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Abstract— In recent years there has been great interest 

in studying parallel manipulators, mainly applied in flight 

simulators, with six degrees of freedom. The interest in 

parallel kinematic structures is motivated by its high 

stiffness and excellent positioning capability in relation to 

serial kinematic structures. This work presents the 

kinematic and dynamic modeling, design, development 

and identification of the parameters of motion platform 

with six degrees of freedom, electrically powered, for 

studies of flight simulators, is known as a Stewart 

Platform. It also presents the design of an H infinity 

controller with output feedback. The actuator model was 

obtained by a step voltage input to the engines and 

measuring its displacement by the encoders coupled, in 

each of the respective axes of the motors. Knowing the 

relation of motion transmission mechanism between the 

motor shaft and each actuator is obtained by the 

displacement rod from the rotation of motor which are 

measured by the corresponding encoder. The kinematics 

and dynamics platform’s data compose the whole systems 

models simulations that are applied in the Stewart 

platform to validate the model and show the effectiveness 

of control techniques in which was applied to control the 

position and orientation of the platform were performed. 

An inertial sensor Xsens MTi-G measurement of the Euler 

angles of the platform was performed. The result obtained 

by the controller was satisfactory and illustrate the 

performance and robustness of the proposed 

methodology. 

Keywords— Stewart Platform, Flight Simulator, H 

infinity Controller, Position Controller, Orientation 

Controller.   

 

 

I. INTRODUCTION 

Parallel structures have emerged in the ‘60s associated 

with flight simulators and, from the late ‘80s; parallel 

manipulators with rigid actuators have been used as the 

basis for simulations with various degrees of freedom. 

Stewart proposed a parallel structure with six degrees of 

freedom drawn from the adaptation of a flight simulator 

to a structure known since 1947 as Gough platform used 

to build a machine to test tires [1]. This structure became 

known as Stewart Platform [2]. 

Attitude and position control of Stewart platforms are real 

complex problems in several areas of study. The reference 

model for this mechanism can be split in two categories, 

hydraulic or electromechanical actuators [3, 4, 15]. For 

hydraulic actuators, depending on the load on the 

platform, it is necessary to model the system taking into 

account the dynamic characteristics of the hydraulic 

system and the platform. In the case of electromechanical 

actuators, where it has a gear ratio for conversion of 

angular velocity of the motor to linear velocity of the 

spindle. This transmission ratio plus friction can cause an 

inertial decoupling where the main dynamics can be 

considered only that of the actuator [18]. 

So, the main purpose of this paper is to present the 

platform that was developed for studies in control systems 

for flight simulators at the Laboratory of Airspace Control 

of the Engineering School of São Carlos of the University 

of São Paulo (Figure 1). 
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Fig. 1:  Stewart Platform 

 

II. KINEMATIC MODELLING 

The inverse kinematics of the parallel robot is to 

determine which length values to actuators that satisfy a 

known position and orientation of the end-effector. 

Compared with serial robots inverse kinematics which 

presents greater complexity than the direct kinematics, 

inverse kinematics in parallel robots is less complex than 

the direct kinematics. The inverse kinematics is used to 

generate trajectories  [5, 16, 17]. However, a mathematical 

model that describes the six degrees of freedom of the end 

of the manipulator must describe the position and 

orientation of the same relative to some fixed reference. 

 This way the inverse kinematics begins to be defined 

from the rotation in X, Y and Z axes, which take the 

reference of the moving part of the platform (B) in the 

frame of its fixed base (A). These rotations are 

determined by Euler angles ∅, θ and ψ, where each of 

them is represented by the matrix (1), (2) and (3) 

respectively. 

