
International Journal of Advanced Engineering Research and Science (IJAERS)                                 [Vol-5, Issue-7, July- 2018] 

https://dx.doi.org/10.22161/ijaers.5.7.14                                                                                  ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                           Page | 100  

 

Fully Casualized Design: A Brief Literary 

Review 
Cristina Almeida da Silva, Aline Souza Soares, Andressa Sousa Silva, Ellen 

Caroline Feitoza Pires, Augustus Caeser Franke Portella1 
 

Bioprocess Engineering and Biotechnology Division, Federal Universityof Tocantins (UFT),Gurupi, TO, Brazil. 
1portella@uft.edu.br 

 

Abstract — The term experimental design is 

characterized by the manner in which the portions are 

distributed in a given experiment. The completely 

randomized design is the most commonly used among 

experimental designs because the principles of 

randomization and repetition provide authenticity of the 

conclusions due to guarantee that the experimental units 

(plots), even if distinct and exhibit equal probability of 

being distributed to the groups. It is widely used in 

experiments have uniform conditions as the experimental 

conditions are critical in obtaining a good experimental 

design. It offers a wide experimental application, but must 

pay attention to the test, that even homogeneous, can 

present experimental conditions that will harm the 

experiment. So in order to get a good design, an early 

collection of information to evaluate the homogeneity of 

the experimental conditions is critical. This study is a 

literature review on the DIC, with their main 

characteristics, mathematical modeling, analysis of 

variance technique (ANOVA) and analysis of assumptions 

for ANOVA. 

Keywords— statistic, experimental design, ANOVA, 

DIC. 

 

I. INTRODUCTION 

 The relevant variables to the object of study that 

focus on units of a sample or population, we use in 

statistical analysis, they are obtained from previously 

planned experiments, known experimental data 

(BERGAMASCHI, et al., 2011). The implication of 

factors that may or may not be controllable during 

experiment necessitates the use of statistical methods of 

analysis, to verify their prominence in bringing random 

variation or error experimental (ANDRADE &OGLIARI, 

2007).  

 Among the factors that cannot be controlled 

stand out environmental heterogeneity not provided by 

the experimenter and the variations inherent to the 

experimental material. Thus, in order to minimize the 

variation of chance, the experimenter you must set the 

design so that it is possible to isolate the effects of the 

factors that, indeed, can be controlled. Thus, the 

experiment relates to the set of rules that determines the 

definition of treatment, the arrangement of in the 

experimental plots and their assignments to treatment and 

how to analyze the Data from the experiment (DUARTE, 

1996).  

 The completely randomized design (CRD) is the 

simplest of all experimental designs, it contains only the 

principle of randomization and repetition. Requiring 

homogeneity of the material and environmental 

conditions Experimental since their treatments are 

distributed in the form of parcels entirely random. The 

static scope of DIC is given by equation 1 (Silva 2007). 

y ij = μ + α i + eij                                      (Eq. 1) 

At where, 

yij is the value observed in experimental plot that received  

I - in th treatment jth repetition;  

μ is a general constant associated with this random 

variable; 

αi is the effect of the treatment; 

andij is the error associated with observation y ij, supposed 

to have normal distribution. 

 

II. EXPERIMENT MODEL DATA BALANCED 

WITH DIC  

 According Padovani (2014), the operation of this 

design since is conditioned to the presence of 

homogeneous parcels is to designate the treatments to 

experimental units of pure and simple draw, i.e. without 

any restriction.  

The greater the degree of homogeneity between the 

experimental units in terms of dependent variables, 

therefore the design Experimental is more efficient. But 

for heterogeneous units the same It does not occur. 

Highlighting the importance of balancing the replicates in 

treatments employed experimentally.  

 Therefore, it is an appropriate plan for 

experiments in laboratory that the parcels may be 

represented by petri plates or test tubes, as well as in a 

greenhouse in pots (DUARTE, 1996).  
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 The model indicates that the shape of the 

biological response of a unit Experimental subjected to 

the treatments is given by: Biological Response 

Treatment Average + = Error Casual Biological and 

described in Equation 2. 

yij = μ + eij ( i = 1, ..., k and j = 1, ..., r)                        (Eq. 

