 -0.8 

TiBr3  5020 5023 -0.1 

TiI3  4894 4971 -1.5 

TlF3  5496 5431 +1.2 

TlCl3  5064 5278 -4.1 

TlBr3  4971 5146 -3;4 

CrF3  5951 6065 -1.9 

CrCl3  5519 5529 -0.2 

CrI3  5300 5294 +0.1 

GaF3  6091 6238 -2.4 

GaCl3  5659 5665 -0.1 

GaBr3  5566 5569 -0.1 

GaI3  5440 5496 -1.0 

 

 
Fig. 3: Lattice energies for trication halides, as function 

of the sum of the hydration enthalpies to the respective 

cations and (x 3) the hydration enthalpies to the anions.   

 

When lattice energy is plotted as a function of 

the sum of the respective cation and (x 3) anion hydration 

enthalpies, the curve shown in Figure 3 (r = 0.9515) is 

obtained, from which the following empirical equation is 

derived:    

3  1  .012  3  30.211( )POT hyd hydU H H       (6)                                                                                                 

The same procedures were repeated to some +4 

cations halides, and the respective data are summarized in 

Table 4. The experimental hydration enthalpies for 

tetracations are those provided by (Smith, 1977).        

The agreement between reference and lattice 

enthalpies calculated by using the equation: 
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   ( 4 )POT hyd hydU H H                                       (7)                                                                                                                                              

is very good, as verified in Table 4 data.                               

 

Table.4: Hydration enthalpies (kJmol-1) for Zr4+ and Sn4+ 

and group 17 monoanions, and the lattice energies (kJmol -1) 

for the respective halides. 

 -ΔHhyd
o ΔHhyd

4+ + 

4ΔHhyd
- 

UPOT (Ref.) Δ% 

Zr4+ 6953    

Sn4+ 7591    

F- 463.7    

Cl- 319.5    

Br- 288.7    

I- 246.8    

ZrF4  8808 8971 -1.8 

ZrCl4  8231 8144 +1.1 

ZrBr4  8108 7984 +1.6 

ZrI4  7940 7801 -1.8 

SnCl4  8869 8930 -0.7 

SnBr4  8746 8852 -1.2 

 

 
Fig. 4. Lattice energies for tetracation halides, as 

function of the sum of the hydration enthalpies to the 

respective cations and (x 4) the hydration enthalpies to 

the anions. 

 

           When lattice energy is plotted as a function of the 

sum of the respective cation and (x 4) anion hydration 

enthalpies, the curve shown in Figure 4 (r = 0.9969) is 

obtained, from which the following empirical equation is 

derived: 
4(  1  .303  4   2566.765)POT hyd hydU H H             (8)                                                                                          

          Of course, Eq. (2), (4), (6) and (8) are improved 

versions of Eq. (1), (3), (5) and (7), and are parametrized 

in order to take into account factors such as dilution and 

entropic contributions (Persson, 2010; Hünenberger, 

2011). 

         In order to verify the reliability and general 

application of Eq.(1), (3) and (5), they were employed to 

calculate the lattice energies for a series of salts. Despite 

the fact that the equations were obtained based on data for 

halides, they were also applied to salts with another kind 

of anions. The employed auxiliary data and the obtained 

results are summarized in Table 5. Of course, is possible 

to apply the values calculated by Eq.(1), (3) and (5) in Eq. 

(2), (4) and (6) and obtain a new set of calculated values. 

 

Table.5: Calculated lattice energies (kJmol -1) for a series 

of salts, employing Eq. (1), (3) or (5). The reference 

hydration enthalpies and lattice energies are in kJmol -1. 
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 -ΔHhyd
o UPOT  

(Eq. 1, 3 or 5) 

UPOT (Ref.) Δ% 

Cu+ 593    

Ag+ 473    

Au+ 615    

Tl+ 326    

     

F- 463.7    

Cl- 319.5    

Br- 288.7    

I- 246.8    

S-2 1495    

     

CuF  1057 1088 -2.8 

CuCl  913 996 -8.3 

CuBr  882 978 -9.8 

CuI  840 966 -13.0 

AgF  937 974 -3.8 

AgCl  793 918 -13.6 

AgBr  762 905 -15.8 

AgI  720 892 -19.3 

AuCl  935 

(1144)a 

1066 -12.3 

(+7.3) 

AuBr  904 

(1106)a 

1059 -14.6 

(+4.4) 

AuI  862 

(1055)a 

1070 -19.4 

(-1.4) 

TlF  790 

(980)a 

920 

 

-14.1 

(+6.5) 

TlCl  646 

(801)a 

822 -21.4 

(-2.6) 

TlBr  615 

(763)a 

798 -22.9 

(-4.4) 

TlI  573 

(711)a 

762 -24.8 

(-6.7) 

     

Cu2+ 2100    

Mn2+ 1841    

Zn2+ 2046    

Cd2+ 1807    
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In Table 5, the experimental hydration enthalpies for 

cations are those provided by (Smith, 1977).  Except for 

F-, Cl-, Br- and I-, for which were used the values 

provided by Housecroft  (Housecroft, 2017), the 

hydration enthalpies for anions are those provided by 

(Smith, 1977).     