𝑅(𝑥, ∅) =  [
1 0 0
0 cos (∅) −𝑠𝑖𝑛(∅)
0 𝑠𝑖𝑛(∅) cos (∅)

] 

 

 

(1) 

𝑅(𝑦, 𝜃) =  [
cos (𝜃) 0 𝑠𝑖𝑛(𝜃)
0 1 0

−𝑠𝑖𝑛(𝜃) 0 cos (𝜃)
] 

 

 

(2) 

𝑅(𝑧, 𝜓) =  [
cos (𝜓) −𝑠𝑖𝑛(𝜓) 0

𝑠𝑖𝑛(𝜓) cos (𝜓) 0
0 0 1

] 
 

(3) 

In the design of a position and attitude control system of 

the movable platform that is located at the top base from 

the Stewart platform, becomes necessary to know the 

inverse kinematics of this mechanism [6]. The inverse 

kinematics uses the position and attitude of the movable 

platform with respect to the fixed platform to obtain the 

lengths of the actuators and can be addressed using tensor 

modeling [7] or modeling based on linear algebra [8, 14]. 

The modeling using linear algebra is presented in this 

paper. 

The positions of the joints that connects the platforms to 

the actuators are defined in two coordinate systems [5]. A 

system with origin in the center of the fixed platform A 

and axis xA pointing between joints 1 and 2 of the fixed 

platform, axis zA perpendicular to the plane of the fixed 

platform pointing up and axis yA completing the right-

hand rule. The other system has the origin in the center of 

the movable platform B and axis xB pointing between 

joints 1 and 2 of the movable platform, axis zB 

perpendicular to the plane of the movable platform 

pointing upward and axis yB completing the right-hand 

rule. The Figure 2 shows the definitions of the two 

coordinate systems. 

 
Fig. 2: Coordinate systems 

The positions of the joints of the fixed and movable 

platforms coordinate systems centered at A i and Bi 

respectively are expressed by Eqs. (4), (5), (6) and (7) as 

follows: 

{𝐴𝑖 }
𝐴 =  {𝑟𝑎 cos(𝛬𝑎𝑖)      𝑟𝑎 𝑠𝑖𝑛(𝛬𝑎𝑖 )     0 }

𝑇

=  {𝐴𝑖1    𝐴𝑖2     0}
𝑇 ,

𝑖 = 1,2,… ,6 

(4) 

{𝐵𝑖 }
𝐵 = {𝑟𝑏 cos(𝛬𝑏)       𝑟𝑏𝑠𝑖𝑛(𝛬𝑏𝑖)     0 }

𝑇

=  {𝐵𝑖1    𝐵𝑖2    0}
𝑇 

(5) 

𝛬𝑎𝑖 = 60°𝑖 − 𝜆𝑎, 𝛬𝑏𝑖 = 60°(𝑖 − 1) + 𝜆𝑏,     

 𝑖 = 1,3,5 

(6) 

 

𝛬𝑏𝑖 = 60°(𝑖 − 1) + 𝜆𝑏,    𝛬𝑎𝑖 = 60°𝑖 − 𝜆𝑎,   

  𝑖 = 2,4,6  

(7) 

 

where ra and rb are the radii of the circles centered at the 

center of the platform and contain the positions of the 

joints of the fixed and movable bases, respectively, and λa 

and λb are directors angles that help to define the 

positions of the joints of the fixed and movable platforms, 

respectively. 

The vector representing the actuator in the fixed platform 

coordinate system {𝐷𝑖 }
𝐴  is obtained using the Equation 

(8). 

{𝐷𝑖}
𝐴 =  {𝐵𝑖}

𝐴 − {𝐴𝑖}
𝐴  (8) 

The vector representing the position of the joints of the 

movable platform in the fixed coordinate system is 

defined in Eq. (9) 
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{𝐵𝑖 }
𝐴 = {𝐵}𝐴 + [𝑇𝐵𝐴] ×  {𝐵𝑖 }

𝐵 =  {
𝑥
𝑦
𝑧
} + {

𝑢𝑖
𝑣𝑖
𝑤𝑖

} 
 

(9) 

where {𝐵}𝐴  is the vector that represents the position of 

the center of the movable platform in the coordinate 

system of the fixed platform and [𝑇𝐵𝐴] is the 

transformation matrix of the movable coordinate system 

to the fixed coordinate system. 

Using a sequence of three rotations, it is possible to 

obtain the transformation matrix [𝑇𝐵𝐴]. First, a rotation is 

applied around the axis xB until axis yB becomes parallel 

to the plane formed by xA and yA, and the rotation angle ∅ 

is called roll angle. Then, a rotation is applied around yB 

until xB is parallel to the plane formed by xA and yB, being 

the pitch angle θ. Finally, a rotation around zB is applied 

until xB is parallel to xA, and this angle of rotation is the 

yaw angle ψ. The resulting matrix of the three rotations is 

shown in Equation (10). Where c is the cosine and s is the 

sine function. 

