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Structure Quasi-Po-Ternary Ideals

in Po-Ternary Semirings
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Abstract— In this paper we introduce the definitions
related to quasi-PO-ternary ideals and Bi-PO-ternary
ideals in PO-ternary semirings and we study the relation
between quasi-PO-ternary ideals and Bi-PO-ternary
ideals in PO-ternary semirings.

Mathematics Subject Classification: 16YIII0, 16Y99.

Index Terms — Quasi PO-k-ternary ideal, quasi-PO-
ternary ideal of T generated by A, quasi simple, 0-quasi
simple, quasi k-PO-ternary ideal.

I. INTRODUCTION

The notion of semiring was introduced by Vandiver [III] in
191114. In fact semiring is a generalization of ring. In 1971
Lister [2] characterized those additive subgroups of rings
which are closed under the triple ring product and he called
this algebraic system a ternary ring. MadusudhanaRao. D,
Siva Prasad. P and SrinivasaRao. G [4, 5, 6, 7, 8] studied and
investigated some results on partially ordered ternary
semiring.

II. PRELIMINARIES

Definition IL.1[ 6] : A nonempty set T together with a binary
operation called addition and a ternary multiplication denoted
by [ ] is said to be a ternary semiring if T is an additive
commutative semigroup satisfying the following conditions :
1) [[abclde] = [a[bcd]e] = [ab[cde]],

ii) [(a + b)cd] = [acd] + [bcd],

iii) [a(b + c)d] = [abd] + [acd],

iv) [ab(c + d)] = [abc] + [abd] for all a; b; ¢; d; e €T.

Note IL.2[6] : For the convenience we write X, X,X; instead

of [x1x2x3]

Note IL.3[6]: Let Tbe a ternary semiring. If A, B and C are
three subsets of T, we shall denote the set

ABC= {Zabc:aeAbeB,ceC}.
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Note I1.4[6] : Let T be a ternary semiring. If A, B are two
subsets of T, we shall denote the set A + B

{cH—b:aGA,bEB} and 2A={a+a:a€ A}.

Note ILI.5[6] : Any semiring can be reduced to a ternary
semiring.

Definition I1.6 [6]: A ternary semiring T is said to be a
partially ordered ternary semiring or simply PO Ternary
Semiring or Ordered Ternary Semiring provided T is
partially ordered set such that a < b then

(MDa+c<b+candc+a<c+b,

(2) acd < bed, cad < cbd and cda < cdb for all a, b, ¢, dE T.
Throughout T will denote as PO-ternary semiring unless
otherwise stated.

Theorem II.7 [6]: Let The a po-ternary semiring and
ACT,BCT and C € T. Then (i) A €(A], (ii)) ((A]l = (A],
(iii) (AIBI(C] S(ABC] and (iv) A €B =A S(B] and
(v) A €SB =(A] £(B], (vi) (A N B] =(A] N (B], (vii) (A U B]
= (A] U (B].

Definition IL.8 [6]: A nonempty subset A of a PO-ternary
semiring T is aPO-ternary ideal of T provided A is additive
subsemigroup of T, ATT < A, TTA € A, TAT € A and
(A] € A.

Theorem I1.9[8] : Let T be a PO-ternary semiring and A,
B be two PO-ternary ideals of T, then the sum of A, B
denoted by A + B is a PO-ternary ideal of T where A + B =
{x=a+b/a€ A, be B}.

Theorem I1.10[8]: Let A be a PO-ternary ideal of T. Then
(A]is an ordered ternary ideal of T generated by A.

Theorem II.11[8] : The left PO-ternary ideal of a
PO-ternary semiring T generated by a non-empty subset
A is the intersection of all left PO-ideals of T containing
A.

Theorem I1.12[8] : The lateral ideal of a ternary semiring
T generated by a non-empty subset A is the intersection of
all lateral ideals of T containing A.

Theorem II,13[8] : The right PO-ternary ideal of a
PO-ternary semiring T generated by a nonempty subset
A is the intersection of all right PO-ternary ideals of T
containing A.
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II. QUASI-PO-TERNARY IDEALS

We now introduce the notion of quasi-PO-ternary ideals in
PO-ternary semirings.

Definition III.1: A non-empty subset Q of a PO-ternary
semiring T is said to be quasi-PO-ternary idealprovided Q is
a subsemigroups of (T, +) satisfying

(M TIQNTQTNQTTEQ

(2) TTQN TTQTTN QTTE Q and

dm @l € Q.