2) 

At where,  

ithe index referring to treatment;  

j The experimental unit. 

 

III. STATISTICAL PROCEDURE: ANALYSIS 

OF VARIANCE  

 Statistical inference for analysis of variance 

(ANOVA) is obtained from Distribution F of Snedecor 

considering two independent random variables, one being 

due to other treatments and due to the experimental 

residue (PADOVANI, 2014).  

 According to Duarte (1996), if we consider an 

experiment aimed at test treatment (t) using repetitions (r) 

for each of the model determines the partition of degrees 

of freedom and the sum of squares for the variation Total 

being observed, according to equation 3. 

y1 j = m + t1 + e1j                                      (Eq. 3) 

 At where, 

y1j is the data collected in the experimental unit received 

at a given treatment repetition;  

m is the constant inherent in the overall average; 

t1 is the effect provided by the treatment; and 1j It is the 

error of the experimental unit.  

 If the data meets the principles of analysis of 

variance, then the proposal the model can summarized as 

shown in Table 1. 

 

Table.1: Scheme for analysis of variance installed in experiments completely randomized design. 

FV 

Treatment 

 

GL 

t- 1 

SQ 

SQ treatment 

QM 

QM treatment 

T 

QM treat/ QM error 

Error t(r - 1) SQ error QM error  

Total tr- 1 Total SQ   

Source: Smith, 2007. 

 

IV. ANOVA TO TEST HYPOTHES ES  

 Duarte (1996) describes that there are some assumptions that must be used to make valid the  application of ANOVA 

because the error greatness experimental and forward answer to the mathematical model assumption guarantee effectiveness 

and quality of a particular experiment. 

 These assumptions are: a) additivity, in this condition the effects of the factors that occur in the mathematical model 

must  added together, so do not there interactions; b) independence of errors; c) homoscedasticity of variance and; d) 

normality of errors (BARBIN, 2003).  

 Carvalhoet. al., (2010) describe who should use tes ts to confirm whether the assumptions of the mathematical model 

are being met. proof these hypotheses should be performed prior to any analysis and testing assumptions including Student's 

distribution, F Snedecor or chi-square. 

 The main tests are: Test not Tukey additivity, to ascertain the additivity; random testing, to verify the randomness of 

the errors on the Experimental map; Lilliefors test to verify the normality of the provision of and errors; Bartlett test to 

analyze the homogeneity of the errors between the treatments (CONAGIN et al., 1993). 

 

4.1 ANOVA Applicability  

 The main objective of the trial is to analyze alternatives (treatment) in order to identify among them those of greater 

biological return, agronomic and even economic (DUARTE, 1996). In this sense, all experiments aim for transparent and 

clear results in the environmental field need means efficient statistical. 

 As an example of the applicability of completely randomized design for scientific nature of experiments, Angels 

(2005) brings the following question: 

 "Consider the following experiment was conducted considering a design randomized. Nine Strains of fungi were 

compared by measuring growth rates in microns / hour. "  

 

Table.2: Strains growth rates of fungi in microns / hour 

Strains Reps Total 

 I II III IV V VI  
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L1 385 323 417 370 437 340 2272 

L2 406 385 444 443 474 437 2589 

L3 354 292 389 312 432 299 2078 

L4 271 208 347 302 379 264 1762 

L5 344 292 354 354 401 306 2051 

L6 354 354 410 453 448 417 2436 

L7 167 115 194 130 240 139 985 

L8 344 385 410 437 437 410 2423 

L9 385 385 396 453 458 417 2494 

Total       19090 

 

 

The hypotheses for this experiment are therefore the 

following: 

H 0: T1 = T2 = T23 = ... = T9  

H 1: T1 ≠ Ti 'to at least one pair with i ≠ i ' 

 Assuming that one or more treatments have 

difference significant with regard to the efficiency of the 

same, is used for ANOVA check this difference. 