𝑅𝐵
𝐴

= [
c𝜓 c𝜃 c𝜓 𝑠𝜃 c∅ −  𝑠𝜓 c∅ c𝜓 𝑠𝜃 c∅ + 𝑠𝜓 𝑠∅
𝑠𝜓 c𝜃 𝑠𝜓 𝑠𝜃 𝑠∅+ c 𝜓c∅ 𝑠𝜓 𝑠𝜃c ∅ − c𝜓 𝑠∅

−𝑠𝜃 c 𝜃 𝑠∅ c 𝜃 c∅

] 

 

 

(10) 

Finally, the vector representing the i-th actuator {𝐷𝑖}  is 

obtained using information about the geometry of the 

Stewart Platform and defined the position and attitude of 

the movable platform. The module of this vector |𝐷𝑖| is 

equal to the length of the actuator it represents. 

 

III. ACTUATOR MODEL 

For the movable platform remains in the desired position 

and attitude relative to the fixed platform, it is necessary 

to control the lengths of the actuators by Inverse 

Kinematics. However all six electromechanical actuators 

were tested and mathematically modeled to represent the 

system dynamics. 

These actuators consist of electric motors with gear 

transmissions for the ball screw. The motor is actuated by 

an electrical signal direct current with amplitude of up to 

12 volts, through a power supply, and changes its 

direction of rotation by reversing the signal. To power the 

engine, a drive speed control brushed motors RoboClaw 2 

is used, this drive receives a signal of 0 to 2 volt and 

converts it to an analog signal of -12 volts to 12 volts. An 

encoder of 1250 points per revolution was installed in the 

axis of rotation with the function to measure the 

revolutions number engines. 

The acquisition system used for processing and 

transmission the data was dSPACE that sends 0 to 2 volts 

signal to the engine speed  controller card and that receive 

the position signal of the encoders, which will be 

feedback in control loop. The dSPACE works with real-

time interface, where the controller is fully programmable 

in block diagrams in Simulink.  

The first test was used for the varying length of the 

actuator in relation to the number of engine revolutions. 

In this test, the engines were powered to increase the 

length of the actuators to some random positions along 

their courses, were then measured the number of rotations 

of the motor and the stroke length of the actuators. The 

Equations (11), (12), (13), (14), (15) and (16) show the 

Equations of the straight obtained for actuador 1 to 

actuator 6, respectively [19]. 

𝑦𝑐1 = 0,00081315𝑃 + 7,8485 (11) 

𝑦𝑐2 = 0,00081329𝑃 + 11,6446 (12) 

𝑦𝑐3 = 0,00081225𝑃 + 9,8059 (13) 

𝑦𝑐4 = 0,00081201𝑃 + 11,1418 (14) 

𝑦𝑐5 = 0,00081207𝑃 + 9,7201 (15) 

𝑦𝑐6 = 0,00081252𝑃 + 9,4454 (16) 

where yc is the length of stroke of the actuators in 

millimeters and P is the number of rotations of the motor 

measured in the encoder points. 

The dynamics characteristics actuator’s response was 

obtained in the second experiment, for greater reliability, 

the tests were performed three times and made the 

average of these results. In this test were applied step 

inputs voltage to the motor of the electromechanical 

actuator and the variation of the stroke of the actuator was 

obtained by reading the encoder, together with Equations 

(11) (12) (13) (14) (15) and (16). The Figure 3 represents 

the variations of the length of stroke of the actuator 1, 

when applied signals 4, -4, 6, -6, 8, -8, 10, -10, 12, -12 of 

volts. This procedure was repeated in the same way for all 

the actuators of the Stewart Platform. It can be seen that 

the actuators lengths increases with positive signals whilst 

their lengths decrease with negative signals while the 

voltage signal is applied and stopping only at the limits of 

course. 