Example IIL2: Let T = M,(Z;) be the PO-ternary
semiring of the set of all 2 X 2 square matrices over Zo_ , the

Let Q =

a 0
{(O Oj rae Zo_} . Then we can easily verify that Q is a

quasi-PO-ternary ideal of T.

set of all non positive integers.

Theorem IIL.3: Every left PO-ternary ideal of a
PO-ternary semiring T is a quasi-PO-ternary ideal of T.
Proof: Assume that Q is a left PO-ternary ideal of T. Then
(TTQJE Q, but (TTQ] N (TQT U TTQTT] N (QTT]
C(TTQJ< Q. Hence Q is a quasi-PO-ternary ideal of T.

Theorem IIl.4:Every lateral PO-ternary ideal of a
PO-ternary semiring T is a quasi-PO-ternary ideal of T.
Proof :Similar to IILIIL.

Theorem IIL5:Every right PO-ternary ideal of a
PO-ternary semiring T is a quasi-PO-ternary ideal of T.
Proof :Similar to IILIIL.

Theorem IIL.6:Every two sided PO-ternary ideal of a
PO-ternary semiring T is a quasi-PO-ternary ideal of T.
Proof : Any two sided PO-ternary ideal of T is a left
PO-ternary ideal and right PO-ternary ideal and any left
PO-ternary or any right PO-ternary ideal of T is a
quasi-PO-ternary ideal of T. Therefore any two sided
PO-ternary ideal of T is a quasi-PO-ternary ideal of T.

Theorem II1.7:Every PO-ternary ideal of a PO-ternary
semiring T is a quasi-PO-ternary ideal of T.
Proof :Similar to II1.6.

Note ITL.8: In general a quasi-PO-ternary ideal need not be a
left PO-ternary ideal, lateral PO-ternary ideal and right
PO-ternary ideal of T.

Example IIL.9: In example IIL.2, Q is a quasi-PO-ternary
ideal of T, but Q is not left PO-ternary ideal, lateral
PO-ternary ideal and right PO-ternary ideal of T.

Theorem III.10: Let T be a commutative PO-ternary
semiring, then every quasi-PO-ternary ideal of T is a
three sided PO-ternary ideal of T.

Proof: Assume that T be a commutative PO-ternary semiring.
Let Q be a quasi-PO-ternary ideal of T. Then (TTQ]N (TQT
U TTQTT]N(QTT]< Q. Since T be a commutative and Q S
T, then TTQ = TQT = QTT =TTQTT. Now TTQ N (TQT U
TTQTT) N QTT =(TTQ N TQT N QTT) U (TTQ N TTQTT
N QTT) C€TTQ UTTQ =(TTQ] + (TTQ] = (TTQJ<E Q.
Hence Q is a left PO-ternary ideal of T. Similarly Q is lateral
PO-ternary ideal and right PO-ternary ideal of T. Therefore,
every quasi-PO-ternary ideal of T is a three sided ideal of T.
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Theorem IIL.11: The intersection of any system of
quasi-PO-ternary ideals is a quasi-PO-ternary ideal of T
or empty.

Proof: Let {Qa}ae A be a family of PO-ternary ideals of T

and let Q = ﬂ 0,

aeA

Assume that Q is not empty. Since Qa is a quasi-PO-ternary

ideal foreach & € A Tpen (Q.TT] N (TQ,T + TTQ,TT] N
(TTQ.]E Q, for each a€ A.

Now for each 2€ A TTQ = TT([ 1Qu ) = [ 17T,

[
aeA aeA

TTQ, < (1TQ, TQT= T([ Qa1 = [1TQ.T ¢
aeA aeA

TQTS (TQ.T,  TTQTT = Tr( [ Qs )T =

aeA

(TTQ,TT ¢ TTQ.ITC (TTQ.TT]. and

TTQ =
aelA
TT( ﬂ Q,)= ﬂ Q,IT ¢ Q,TTC (Q.TT]. Then (TTQIN
aelA aeA
(TQT U  TTQTTINQTTIS(TTQJN  (TQ.T U
TTQ.ITIN(Q.ITIES Q. for each a€A. Therefore
(TTQ] N (TQT + TTQTT] N QTTIE [ 10 = Q.

acA

LethﬂQa and y € T be such that y < x.

aeA

Let for each

Ne.