           As can be verified from Table 5 data, Eq. (1) 

works very well for CuF and AgF. However, as the anion 

hardness decreases, the agreement between calculated and 

reference values turns bad. This is a surprisingly result, 

since Cu+ and Ag+ are soft acids, and F- is hard base. For 

example, when applying average orbital 

electronegativities to calculated lattice energies (de 

Farias, 2017), it was verified (in agreement with HSAB 

theory) that the worst results were obtained, exactly, to 

CuF and AgF. 

On the other hand, for all copper (II) halides, Eq. 

(3) provides very good results. Hydrated Cu(I), d10, 

[Cu(H2O)4]+ exhibits a tetrahedral geometry, whereas 

hydrated Cu(II), d9, [Cu(H2O)6]2+ has an octahedral 

structure, with Jahn-Teller distortion (Persson, 2010). The 

same structures (tetrahedral and octahedral) are those 

exhibited by Cu(I) and Cu(II) halides (Villars, 2014). 

Hence, for Cu(I) halides, the crystal field stabilization 

energy (CFSE) is zero, whereas for Cu(II) compounds, 

there is a net CFSE to be computed (Pfennig, 2015).  

           So, it is possible to suppose that Eq.(1) works 

better for compounds for which a zero or minor CFSE is 

computed (a natural conclusion, since it was obtained by 

using experimental data for group 1 halides). 

The spectrochemical series for the halides is F-> 

Cl-> Br-> I- (Pfennig, 2015)., and all halides anions are 

weaker field ligands than water.  Since, considering only 

the halides, F- is the ligand with the strongest field, this is 

the explanation why to exchange four water molecules by 

four F- ions in the coordination sphere of Cu(I) leads to a 

very good lattice energy calculated by using Eq. (1), 

whereas the results turns progressively bad for Cl-, Br- 

and I-.   

It is also necessary to consider that, despite the 

fact that Li+ is a hard acid and that Cu+ is a soft acid, four 

coordinated Li+ (Mähler, 2012) and four coordinated Cu+ 

(Shannon, 1976) have the same radius: 60 pm. Hence, 

like in Kapustinskii equation (Kapustinskii, 1956), eq.(1) 

is closely related with the cation radius. 

Furthermore, the number of water molecules in 

the coordination sphere increases form Li+ to Cs+ 

(Persson, 2010; Mähler, 2012), and then, whereas Li+ is 

also four coordinated (like Cu+), Na+ and K+, for example, 

have six and eight water molecules in their coordination 

sphere (Persson, 2010; Mähler, 2012). Then, the entropic 

contribution is more prominent for Cu+ than to Cu2+ 

halides, if the lattice energies are calculated by using 

hydration enthalpy data. 

Based on the results obtained to Ag+ halides 

(Table 5) can be concluded that Eq.(1) provides 

underestimated lattice energy values for compounds  with 

a high degree of covalence, and that such disagreement 

(between calculated and reference values) increases as the 

degree of covalence increases. Since Ag+ is a soft acid, 

the degree of covalence increases from F-, Cl- (hard 

bases) to Br- (borderline base) and I- (soft base).  

Ni2+ 2105    

Co2+ 1996    

Sn2+ 1556    

Be2+ 2494    

Mg2+ 1921    

Ca2+ 1577    

Sr2+ 1443    

Ba2+ 1305    

     

BeS  3989 3770 +5.8 

MgS  3416 3238 +5.5 

CaS  3072 2966 +3.6 

SrS  2938 2779 +5.7 

BaS  2800 2643 +5.9 

CuS  3595 3694 -2.5 

MnS  3336 3795 -12.0 

NiS  3600 3415 +5.4 

ZnS  3541 3674 -3.8 

SnS  3051 3201 -4.7 

CdS  3302 3460 -4.6 

CoS  3491 3653 -4.4 

CuF2  3027 3102 -2.4 

CuCl2  2739 2824 -3.0 

CuBr2  2677 2774 -3.5 

CuI2  2594 2694 -3.7 

MnF2  2768 2803 -1.2 

MnCl2  2480 2551 -2.8 

MnBr2  2418 2482 -2.6 

MnI2  2335 2388 -2.2 

     

Mn3+ 4544    

La3+ 3296    

Ce3+ 3337    

     

MnF3  5935 6012 -1.3 

MnCl3  5503 5556 -1.0 

LaCl3  4255 4242 +0.3 

LaBr3  4162 4280 -2.8 

LaI3  4036 3986 +1.3 

CeCl3  4296 4348 -1.2 

CeBr3  4203 4418 -4.9 

CeI3  4077 4061 +0.4 
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For Au(I) halides the obtained results are really 

not good. However, Is necessary to remember that for 

gold, (Z = 79), relativistic contributions matters  

(Leszczynski, 2010), and that gold is the element with the 

(proportionally) higher relativistic contraction/effects.     