 
Fig. 3: Stroke length variations of the actuator 1 

During the experiment was observed that the actuators, 

although having the similar physical properties and be of 

the same manufacturer, showed different responses to the 

same voltage signal applied. Therefore it was necessary 

identification and modeling for each of the six 

electromechanical actuators. The Figure 4 shows the 

variations in the length found for a step input signal 12V 
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applied to the actuators 1 to 6, respectively. It can also be 

observed that the actuators behavior with relations to the 

negative voltages and the positive voltage are not 

symmetrical, and also as occurred for positive voltages, 

the actuators showed different responses to each other for 

the same input. The Figure 5 shows the variation of 

length of all the actuators to the voltage -12V. 

 
Fig. 4: Lengths variations for a step input signal 12V 

 
Fig. 5:  Lengths variations for a step input signal -12V 

Short information to the dynamic response of the 

actuators can be obtained using the length actuators 

variation to the step input, but using the responses of 

velocities forward and return actuators as shown in Figure 

6 it can be observed that the velocity shows a stable 

response to a step input in all voltage levels analyzed. So 

we worked with the velocity to survey the dynamics of 

actuators. 

 
Fig. 6. Velocities of the actuator 1 

The actuators has different speeds, a problem that causes 

each actuator must be treated independently. The Figure 7 

shows the forward speed of 6 actuators tested where you 

can see the difference in behavior of each of the actuators. 

Negative voltages were also applied in order to check the 

recoil velocity of the actuators. The Figure 8 shows the 

speed of the six actuators for voltage -12V, also is 

possible to observe that the actuators behave differently 

between the advance and retreat of the actuators lengths. 

 
Fig. 7: Velocities of the six actuators for 12V 

 
Fig. 8: Velocities of the six actuators for -12V 

Based on the velocity response in the application step of 

inputs 4, -4, 6, -6, 8, -8, 10, -10, 12, -12 volts, shown in 

Figures 6, it was observed that the system displays a 

response without overshoot, but has a noise characteristic 

oscillation system. It can be argued that this response is 

typical of a system of first order but at least responding to 

noise regime. Where as the model of a complex formed 

by electric motor and mechanical parts of an actuator can 

be approximated by a second order dynamic system, so it 

was decided to use as a simplified model for the transfer 

function of the velocity of the electromechanical actuator 

by signal voltage, a system of second order, as shown by 

Equation (17). 

𝑌(𝑠)

𝑈(𝑠)
=

𝑘

(𝑠 + 𝑎)2
 

(17) 

 

where k is the gain, is the double pole of the second order 

system, and 
𝑌(𝑠)

𝑈(𝑠)
  is the Laplace transform of the stroke 

speed and the voltage signal, respectively. 

The characteristics of the system Equation 17 can be 

obtained by comparing the response velocity of actuator 
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stroke with the characteristics of the response of a second 

order system to a step input [9, 10]. 

Because of the presence of noise on the response velocity 

of the actuators courses, were used average values, taken 

from three tests conducted for all levels of input signals, 

as shown in Table 1. 

In this experiment it was observed that the actuators have 

dead zone (Dz), as shown in Table 2. In other words, this 

voltage range does not change the stroke length actuators. 

This characteristic makes instead of using the value of the 

entry step in the calculations of Equations (17) and (18), 

we use the effective value of the step input, which is the 

difference between the value of the step input and dead 

zone. 

Table.1: Mean Velocity of actuators 

Mean of velocities of actuators in a regime (mm/s) 

Volts Act 1 Act 2 Act 3 Act 4 Act 5 Act 6 

4V 11,4 17,3 15,2 11,4 16,3 17,8 

6V 23,0 29,0 27,6 24,4 28,5 29,9 

8V 34,6 40,8 39,8 37,3 40,4 42,0 

10V 45,9 52,2 52,0 49,6 52,1 54,0 

12V 57,1 63,5 63,5 61,5 63,6 65,4 

-4V - 16,4 - 17,6 - 14,7 - 12,8 - 14,9 -15,2 

-6V - 28,9 - 29,5 - 26,5 - 25,1 - 27,0 - 26,8 

-8V - 40,9 - 41,2 - 37,8 - 36,8 - 38,9 - 38,3 

-10V - 53,1 - 52,8 - 49,0 - 47,5 - 50,8 - 49,9 

-12V - 65,2 -  64,7 - 59,7 - 57,5 - 62,2 - 60,8 

 