aeA

(i.e. Q] = (ﬂ Qai|g ﬂ(Qa]= mQa =Q)- Therefore

ael aeA aeA

a€A. Since y <x and x € Qg YE Qu Thus y €

Q= ﬂ Q, ., is a quasi-PO-ternary ideal of T.

aeA

Theorem III.12: Every quasi-PO-ternary ideal of a
PO-ternary semiring T is a PO-ternary subsemiring of T.
Proof :Let Q be a quasi-PO-ternary ideal of T. By definition
MI.1, Qis a subsemigroup of (T, +). Leta, b,c € Q S T. Then
abce(TTQ], abce(TQT], and abce(QTT]. Therefore
abce(TTQIN (TQT U TTQTTIN(QTTIE Q, since Q is a
quasi-PO-ternary ideal of T and hence abc€ Q. Therefore Q
is a PO-ternary subsemiring of T.

Lemma IIL13: If Q is a quasi-PO-ternary ideal of a
PO-ternary semiringT and S is a PO-ternary
subsemiringof T, then QNS is a quasi-ideal of S.

Proof: Assume that Q; = QNS # @. Since Q<€ Q, it follows
that SSQ; N SQ;S N Q;SS € TTQ N TQT N QTT € Q.
Since Q€ S and S is a PO-ternary subsmigroup of T. We
have SSQ; N SQ;S N Q;SS € S. Then SSQ, N SQ;S N Q,SS
CQ.Letx€ Q; and y€ S such that y < x. Since x€ Q, y € Q.So
y € Q. Therefore Q, is quasi-PO-ternary ideal of S.
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Theorem II1.14: The intersection of left PO-ternary ideal,
lateral PO-ternary ideal and right PO-ternary ideal is a
quasi-PO-ternary ideal of T.

Proof :Let L, M, and R be the left PO-ternary ideal, lateral
PO-ternary ideal and right PO-ternary ideal of T respectively.
LetQ=LNMANR. Choose [E L, mE M, re R. Since Imre L
N M N R, Qis notempty. Since TTQ € L, TQT € M and
QTT S R, then we have TTQNTQTNQTTELNMNR=
Q. Similarly, TTQ N TTQTTN QTT € Q.Letxe LN M NR
and y€ T such that y<x. Sincex€eLNM NR,yeLN M NR.
Therefore Q =L N M N R is a quasi-PO-ternary ideal of T.

Theorem III.15: An additive subsemigroup Q of
PO-ternary semiring T is a quasi-PO-ternary ideal of T, if
Q is the intersection of a left PO-ternary ideal, a lateral
PO-ternary ideal and a right PO-ternary ideal of T.

Proof :Assume that Q is a quasi-PO-ternary ideal of T and L
=(TTQ U Q], M = (TQT U TTQTT U Q], R = (QTT U Q],
then by theorems 2.10, 1.4, IIL.5, III.6, we have L is left
PO-ternary ideal, M is lateral PO-ternary ideal and R is right
PO-ternary ideal of T containing Q respectively. Thus Q € L
N M N R. Since Q is quasi-PO-ternary ideal of T. We have

LNMNR=(TTQU Q] n(TQT U TTQTT U Q] n (QTT
uQl  =(TTQIN(TQT U TTQTTI N (QTT]) U Q] Q
U (Q] = Q.. Therefore Q =L N M N R and hence Q is the
intersection of left PO-ternary ideal, lateral PO-ternary ideal
and right PO-ternary ideal of T.

Definition IIL16: Let A be a nonempty subset of an ordered
ternary semi-ring T. The intersection of all quasi-PO-ternary
ideals of T containing A is calledthe quasi-PO-ternary ideal
of T generated by A and is denoted by Q(A). Moreover,Q(A)
is the smallest quasi-PO-ternary ideal of T containing A. If A
= {a}, wealso write Q({a}) as Q(a) or <a>,.

Theorem IIL17:1et A be a nonempty subset of an
ordered ternary semi-ring T. Then

Q(A) = (AJU [(TTAIN(TATUTTATTIN(ATT]).

In particular, Q(a) = <a>; = (a] U(TTa] N(TaTUTTaTT]
N(aTT)]) for all a €T.