 It has been that 

 

∑ ∑ 𝑦𝑖𝑗 =
𝑗
𝑗 =1

𝑖
𝑖=1  385 + 323 + ⋯ + 417 = 19090 

∑ ∑ 𝑦2𝑖𝑗 =
𝑗
𝑗 =1

𝑖
𝑖=1 385 2+ 323 2+ ⋯ + 417 2 = 7168788  

 

I i = 1 I = 9 degrees of freedom treatments = I-1 = 8 

J = 6 degrees of freedom residue = I (J-1) = 9 (6-1) = 45  

N = IJ = 9x6 = 54, degrees of freedom = Total IJ-1 = 53 

 From these results, based on the ANOVA 

formula, they have the sum of squares are as follows:  

SQ Total = 420, 119.5  

SQ Treatment = 332,918.1  

SQ Residue = 87201.4 (SQ Total-SQ Treat) 

 With these results, it is possible to obtain the 

values of the mean squares and F and calculated by 

ANOVA formula being:  

QM Treat = 41614.763  

QM Res = 1937.8089  

F calculado = QM Treat/ QM Res = 21.48  

 

Table.3: Filling the table with the obtained data, we have: 

FV 

Treatment 

 

GL 

8 

SQ 

332.918,1 

QM 

41.614,763 

T 

21.48 

Error 45 87.201,4 1937.809  

Total 53 420,119.5   

 

 

Once you get all of these values, compares it with the F 

calculated F tabulated (1%, as called for example, the 

value is 2.9475). 

 According to the F test was significant difference 

between treatments, and therefore, this calculation allows 

us to reject the null hypothesis (H 0). That way, it means 

that one of the fungal strains is more efficient with respect 

to the rate of growth, and this is the basis  for the next 

steps for obtaining data Statistical through the use of 

some means comparison test or contrasts. 

 

4.2 Independence of errors 

 Padovani (2014) describes that the independence 

of errors is guaranteed by principle of randomization. If 

the errors of the independence assumption is satisfied, on 

graph-standardized residuals versus the order of data 

collection, the waste must be casually distributed around 

zero, without following a pattern. 

 In the graph construction is considered the 

ordinary residue (and ij): residue on the jth observation of 

the i-th group (i = 1, ..., K; j = 1, ..., r) (Equation 4) and 

residue standardized (z ij): standardized residue on the jth 

observation of the ith group (Equation 5). The graphical 

conformation of waste enables  confirm that hypothesis 

independence errors can be accepted (LIMA and LIMA, 

2014). 

(eij): = y ij- y i                                              (Eq. 4) 

(zij) = eij/ √QM Res          (Eq. 5) 

 

At where, QM Res It is the Mean Square Residual 

QM Res = S2=
∑ (𝑛𝑖−1)𝑆𝑖

2𝑘
𝑖 =1

(𝑛−𝑘)
 

 

4.3 Homocedasticity 

 It can be verified by the Bartlett test, Levene and 

Hartley (F max) in which errors must submit a variance (δ 
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2) in common. THE homogeneity of variance has two 

hypotheses from data groups obtained from a given 

experiment, as the assumptions below, and δ •2The 

variance of each of the data groups (LIMA, 2014). 

H 0: δ2
1δ =δ2

2 = ... = δ𝑛
2  

H 1: one of δ2 'S is different from the others  

 Box (1953) recommends that the results of an 

ANOVA are considered valid, the largest variance should 

not exceed four times the smaller. . Dean et al, (1999), 

discloses that in a more analytical decision tests: Cochran, 

Hartley, Bartlett and Levene were highlights for the 

homogeneity of variances. 

 Based on further in the example cited by Angels 

(2005), for the homoscedasticity, realized by the 

following figure (Figure 1), there is heterocedasticity 

between treatments, because some of them are showing 

different behavior regarding the distribution of errors. 

 
Fig.1: Verification of homocedast 

 

Source: Angels, 2005. 