Table.2: Values of dead zone 

 Act1 Act2 Act3 Act4 Act 5 Act 6 

Dz+ 1,98V 0,97V 1,45V 2,12V 1,19V 0,99V 

Dz - -1,27V -0,99V -1,3V -1,56V -1,45V -1,31V 

 

As the stroke length of the actuator is the integral of the 

velocity of course, the stroke length transfer function of 

the effective voltage signal can be represented by 

Equation (18), where X(s) is defined as the change in 

length actuator stroke. 

𝑋(𝑠)

𝑈(𝑠)
=
1

𝑠
 ×  

𝑘

(𝑠 + 𝑎)2

=  
𝐴0

𝑠
+ 

𝐴1
(𝑠 + 𝑎)

+ 
𝐴2

(𝑠 + 𝑎) 2
 

(18) 

where A0, A1 and A2 can be obtained using the partial 

fraction expansion theorem of Heaviside, shown in 

Equations (19), (20) and (21). The advantage of using a 

partial fraction expansion is that the individual terms, 

which result from this expansion in the form of partial 

fractions, are very simple functions [10]. 

𝐴0 =  
𝑘

𝑎2
 

(19) 

𝐴1 =  −
𝑘

𝑎2
 

(20) 

𝐴2 =  −
𝑘

𝑎
 

(21) 

Applying the inverse transform Laplace into Equation 

(18), the stroke length of the actuator has the answer in 

Equation (22). Replacing terms of Equations (19), (20) 

and (21) into Equation (22) are obtained the Equations 

(23) and (24). 

𝑟(𝑡) = 𝐴0 + 𝐴1𝑒
−𝑎𝑡 + 𝐴2𝑡𝑒

−𝑎𝑡  (22) 

𝑟(𝑡) = 
𝑘

𝑎2
−
𝑘

𝑎2
 𝑒−𝑎𝑡 −

𝑘

𝑎
𝑡𝑒−𝑎𝑡  

(23) 

𝑟(𝑡) =  
𝑘

𝑎2
(1 −  𝑒−𝑎𝑡 − 𝑎𝑡𝑒−𝑎𝑡 ) (24) 

In order to identify the k  and a terms the following 

procedure was used: first identified the time of 

application of a step voltage input to the stroke speed 

reaches 60% of its value regime. These values can be 

substituted in Equation (24) and then the resulting 

Equation (25) is obtained. 

0,6 =  1 − 𝑒−𝑎𝑡60% − 𝑎𝑡60% 𝑒
−𝑎𝑡60%  (25) 

However, Equation (25) does not present direct solution 

to obtain the value of a, so it was necessary to use 

numerical methods for the identification of the parameter. 

Equation (25) was rewritten in the form of Equation (26), 

to then create a function F that depends on the a. 

 

𝑒−𝑎𝑡60% + 𝑎𝑡60% 𝑒
−𝑎𝑡60% ⏟                

𝐹

= 0,4 (26) 

Then we used the linearization of the function F by 

Taylor polynomial shown in Equation (27). 

𝐹(𝑎) =  𝐹(𝑎0 ) +  
𝑑𝐹(𝑎0)

𝑑𝑎
 (𝑎 − 𝑎0 ) 

(27) 

An iterative method in which the value of the a initialized 

as shown in Equation (28) is then calculated value of the 

function F and its derived using Equation (26), was used 

to calculate a new value of a using the Equation (29). 

This procedure was used so that the function F have 

lower error than 0.001 for the current value of a. 

𝑎 =
ln(0,4)

𝑡60%
 

(28) 

 

𝑎 = 
𝐹(𝑎)

𝑑𝐹
+ 𝑎0 −

𝐹(𝑎)

𝑑𝐹
 

(29) 

Identified the value of the parameter a, it was necessary to 

identify the value of k , using it for the Equation (24). 

Therefore, to find the value of k  was used in Equation 

(30) which is the value in a regime the velocity of the 

actuator stroke. The values obtained for k  and each 

actuator are shown in the Table 3. 