Proof: By the theorem II.11, II.12, and II.13, we have (A U
TTA], (A U TAT U TTATT] and (A U ATT] are left
PO-ternary ideal, lateral PO-ternary ideal and right
PO-ternary ideal of T containing A, respectively. By

theorem III.15, we have (TTA U A] N (TAT U TTATT U A]
N (ATT U A] is a quasi-PO-ternary ideal of T containing A.
Thus Q(A) € (TTAUA]N(TATUTTATT U Al n (ATTU
Al
=(A]U ((TTA]J U (TAT U TTATT] U (ATT]). By the

theorem III.15, we have

(A]JU ((TTA] U (TAT U TTATT] U (ATT])

=(TTAU A] N (TATUTTATT U A] n (ATT U A]

S (TTQ(a) U Q(A)] N (TQ(A)T U TTQ(A)TT] N (TTQ(A)
U QA)]E Q(A).
Hence Q(A) = (A] U ((TTA] U (TAT U TTATT] U (ATT]).

Now we characterize the relationship between the
minimality of the quasi-PO-ternary ideals and a quasi-simple
and 0-quasi simple-PO-ternary semirings.

Definition II1.18 :Let T be a PO-ternary semiring with a zero
element. Then T is called quasi simple if T has no proper
quasi-PO-ternary ideals of T.
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Theorem II1.19: Let T be a PO-ternary semiring without
a zero element. Then the following are equivalent.

(1) T is a quasi-simple.

(2) (TTa]l N (TaTUTTaTT] N (aTT] =T for alla€ T.

(III) Q(a) =T for all a€ T.

Proof: (1) = (2) :Suppose that T is quasi-simple and let a€T.
By the theorem 2.11, 2.12, and 2.11II, we have (aUTTa],
(aUTaTUTTaTT] and (aUaTT] are left PO-ternary ideal,
lateral PO-ternary ideal and right PO-ternary ideal of T
containing A, respectively. By theorem III.15, we have

(TTava] n  (TaTUTTaTTUal] N (aTTUa] is a
quasi-PO-ternary ideal of T containing a. Since T is
quasi-simple, thus (TTaUa] N (TaTUTTaTTuUa] N (aTTUa]
=T.

(2) = (III) :Assume that (TTa] N (TaTUTTaTT] N (aTT]=T
for all a€ T. By theorem III.18, we have T = (TTa] N
(TaTUTTaTT] N (aTT]) S(a] U ((TTa] N (TaTUTTaTT] N
(aTT)]) = Q(a). Therefore Q(a) =T.

() = (1) :Assume that Q(a) = T for all a€ T. Let Q be a
quasi-PO-ternary ideal of T and let a€ Q. Then Q(a) =T, and
so Q@) € Q € T. Therefore T = Q and hence T is
quasi-simple.

Definition II1.20: Let T be a PO-ternary semiring with zero
element, T"# {0} and | T | > 1. Then T is called
0-quasi-simpleif T has no non zero proper quasi-PO-ternary
ideals.

Theorem II1.21: Let T be a PO-ternary semiring with
zero element, T"# {0} and | T|>1. Then T is a
0-quasi-simple if and only if Q(a) = T for a€ T\{0}.
Proof: Suppose that T is a 0-quasi-simple and a€ T\{0}.
Then Q(a) # {0}. Since T is 0-quasi simple, therefore Q(a) =
T.

Conversely, suppose that Q(a) =T for all a€ T\{0}. Let Q
be a non-zero quasi-PO-ternary ideal of T and a€ Q\{0}.
Then Q(a) = T and Q(a) € Q € T implies that T = Q.
Therefore, T is a 0-quasi-simple.

Definition III.22: Aleft quasi-PO-ternary ideal Q of an
ordered ternary semiringT without a zero element is called a
minimal left quasi-PO-ternary ideal of T if thereis no aleft
quasi-PO-ternary ideal A of T such that A €Q. Equivalently,
if for anyleft quasi-PO-ternary ideal A of T such that A €Q,
we have A = Q.

Definition III.23: Alateral quasi-PO-ternary ideal Q of an
ordered ternary semiringT without a zero element is called a
minimal lateral quasi-PO-ternary ideal of T if thereis no
alateral quasi-PO-ternary ideal A of T such that A €Q.
Equivalently, if for any lateral quasi-PO-ternary ideal A of T
such that A €Q, we have A = Q.

Definition III.24: Aright quasi-PO-ternary ideal Q of an
ordered ternary semiringT without a zero element is called a
minimal right quasi-PO-ternary ideal of T if thereis no
aright quasi-PO-ternary ideal A of T such that A CQ.
Equivalently, if for any right quasi-PO-ternary ideal A of T
such that A €Q, we have A = Q.