 

4.3 Normality of the errors 

 The normal probability plot is a graphical 

technique for assessing whether a data set is 

approximately normally distributed and is a special case 

the probability plot. The data are plotted in relation to a 

distribution Normal theoretical such that the dots should 

form an approximate straight line. Matches this straight 

line indicate departures from normality (Chambers et al., 

1983). 

 The probability graph is formed by the vertical 

axis the values of requested response and the horizontal 

axis with the median statistics for ordered the given 

distribution. According Filiben (1975), the median 

statistics order They may be approximated according to 

Equation 6. 

Ni = G (Ui)                                                      (Eq. 6) 

At where,  

Ui is the median uniform statistical order (defined below); 

 G is the percentage point function to the desired 

distribution.  

 The function of a percentage point is the inverse 

of cumulative distribution function (Probability that x is 

less than or equal to some value). That is, given a 

probability, x is the corresponding cumulative distribution 

function. At medians uniform statistics order are defined 

as: 

mi = 1 - mnfor i = 1  

mi = (i - 0.3175) / (n+ 0.365) for i = 2, 3, ..., n-1 

 0.5 mi = (1 / n) for i = n  

 Furthermore, a straight line may be fitted to 

points, added as a reference line. The more points vary 

this line, the greater the indicating a departure from the 

specified distribution. This definition implies that a 

probability plots can be easily generated for any 

distribution to which point the percentage can be 

calculated (ANSCOMBE, 1973). 

 A disadvantage of this method of calculating 

probability plots is that estimates of intercept and slope of 

the fitted line are in fact estimates for the parameters of 

location and distribution scale. Although this is not very 

important for the normal distribution, since the location 

and scale are the estimated mean and standard deviation, 

respectively, can be useful for many other distributions 

(WILK et al, 1968). 

 In addition to the graphical methods we have just 

considered for assess the residual normality, we can 

perform a hypothesis test in which the null hypothesis is 

that the errors have a normal distribution. A large value of 

p, therefore, fails to reject the null hypothesis is a good 

result. This means that it is reasonable to assume that the 

errors have a normal distribution. Normally, assessment 

of the appropriate residual plots is sufficient to diagnose 

deviations from normality. However, more rigorous and 

formal quantification of normality can It is requested 

(TUFTE, 1983). Therefore, one can apply several test 

procedures common to normal. 

 

4.3.1 Anderson-Darling 

 Test The Anderson-Darling test measures the 

area between line an adjusted (based on chosen 

distribution) and a non-parametric function (based on 

points of Plot). The statistical distance is  a squared which 

is heavier tails distribution. (TUKEY et al., 1977) under 

Anderson-Darling values indicate that the distribution fits 

the data better. The test statistic is given by Equation 7. 

AD = -n - 
1

𝑛
∑ (2i −  1) {LnF (X i)  +  ln [1 −𝑛

1=1

 F (X n − i +  1)]} (Eq. 7) 

 When the statistical Anderson-Darling test is an 

associated p-value no We reject the null hypothesis and 
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conclude that it is reasonable to assume that the errors 

have a normal distribution. 

4.3.2 Shapiro-Wilk test  

 The Shapiro-Wilk test uses the test statistic. First 

it is necessary reorganize the data in ascending order so 

that x1 ≤ ... ≤ xn. Then calculate SS according to equation 

8. 

SS = ∑ (xi −  x) ² 𝑛
1=1 (Eq. 8) 

 If n is even, allowed to m = n / 2, while if n is 

odd, left to m = (n - 1) / 2. If n is odd, the median data 

value b is not used in the calculation (Equation 9). To 

calculate the test statistic used-if W = ± 2 

b = ∑𝑚
1=1 ai(xn+1−i−xi)                           (Eq. 9) 

 These values air are calculated using the means, 

variances and covariance’s of (i). W is compared with 

tabulated values of distribution of this statistic. Smaller 

values of W will lead to rejection of the null hypothesis 

(Shapiro, 1965). 