𝑉𝑟 =
𝑘

𝑎2
 

(30) 
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Table.3: Values of 𝑘 and 𝑎 

 Act1 Act 2 Act 3 Act 4 Act 5 Act 6 

𝑘 7137 7345 7269 6928 6360 8513 

𝑎 34,23 34,93 34,55 33,35 32,28 34,32 

 

Thus we obtain the transfer functions that represent the 

dynamics of each actuator, shown in Equations (31), (32), 

(33), (34), (35) and (36). 

𝑅 =
7137

𝑠(𝑠 + 34,23)2
=  

7137

𝑠3 + 68,46𝑠2 +  1171𝑠
 (31) 

𝑅 =
7345

𝑠(𝑠 + 34,93)2
=  

7345

𝑠3 + 69,86𝑠2 +  1220𝑠
 (32) 

𝑅 =
7269

𝑠(𝑠 + 34,55)2
=  

7269

𝑠3+ 69,1𝑠2 +  1194𝑠
 (33) 

𝑅 =
6928

𝑠(𝑠 + 33,35)2
=  

6928

𝑠3+ 66,7𝑠2 +  1112𝑠
 (34) 

𝑅 =
6360

𝑠(𝑠 + 32,28)2
=  

6360

𝑠3 + 64,56𝑠2 +  1042𝑠
 (35) 

𝑅 =
8513

𝑠(𝑠 + 34,32)2
=  

8513

𝑠3 + 68,64𝑠2 +  1178𝑠
 (36) 

 

IV. H INFINITY CONTROL 

To Real systems are subject to different types of 

disturbances. Uncertainties in the mathematical model of 

the system can be modeled as a disturbance in the 

nominal model. These uncertainties have different 

origins, it can be highlighted: the existence of errors in the 

values of model parameters or the values of the 

parameters are unknown, the parameters in linear model 

may vary due to nonlinearities or variation of the 

operating point; associated errors measuring instruments 

and the structure of the model at high frequencies is not 

known, resulting that the sum of all uncertainties can 

overcome the personal gain of the plants. 

The problem of H infinity control was first formulated by 

G. Zames. H infinity refers in the space to the transfer 

function own and stable. The design of H infinity control 

is designed in the frequency domain in the context of 

optimizing the space of transfer functions given objective 

function in terms of the standard H infinity. The H 

infinity norm of a transfer function is defined as shown in 

the Equation (37) [11].  

‖𝐺(𝑗𝑤)‖∞ = 𝑠𝑢𝑝𝑤 |𝐺(𝑗𝑤)| (37) 

The design of H infinity control considers the worst case 

operation and involves the minimization of the peak of 

the matrix transfer function in the scalar case this would 

minimize peak of the transfer function in the frequency 

domain and in multiple inputs and outputs case would be 

to minimize the maximum singular value represented by 

this norm. 

The term H is the Hardy space where the space of 

functions with complex matrices, name space due to the 

mathematical Hardy. And the infinite term comes from 

the use of the infinity norm and the infinity symbol limit 

of Hp norm when p tends to infinity. Figure 9 shows the 

standard block representation where P (s) is the increased 

transfer function. 

 

y u 

P(s) 

z w 

K(s) 
 

Fig. 9:  Standard block representation 

From the diagram above, results in: 

[
𝑧
𝑦
] = 𝑃 [

𝑤
𝑢
] = [

𝑃11 𝑃12
𝑃21 𝑃22

] [
𝑤
𝑢
] , 𝑢 = 𝐾𝑦  

(38) 

Then the transfer function between the external input w 

and regulated output z. Substituting u in the Equation y  

𝑦 = 𝑃21𝑤 + 𝑃22𝐾𝑦 (39) 

 

𝑦 =  (𝐼 − 𝑃22𝐾)
−1𝑃21𝑤  (40) 

And, we can write: 

𝑢 = 𝐾𝑦 = 𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21𝑤 (41) 

Finally, replacing u in the Equation z it result at 

𝑧 =  𝑃11𝑤 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21  

=  [𝑃11 +𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21 ]𝑤 

(42) 

 