Definition IIL.25: Atwo sided quasi-PO-ternary ideal Q of an
ordered ternary semiringT without a zero element is called a
minimal two sided quasi-PO-ternary ideal of T if thereis no
atwo sided quasi-PO-ternary ideal A of T such that A €Q.
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Equivalently, if for any two sided quasi-PO-ternary ideal A of
T such that A €Q, we have A = Q.

Definition I11.26: A quasi-PO-ternary ideal Q of an ordered
ternary semiringT without a zero element is called a minimal
quasi-PO-ternary ideal of T if thereis no a quasi-PO-ternary
ideal A of T such that A <Q. Equivalently, if for
anyquasi-PO-ternary ideal A of T such that A €Q, we have A
=Q.

Theorem II1.27: Let Q be a quasi-PO-ternary ideal of an
ordered ternary semi-ring T without a zero element.
Then Q is a minimal quasi-PO-ternary ideal of T if and
only if it is the intersection of a minimal ordered left, a
minimal ordered right and a minimal ordered lateral
PO-ternary ideal of T.

Proof: Suppose that Q is a minimal quasi-PO-ternary ideal of
T. Then(TTQ] N (TQT U TTQTT] N (QTT]) € Q. By the
theorems2.11, 2.12, and 2.11II, we have (TTQ], (TQTU
TTQTT] and (QTT] are left PO-ternary ideal, lateral
PO-ternary ideal and right PO-ternary ideal of T and by
theorem I1I.15, we have (TTQ] N (TQT U TTOTT] N (QTT])
is a quasi-PO-ternary ideal of T.

Since Q is minimal quasi-PO-ternary ideal of T.

We have Q = (TTQ] N (TQT U TTQTT] n (QTT])).

We claim that (TTQ] is a minimal left PO-ternary ideal of T.
Let L be a left PO-ternary ideal of T such that L € (TTQ].
Then (TTL] €(L] =L S(TTQ].

Therefore, (TTL]N(TQT UTTQTTIN(QTT] S(TTQ]N (TQT
UTTQTTIN(QTT] = Q.

Since (TTLIN(TQTUTTQTT]N(QTT] is a quasi-PO-ternary
ideal of T and Q is aminimal quasi-PO-ternary ideal of T,we
have (TTLIN(TQT UTTQTTIN(QTT] =Q.

Thus Q S(TTL] and so (TTQ] € (TT(TTL]] &(TT(L]] =
(TTL] L.

Hence, L = (TTQ]. Therefore, (TTQ] is a minimal left
PO-ternary ideal of T.

Similarly, we can show that (QTT] and (TQT [TTQTT]
areminimal right PO-ternary ideal and minimal lateral
PO-ternary ideal of T, respectively.

Conversely, let Q =L N M N R where L, M and R are a
minimal left PO-ternary ideal, a minimal lateral PO-ternary
ideal and a minimal rightPO-ternary ideal of a PO-ternary
semiringT, respectively. By theorem IIL.15, Q is a
quasi-PO-ternary ideal of T. Let A be a quasi-PO-ternary
ideal of T such that A € Q. By theorems 2.11, 2.12, and
2.1111, we have (TTA], (TAT U TTATT] and (ATT] are left
PO-ternary ideal, lateral PO-ternary ideal and right
PO-ternary ideal of T. Now (TTA] S(TTQ] S(TTL) S(L] =
L. Since L is a minimal left PO-ternary ideal of T, we have
(TTA] = L.Similarly, (TAT U TTATT] =M and (ATT] =R.
Since A is a quasi-PO-ternary ideal of T and hence

Q=L NMNR=(TTA] n (TAT U TTATT] n (ATT] € A.
Therefore A = Q. Hence, Q is a minimal quasi-PO-ternary
ideal of PO-ternary semiringT.

Theorem II1.28: Let Q be a quasi-PO-ternary ideal of an
ordered ternary semi-ring T without a zero element. If Q
is quasi-simple, then Q is a minimal quasi-PO-ternary
ideal of T.

Proof :Suppose that Q is quasi-simple and let A be a
quasi-PO-ternary ideal ofT such that A Q. Therefore
(QQA] N (QAQ U QQAQQ] N (AQQ] & (TTA] N (TAT U
TTATT] N (ATT] € A and (A] N Q € (A] = A. Therefore A
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is a quasi-PO-ternary ideal of Q. Since Q is quasi-simple and
hence Q = A. Hence Q is a minimal quasi-PO-ternary ideal of
T.