 The relativistic and non-relativistic equations can 

be related by using γ = 1/[1-(v2/c2)], where v is the 

velocity of the considered body (in our case, an electron). 

The velocity of the 1s electron is ≈ Z/137, where Z is the 

atomic number. Hence, γ = 1/[1-((Z/137)2/c2)]1/2. For gold 

(Z = 79), and so, γ = 1.224. 

Multiplying the lattice energy values calculated 

using Eq. (1), by γ, “corrected” lattice energy  values are 

calculated for gold, and are shown between parenthesis in 

Table 5.  Is worth noting that, considering the relativistic 

corrected values, the agreement between calculated and 

reference values increases from Cl- to I-, in agreement 

with the fact the Au+ is a soft acid and Cl- is a hard base, 

Br- a borderline base and I- a soft base.   

 A relativistic correction is also necessary for 

thallium halides.  For Th, Z= 81, and γ = 1.240. 

 As can be verified from Table 5 data, despite the 

fact that it was derived from group 1 halides data, Eq. (1) 

works well for group 2 sulfides, as well as for other +2 

cations sulfides (CuS, MnS, etc.). Hence, can be 

concluded that Eq.(1) works for any 1:1 compounds, 

despite the cation or anion charge/nature.  

 Housecroft (Housecroft, 2017), based on 

hydration enthalpy data for group 1 cations and group 17 

anions, have derived the following equations: 

 1/3   48.2    154.6o

hyd mH V                             

(9)                                                                                                                      

 1/3 214.71    271.96o

hyd mH V                      

(10)                                                                                                             

Eq. (9) is valid for + 1 cations and Eq. (10) is 

valid for -1 anions. In such equations, Vm
 is the cation or 

anion volume, a paramount parameter in volume based 

thermodynamics, VBT (Glasser, 2011).   

Hence, Eq.(1) can be rewritten as: 

   1/3 1/3  48.2    154.6  214.71    271.96  POT m mU V V       
 



                                                                                               

(11) 

In Eq.(11), (+) and (-) superscripts were included 

to differentiate between cation and anion volumes.  

Furthermore, it was shown that there are a very 

close relationship between hydration enthalpies and 

absolute hardness for cations and anions. For group 1 

cations (Kaya, de Farias, 2018). 

 9.645  245.930( )o

hyd H                           

(12)                                                                                                    

where η+ = cation absolute hardness (eV). 

For group 17 anions: 

 64.601  12.32( 1)o

hyd H                            

(13)                                                                                                                                                     

Hence, Eq.(1) can be rewritten as:  

 9.645  245.930  64.601[  12.32  ( ( ]1) )POTU       

                                                                                               

(14) 

          Taking Eq. (11) and (14), and multiplying 

both sides by -1, we have:  

 

[(48.2 V+
m

-1/3  + 154.6) + (214.71V-
m

-1/3  + 271.96)] =  

[(9.645 η+ + 245.930) +(64.601 η- + 12.321)] ;                                                                                     

 

48.2 V+
m

-1/3  + 214.71V-
m

-1/3 + 426.6 = 9.645 η+ + 64.601 

η- + 258.3; 

 

48.2 V+
m

-1/3  + 214.71V-
m

-1/3 + 168.6 =  9.645 η+ + 64.601 

η- ;    

 

48.2 (V+
m

-1/3  + 4.5 V-
m

-1/3 + 3.5) = 9.645 (η+ + 6.7 η-); 

 5 (V+
m

-1/3  + 4.5 V-
m

-1/3 + 3.5) = (η+ + 6.7 η-); 

 

[(V+
m

-1/3  + 4.5 V-
m

-1/3 + 3.5)/ (η+ + 6.7 η-)]= 1/5          (15)                                                                  

 

 Eq. (15) shows that   the cation and anion 

volumes (obtained by X-ray data), are very closely related 

with the cation and anion absolute hardness, that is, are 

very closely relates with the frontier (homo and lumo) 

orbitals energies.  

 It is noteworthy that have been shown that 

(Tissander, 1998) absolute hydration enthalpy values can 

be calculated from a set of cluster-ion solvation data, 

without the use of extra thermodynamic assumptions. 

Hence, could be concluded that the empirical equations 

obtained in the present work (Eq. 15, for example), can 

also be related with the previously derived hydration 

enthalpy equations, based on cluster-pair-based 

approximation.  
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