𝑧 = 𝑇𝑧𝑤𝑤,   𝑇𝑧𝑤 =  𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21  (43) 

The augmented plant in the form of state space is of the 

form 

𝑥̇ = 𝐴𝑥 + 𝐵1𝑤 + 𝐵2𝑢 (44) 

𝑧 = 𝐶1𝑥 + 𝐷11𝑤 +𝐷12𝑢 (45) 

𝑦 = 𝐶2𝑥+ 𝐷21𝑤 + 𝐷22𝑢 (46) 

A. Weighting Functions  

In the H infinity design in general weighting functions are 

employed to specify the stability and performance of the 

system. Understanding the effects of these functions on 

the control system is crucial for modeling specifications. 

A typical model for design, called augmented plant is 

shown in Figure 10. The weighting functions W1, W2 and 

W3 reflect the value specified error for the regime, 

limitations of the control signal and the stability 

condition, respectively. The standard method H infinity 

output feedback is used to stabilize the system. The 

standard H infinity control problem is formulated in terms 

of finding a controller K, if one exists, such that for a 

given γ > 0. 

‖𝑇𝑧𝑤‖∞ = ‖
𝑊1𝑆
𝑊2𝐾𝑆
𝑊3𝑇

‖

∞

 
(47) 
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Fig. 10: Augmented plant 

The weighting functions represent the design 

specifications and modeling errors, restricting Z1, Z2 and 

Z3 of augmented plant output, as shown below: 

The W1(s) function is a limiting factor for the sensitivity 

function S, and should reflect the rejection of external 

disturbances, considering the error signal Z1 system and 

tolerance to variations in the plant. The sensitivity S 

should take low value, especially at low frequencies. 

Therefore, W1 function, which reflects the performance 

specifications, must submit a high value at low 

frequencies. 

The W2(s) function weighs Z2, that is the control signal, 

and must have sufficient gain capacity to limit the input 

control an acceptable range, avoiding the saturation of the 

actuator. However, a high gain can deteriorate the 

performance, and this commitment must be taken into 

account. The W2 function is linked to limitations in the 

input signal of the plant Gn such as maximum voltages or 

currents supported by the plant. 

The W3(s) function weighs Z3 namely the plant output 

Gn, and should minimize the peak of the complementary 

sensitivity function T system, reducing the oscillations 

and ensuring stability [11].  

Thus we have the same sensitivity function 𝑆 =

(𝐼 + 𝐺𝐾)−1, the complementary sensitivity function 𝑇 =

𝐼 − 𝑆  and the sensitivity function of the controller 𝐶 =

𝐾𝑆 . 

B. Synthesis Controller  

The H infinity control in this section is based on a 

compensator project and an observer whose solutions are 

obtained by two algebraic Riccati Equations and results in 

a controller with the same number of states of the plant 

[12]. P(s) is the state-space realization of an augmented 

plant, according to Equation (48). 

𝑃(𝑠) = [
𝐴 𝐵1 𝐵2
𝐶1 𝐷11 𝐷12
𝐶2 𝐷21 𝐷22

] 
 

(48) 

Consider the state space representation of the augmented 

system, including the dynamics of the weighting 

functions, is given by: 

[
𝑥̇
𝑧
𝑦
] = [

𝐴 𝐵1 𝐵2
𝐶1 0 𝐷12
𝐶2 𝐷21 0

] [
𝑥
𝑤
𝑢
] 

 

(49) 

The following hypotheses are considered in H infinity 

problems [12]: 

(𝐴, 𝐵2, 𝐶2) is stabilizable and detectable; 

𝐷12  𝑒 𝐷21  have (post) complete; 

[
𝐴 − 𝑗𝜔𝐼 𝐵2
𝐶1 𝐷12

] has complete column post for all ω; 

[
𝐴 − 𝑗𝜔𝐼 𝐵1
𝐶2 𝐷21

] has complete line post for all ω; 

𝐷11 = 0 𝑒 𝐷22 = 0; 

𝐷12 = [
0
𝐼
]  𝑒 𝐷21 = [0 𝐼]; 

𝐷12
𝑇 𝐶1 = 0 𝑒 𝐵1𝐷21

𝑇 = 0 and 

(𝐴, 𝐵1) is stabilizable and (𝐴, 𝐶1) is detectable. 