Theorem IIL.29: Let T be an ordered ternary semiring
without a zero element having proper quasi-PO-ternary
ideals. Then every proper quasi-PO-ternary ideal of T is
minimal if and only if the intersection of any two distinct
proper quasi-PO-ternary ideals is empty.

Proof: Let Q, and Q,be two distinct proper quasi-PO-ternary
ideals of T. Byassumption, we have that Q; and Q, are
minimal.If Q;NQ,#®, then by Theorem IL.11, Q;NQ,is a
quasi-PO-ternary ideal of T.Since Q;NQ,SQ; andQ, is
minimal, we have Q;NQ, = Q;.Since Q;NQ,EQ, andQ, is
minimal, we have Q;NQ, = Q,. Therefore Q; = QN Q, = Q..
This is a contradiction and hence Q,NQ,=0.

Conversely, suppose that Q be a proper quasi-PO-ternary
ideal of T and let A be a quasi-PO-ternary ideal of T such that
A Q. Then A is a proper quasi-PO-ternary idealof T. If A #
Q, then by assumption, A = ANQ = @. That is acontradiction.
Hence, A = Q. Therefore, Q is a minimal quasi-PO-ternary
idealof T.

Definition II1.30: A nonzero quasi-PO-ternary ideal Q of a
PO-ternarysemiring T with a zero element is called a
0-minimal quasi-PO-ternary idealof T if there is no a
nonzero quasi-PO-ternary ideal A of T such that A
€Q.Equivalently, if for any nonzero quasi-PO-ternary ideal A
of T such that A €Q,we have A = Q.

Note I1I.31: We also define a O-minimal left PO-ternary
ideal, a O-minimal lateral PO-ternary anda O-minimal right
PO-ternary ideal of an ordered ternary semiring T with a
zeroelement in the same way of a 0-minimal
quasi-PO-ternary ideal.

Theorem II1.32: Let T be a PO-ternary semiring with a
zero element. Then the intersection of a 0-minimal left
PO-ternary ideal, a 0-minimal right PO-ternary ideal and
a 0-minimal lateral PO-ternary ideal of T is either {0}or a
0-minimal quasi-PO-ternary ideal of T.

Proof : Let Q=L NMNR # {0} where L, M, and R are a
O-minimal left PO-ternary ideal, a O-minimal lateral
PO-ternary ideal and a 0-minimal right PO-ternary ideal of T,
respectively. By theorem III. 14, Q is a quasi-PO-ternary ideal
of T. Let A be a non zero quasi-PO-ternary ideal of T such
that A € Q. By theorems II.11, II.12, and I.13, (TTA], (TAT
U TTATT], (ATT] are left PO-ternary ideal, lateral
PO-ternary ideal and right PO-ternary ideals of T
respectively. Then we get the following two cases:
Case-1:(TTA] = {0}, (TAT U TTATT] = {0}, (ATT] = {0}.
If (TTA] = {0}, then (TTA] = {0} SA. Thus A is a nonzero
left PO-ternary ideal of T. Since A € Q € L and L is a
0-minimal left PO-ternary ideal of T. Then we have A = L.
Therefore A = Q. Similarly, if (ATT] = {0} or (TAT U
TTATT] = {0], we get A =Q.

Case-2:(TTA] # {0}, (TAT U TTATT] # {0}, (ATT] # {0}.
Now (TTA] S(TTQ] S(TTL) <(L] = L.Since L is a
0-minimal left PO-ternary ideal of T, we have (TTA] = L.
Similarly,(TAT UTTATT] = M and (ATT] =R.

Since A is a quasi-PO-ideal ofT, we haveQ = L NM NR =
(TTA] N(TAT UTTATT] N(ATT] CA= A =Q. Hence, Qis
a 0-minimal ordered quasi-ideal ofT.
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Theorem II1.33: Let Q be anon-zero quasi-PO-ternary
ideal of an ordered ternary semi-ring T with a zero
element. If Q is 0-quasi-simple, then Q is a 0-minimal
quasi-PO-ternary ideal of T.