4.3.3 Kolmogorov-Smirnov test  

 The Kolmogorov-Smirnov test (also known as 

Lilliefors Test) compares the empirical cumulative 

distribution function of the sample data with the expected 

distribution if data were normal. If this difference is 

observed sufficiently large, the test will reject the null 

hypothesis of normality of the population (CALLEGARI-

JACQUES, 2003). The test statistic is given by equation 

10. 

D max = (D +, D-)                                           (Eq. 10) 

 

 Where 

 D + It is the max i { i / n - Z ( i)}; 

D- It is the max i { Z ( i) - ( i - 1) / n)}. 

 Being that, 

Z it's the same as F (X ( i)); 

F (x) is the probability distribution function of the normal 

distribution;  

X ( i) it's the same as i The order statistics of a random 

sample, 1 ≤ i ≤ n; 

n it's the sample size. 

 The test statistic is compared with the critical 

values of a distribution Normal to determine the p value. 

4.3.4  Chi-square test  

 The chi-square test is used to test whether a data 

sample came from a population with a specific 

distribution. 

 An attractive feature of the chi-square adequacy 

test is that it can be applied to any univariate distribution 

for which you can calculate the cumulative distribution 

function. The suitability of the chi-square test is applied 

the binary data (ie, data placed into classes). In fact, this is 

not a restriction because you can simply calculate the 

histogram or table often before generating the chi-square 

test. However, the statistic value Chi-square depends on 

how the data are categorized. another disadvantage Chi-

square test is that it requires sufficient sample size for the 

approximation of chi-square is valid (Snedecor and 

Cochran, 1989). 

 The chi-square test is an alternative to test 

suitability Anderson-Darling and Kolmogorov-Smirnov. 

The chi-square test adjustment can be applied to discrete 

distributions as the binomial and Poisson. tests of 

Kolmogorov-Smirnov and Anderson-Darling are 

restricted to continuous distributions. O chi-square test is 

set for the event: 

H 0: The data follow a specified distribution. 

 H a: The data do not follow the specified distribution. 

 Test statistic: For the computation of chi-square 

adjustment, the data They are divided into k (Equation 

11). 

X 2 = Σ i = 1k (O i -Σ i) ² /Σ i                          (Eq. 11) 

 At where,  

O iis observed for the frequency bin i;  

Σi It is the expected frequency for i.  

In which Σi it is calculated by:  

Σi = C [F (Y u) -F (Y i)] 

 

 Being,  

F cumulative distribution function for distributing being 

tested;  

Y u it is the upper limit for class i;  

Y is the lower limit for class i; 

N is the sample size. 

 

V. TECHNICAL ANOVA 

 ANOVA is a statistical technique to analyze the 

variation in one variable response (continuous random 

variable) measured under conditions defined by factors 

discrete (classification variables, often with nominal 

levels). Often used ANOVA to test the equality of several 

means, comparing the variance between groups regarding 

the variance within groups (Random error). Sir Ronald 

Fisher pioneered the development of ANOVA analyze the 

results of agricultural experiments (Fisher, 1925).  

 Today, the ANOVA It is included in almost all 

statistical packages, which makes it accessible to 

researchers in all experimental sciences. It is easy to insert 

a set of data and perform a simple ANOVA, but it is 

challenging to choose the ANOVA suitable for different 

experimental designs, examine whether the data adhere to 

modeling assumptions and interpret the results correctly 

(STEEL et al., 1980). 

 To determine the appropriate ANOVA model, 

we must know the relationships between factors and 

experimental units. Statistical distinguish two types of 

factors in experimental design and ANOVA: "fixed 

factors" and "random factors". a "Fixed factor" is one for 

https://dx.doi.org/10.22161/ijaers.5.7.14
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                 [Vol-5, Issue-7, July- 2018] 

https://dx.doi.org/10.22161/ijaers.5.7.14                                                                                  ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                           Page | 105  

 

which specific levels are of interest. a researcher could 

repeat the experiment using identical factor levels in 

twice. (SCHEFFE, 1959).  