The following Riccati Equations are associated with the H 

infinity problem: 

𝐴𝑇𝑋 + 𝑋𝐴 + 𝐶1
𝑇𝐶1+ 𝑋(𝛾

−2𝐵1𝐵1
𝑇 − 𝐵2𝐵2

𝑇)𝑋 = 0 (50) 

so that  𝑅𝑒 𝜆 𝑖[𝐴+ (𝛾
−2𝐵1𝐵1

𝑇 − 𝐵2𝐵2
𝑇)𝑋] < 0,∀𝑖  and 

𝑌𝐴𝑇 + 𝐴𝑌 + 𝐵1𝐵1
𝑇+ 𝑌(𝛾−2𝐶1

𝑇𝐶1− 𝐶2
𝑇𝐶2)𝑌 = 0 (51) 

so that  𝑅𝑒 𝜆 𝑖[𝐴+ 𝑌(𝛾
−2𝐶1

𝑇𝐶1− 𝐶2
𝑇𝐶2)] < 0, ∀𝑖. 

Given the hypotheses outlined previously, the Equations 

of Ricatti admit stabilizing solutions X and Y, and 

(X Y) <2, with () the spectral radius, then there is a 

controller that internally stabilizes system 𝑢 = 𝐾𝑦 so that 

the norm of the transfer function of closed loop 𝑇𝑧𝑤
= 𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)

−1𝑃21  is small, this is ||Tzw|| < ,  

with  a scalar positive [13]. The controller is given by: 

[𝑥̇𝐶
𝑢
] = [

𝐴𝐶 𝐵𝐶
𝐶𝐶 0

] [
𝑥𝐶
𝑦
] 

(52) 

and 

𝐴𝐶 = 𝐴+ 𝛾
−2𝐵1𝐵1

𝑇𝑋∞ + 𝐵2𝐹∞ + 𝑍∞𝐿∞𝐶2 (53) 

𝐵𝐶 = −𝑍∞𝐿∞ (54) 

𝐶𝐶 = 𝐹∞ = −𝐵2
𝑇𝑋∞ (55) 

𝐿∞ = −𝑌∞𝐶2
𝑇 (56) 

𝑍∞ = (𝐼 − 𝛾
−2𝑋∞𝑌∞)

−1 (57) 

 

V. RESULT EXPERIMENTAL AND 

DISCUSSION 

An input step of 15 ° in angle ϕ was applied, representing 

the movement of roll in the Stewart Platform. The Figure 

11 shows the movement of all actuators, stabilizing at the 

required position. The Figure 12 shows the control action 

to move the platform to the desired orientation, to provide 

increased stroke length of the actuator is possible to 

observe what happened cutting the signal voltage of 12V, 

set by the saturator. The Figure 13 shows that the error 

tended to zero. 
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Fig. 11: Responses for 15º in 𝜙 

 
Fig. 12: Control Actions for 15º in 𝜙 

 
Fig. 13: Error for 15º in 𝜙 

 

The Figure 14 shows the angle ϕ for reading the input 

step 15º. You can see that the controller could converge to 

the desired orientation. The Figure 15 shows the reading 

of the angle θ remains near zero degrees, and the Figure 

16 shows the reading angle ψ with a variation in the 

beginning of the step input, and thereafter tended to zero, 

as desired. 

 

Fig. 14: Input step for 15º in roll 

 

Fig. 15: Pitch for 15º in roll 

 
Fig. 16: Yaw for 15º in roll 

 

VI. CONCLUSION 

For all this, it can be concluded that the methodology 

used for the identification of parameters and modeling the 

actuators showed good accuracy, introducing a 

mathematical model with the characteristics design of the 

next actual platform. 

 

The experimental results show that the H infinity 

controller with output feedback can work well at different 

working conditions, being effective for the control of 

position and orientation of the actual model of the Stewart 

Platform. Small errors in result of yaw were observed 

during experiments to control orientation may be assigned 

by the existing clearances in the joints, the constructive 

differences of actuators, plus the error of inaccuracy of 

the sensor. 

[V
] 
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