Proof :Suppose that Q is 0-quasi-simple and let A be
anon-zero quasi-PO-ternary ideal ofT such that A €Q.
Therefore (QQA] N (QAQ U QQAQQ] N (AQQ] € (TTA] N
(TAT U TTATT] n (ATT] € A and (A] N Q S (A] = A.
Therefore A is a non-zero quasi-PO-ternary ideal of Q. Since
Q is 0-quasi-simple and hence Q = A. Hence Q is a
0-minimal quasi-PO-ternary ideal of T.

Theorem II1.34: Let The an ordered ternary semiring
with a zero element having non-zero proper
quasi-PO-ternary ideals. Then every non-zero proper
quasi-PO-ternary ideal of T is 0-minimal if and only if the
intersection of any two distinct non-zero proper
quasi-PO-ternary ideals is {0}.

Proof: Let Q; and Q,be two distinct non-zero proper
quasi-PO-ternary ideals of T. Byassumption, we have that Q,
and Q, are O-minimal.If Q;NQ,#{0}, then by Theorem III.11,
Q:NQ,is anon-zero quasi-PO-ternary ideal of T.Since
Q1NQ,SQ; andQ; is O-minimal, we have Q;NQ, = Q,.Since
QiNQ,EQ, andQ, is O-minimal, we have Q;NQ, = Q,.
Therefore Q; = QN Q, = Q,. This is a contradiction and
hence Q;NQ,={0}.

Conversely, suppose that Q be anon-zero proper
quasi-PO-ternary ideal of T and let A be anon-zero
quasi-PO-ternary ideal of T such that A Q. Then A is a
non-zero properquasi-PO-ternary idealof T. If A # Q, then by
assumption, A = ANQ = {0}. That is acontradiction. Hence, A
= Q. Therefore, Q is a 0-minimal quasi-PO-ternary idealof T.

Theorem IIL.35: Let x be an idempotent element of a
PO-ternary semiringT, that is, x™(=xxx) >x. If R is a
right PO-ternary ideal, M a lateral PO-ternary ideal, and
L a left PO-ternary ideal of T, then (Rxx], (xxMxx],and
(xxL] are quasi-PO-ternary ideals of T.

Proof: To show (Rxx], (xxMxx], and (xxL] are quasi-ideals of
S, it is sufficient to show that
(Rxx] (RIN(TxT+TTxTT]
TTINM]N(SSx], and

(xxL]= XTTIN(TXTUTTXTT ]N(L].
For the first case, it is clear that (Rxx]SR N TTx = (R N TTx]
=(R] N (TTx].

Let a€ (R] N (TTx] =a€ (R] and a€ (TTx].

N(TTx],(xxMxx)]

n
Now, a€ (TTx]=a < Z s;t,x for some s;, ;€ T.

i=1

Therefore axx< ( z SX)xx = Z st (xxx) = Z s;t.x 2a.
i=1 i=1 i=1

It follows that a€ (Rxx] and hence (Rxx] = (R] N (TTx].

Again a<axx=a€ (TxT]. Therefore we have a€

(TXTUTT«TT].

Thus (R] N (TTx] € (TxTUTT«TT].

(RIN(TxT+TTxTT) N(TTx].

For the second case, we see that (xxMxx] S(xTT] N M] N

(TTx]. Letae (xTT] n (M] N (TTx]. Then a€ (xTT], a€ M]

and a€ (TTx]. Now a€ (xXTT] and a€ (TTx]

Therefore, (Rxx]=

n m
=a< Z 81X = qujvj for some s, t;, uj, V€ T.

i=1

v
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Jj=1

26

n
Therefore xxaxx < xx( z S,1,X )xx

i=1

n n m
=xx Z 8.1, (X xx)=xx z S;1X =xx z XUV, =
i=1 i=1 Jj=1
m
Z (xxx)u;v; =

m
V.=
Jj=1 J=1

= a € (xxMxx] and hence (xxMxx]= (xTTINM]N(SSx].
For the third case it is similar to first case.

IV. PRIME QUASI-PO-TERNARY IDEALS

In this section, we introduce the notions of prime
and semiprime quasi-PO-ternary ideals in PO-ternary
semirings and some relevant counter examples are also
indicated.

Definition IV.1: A proper quasi-PO-ternary ideal Q of a
PO-ternary semiring T is said to be prime quasi-PO-ternary
idealprovided ABC € Q impliesthat AS QorB<S QorCC
Q for some quasi-PO-ternary ideals A, B, C of T.