 Conceptually, each level of a fixed factor It is a 

distinct population with a single response average. When 

one researcher deliberately organizes or modify the levels 

of a fixed factor, s called if these levels treatments. The 

primary objective of the ANOVA is to test whether the 

means response are identical between the levels of the 

factors. In contrast to a fixed factor, levels of a "random 

factor" represent a random sample of a number potentially 

infinite levels. Different levels of factors would be chosen 

randomly if the experiment was redone. With random 

factors, the objective of ANOVA is to make an inference 

about random variation within a population. When a 

factor level is applied to two or more experimental units 

independent, he is "replicated". If replicates are equal in 

number to each factor level, the experimental design is 

"balanced" (LEVENE, 1960). 

 The ANOVA concept provides details for two 

common models. The first model, one-way ANOVA 

fixed end, is an extension test t Student- Independent 2 

that allows you to simultaneously compare averages of 

several samples independent. The second model, fixed 

effects ANOVA 2-way has two factors, A and B, and 

each level of factor A appears in combination with each 

factor level B. This model allows us to compare the 

means of the factor A levels and between levels B. factor 

Moreover, we examined whether the combined factors 

induce effects interaction (synergic or antagonistic) in 

response (SCHLOTZHAUER et al., 1987). 

 

VI. COEFFICIENTS DETERMINATION AND 

CHANGE OF AN EXPERIMENT 

 In addition to hypothesis testing and confidence 

intervals, otherwise analyze whether the model adopted in 

a given experiment is efficient or not treated if the 

coefficient of determination or explanation and the 

coefficient of variation. 

 The coefficient of determination or explanation 

is represented by the symbol R 2. This indicator 

determines what percentage of the variance explained by 

Regression is the total variation (VIALI, 2018). 

 It is given by the ratio between SQTreat (sum of 

squares of treatment) and SQTot (total sum of squares of 

the values found), indicating the proportion of the total 

variance explained by the variation due to treatment (0≤R 

2 ≤1) (PADOVANI, 2014). 

 The coefficient of variation of an experiment, 

represented by (CV) estimates the accuracy of 

experiments representing the standard deviation expressed 

as average percentage (MOHALLEM et. at., 2008).  

 According to Snedecor (1980), the distribution 

coefficient of variation allows the establishment of tracks 

values that guide researchers on the validity and veracity 

of their experiments. 

 Is given by the ratio between the standard 

deviation (ANOVA, is the square root a positive QMRes) 

and the overall mean data, inferring how data comportam-

in relation to the general average. The magnitude of the 

reverse precision CV refers to the idea the experimental 

data (PADOVANI, 2014). 

 

VII. MULTIPLE COMPARISONS 

 Multiple comparisons are used when the variance 

analysis detects that there is a significant effect on certain 

treatment of an experiment, the certain level of 

significance, where it rejects the null hypothesis (SOUSA 

et. al., 2012). They have his theory based on the normality 

of the model residues linear used to fit the data (and 

BORGES FERREIRA, 2003). 

 The test multiple comparisons of means are of 

great importance in applied research (CONAGIN et. al., 

2008) when trying to compare the Qualitative treatments. 

 In this sense, several tests are used for this 

purpose, and the same usually take the name of its author, 

the main ones being: Tukey, Student-Newman Keuls 

(SNK), Student's t test (LSD), Duncan, among others 

(BORGES & FERREIRA, 2003). 

 The choice of test to be used should be based on 

statistics qualities the study aims, considering it is always 

for the non-violation of the assumptions Basic to their 

application, such as normality and homoscedasticity 

errors of independence (EAX. el., 2005). 

 

7.1 Tukey test 

 Tukey's test is based on the amplitude of 

estudentizada distribution, and can It is used to compare 

any and all contrast between two averages treatment, with 

accuracy when the number of repetitions is equal in all 

treatments. When there is a different number of 

repetitions Test Tukey can still be used, however, the 

result will approximate (GOMES, 2000). 

 For the minimum significant difference in the 

Tukey test, is used to formula described in equation 12: 

d.m.d= q √𝑄𝑀𝑅/𝑟(Eq. 12) 

 At where:  

q: refers to the value of the table Tukey significance level;  

QMR: refers to the mean square of ANOVA;  

A: refers to the number of repetitions of each treatment 

(Oliveira, 2008). 

 Again using the example proposed by Angels 

(2005), after identifying the existence of significant 

differences between treatments using the F test can 

evaluate the magnitude of these differences through 
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multiple comparisons test. O Tukey Test, which is based 

on the least significant difference (LSD) is a means of 

obtaining this magnitude. 

 Applying we test: 

Δ(5%)=4,64√1937 ,8/6=83,39 

q=4,64 

ɑ=0,05 

 If the contrast is greater than the value of Δ, then 

the average level differ ɑ of significânicia.  

 In addition to the Tukey test, it is also possible to 

carry out comparison tests multiple of that example by 

Duncan test, SNK, among others. 

7.2 Student-Newman-Keuls test (SNK)  

 The SNK test is performed the same way as the 

Tukey test, however, exception is that the critical value in 

SNK is not the number of treatments, but the number 

average amplitude included in the medium being tested 

(CALLEGARI-JACQUES, 2003). 

 One of the advantages of using SNK test is that it 

allows separating means in discrete groups, without 

overlap between the groups (CANTERI et. al., 2001). 

In terms of accuracy, it is intermediate between the Tukey 

test and Duncan, using Duncan's method with Tukey 

table. When the average treatment have the same number 

of repetitions, the following formula is  used (Equation 

13): 

SNK (5%) = q 
𝑠

√r
                           (Eq. 13) 

 At where, 

q: refers to the value of the total amplitude estudentizada 

5% probability; 

s: refers to the square root of QMR (error mean square), 

which corresponds the estimate of the standard deviation 

of the experimental error;  

A: refers to the number of repetitions of the experiment 

and / or average (FERREIRA, 2011). 

 According to Sampaio (2002), when average 

compared feature different numbers of repetitions, the 

formula will be shown below (Equation 14): 

Q = SNK √
𝑠2

2
(

1

𝑅𝑎
+

1

𝑅𝑏
)(Eq. 14) 

 At where,  

Ra: refers to the number of repetitions of treatment 

experiment "A";  

RBb: refers to the number of repetitions of the experiment 

Treatment "B". 

7.3 t test Student  

 The Student t test, t test or simply seeks to reject 

or not a hypothesis null when the test statistic (t) follows a 

Student's t distribution. Can be conducted to compare a 

sample of a population, comparing two samples compare 

two parallel and independent samples (Lopes et. al., 

2015).two means A and B obtained in experimental 

groups can be compared in the following relationship by t 

test (Equation 15). 

t =
𝑥−μ

𝑠

√𝑛

(Eq. 15) 

 At where,  

X: refers to the median of the sample;  

μ: refers to the average population (or reference);  

S: refers to standard deviation; n: refers to the number of 

subjects (JUNIOR, 2012). 

7.4 Duncan test  

 Duncan test is taken to a new method for the 

comparison of averages, with a more difficult application 

of the Tukey test, however, much more efficient with 

regard to the breakdown of the results and breakdown of 

treatments. It requires that all treatments have the same 

number of repetitions so that their results show accuracy 

(OLIVEIRA, 2008). 

 Typically, it is applied at 5% probability, and 

despite being more work is less rigorous than the Tukey 

test (VIANA, 2012). it should be point out that when 

using three or more averages, Duncan's theory is wrong, 

because the global significance level is not maintained 

(BANZATTO & KRONKA, 2006). 

 According to Gomes (2000), when the number of 

averages is very large (greater than 10, for example), the 

application of this test becomes very cumbersome.  

 According Vieira and Hoffmann (1989) to obtain 

DMS is the following formula applied (Equation 16): 

d.m.s = z √QMR /r (Eq. 16) 

 At where, 

Z: refers to a standard value at significance level and the 

number means covered by the range delimited by the 

medium in comparison;  

QMR: refers to the mean square of ANOVA;  

A: refers to the number of repetitions. 
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