Definition IV.2: A proper quasi-PO-ternary ideal Q of a
PO-ternary semiring T is said to be semiprime
quasi-PO-ternary idealprovided A*C Q implies that A € Q
for some quasi-PO-ternary ideal A of T.

Definition IV.3: A proper quasi-PO-ternary ideal Q of a
PO-ternary semiring T is said to be weakly prime
quasi-PO-ternary ideal providled Q € A,B <€ Q,C € Q and
ABC <€ Q implies that A = Q or B = Q or C = Q for some
quasi-PO-ternary ideals of T.

Theorem 1V.4: Every prime quasi-PO-ternary ideal of T
is a Semiprime quasi-PO-ternary ideal of T.

Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T
and A be any quasi-PO-ternary ideal of T such that A* = AAA
C Q. Since Q is prime. Therefore A € Q and hence Q is a
Semiprime quasi-PO-ternary ideal of T.

Note IV.5: The converse of the theorem 4.4. need not be true.
i.e., every Semiprime quasi-PO-ternary ideal of T need not be
a prime quasi-PO-ternary ideal of T.

Example IV.6: Let T = M,(Z; ) is a PO-ternary semiring

of 2 x 2 Z,

|

square matrices over Let

0 0

is a Semiprime quasi-PO-ternary ideal of T. But Q is not a
prime quasi-PO-ternary ideal of T.

0 b -
Since A = cbe Z,;,
0 0
B= :ce ”Z,pand

j: ae Zo} and a<b for a, b€ Z, . Then Q

0 ¢
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s

suchthat ABCS Q. ButAZ Q,BZQandC £ Q.

0
j: de Z(_)} are quasi-PO-ternary ideal of T
0

Theorem 1V.7: Every prime quasi-PO-ternary ideal Q of
a PO-ternary semiring T is a weakly prime
quasi-PO-ternary ideal of T.

Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T.
Then there exist quasi-PO-ternary ideals A, B, C of T such
that ABCC Q. FQE A, QEB,CEQand ABCESQ,Qis
a prime quasi-PO-ternary ideal of T implies that A € Q or B
€ QorC < Q. Therefore A=Q or B=Q or C=Q and hence
Q is a weakly prime quasi-PO-ternary ideal of T.

Note I'V.8: The converse of the theorem 4.7. need not be true.
i.e., every weakly prime quasi-PO-ternary ideal of T is not
prime quasi-PO-ternary ideal of T.

Example IV.9: Let T = M,(Z) is a PO-ternary semiring

of 2 X 2 square matrices over Z; . Let Q =

{c

is a weakly prime quasi-PO-ternary ideal of T. But Q is not a
prime quasi-PO-ternary ideal of T. Since A =

{(g %Jzz}{o ") ae 3zo}and

a 0
C= {(O O]: ac 525} are quasi-PO-ternary ideal of T

such that ABC € Q. But QZ A, Q¥ B and QZC.

Theorem IV.10: Let T be a PO-ternary semiring and Q be
a quasi-PO-ternary ideal of T. If Q is prime, then Q is left
or lateral or right PO-ternary ideal of T.

Proof: Let Q be a prime quasi-PO-ternary ideal of T. Then
(TTQ)(TQT U TTQTT)QTT) € TTQ N ( TQT U TTQTT) N
QTT < Q. Since Q is prime, we have TTQ € Q or TQT N
TTQTT € Q or QTT < Q. therefore Q is left or lateral or
right PO-ternary ideal of T.

0
j: ace 3028} and a<b for a, b€ Z, . Then Q
0

Theorem IV.11: Let T be a commutative PO-ternary
semiring and Q be a quasi-PO-ternary ideal of T. Then Q
is prime if and only if abc€ Q implies a€ Q or b€ Q or c€
Q.

Proof :Suppose that Q is a prime quasi-PO-ternary ideal of T.
Let abc€ Q. Then by theorem4.10, Q is a PO-ternary ideal of
T. Let x€<a>,<b>,<c>,, Then x = ((a] n (TTaln
(TaTUTTaTT] N (aTT)).((b] N (TTh] N(THTUTTaTT] N
(PTT]).((c] N (TTc] N (TcTUTTCcTT] N (¢TT]). Since abce
Q and Q is a PO-ternary ideal of T. Therefore x€ Q. Thus
<a>,<b>,<c>,€ Q. Since Q is prime quasi-PO-ternary ideal
of T. Hence a€ Q or b€ Q or c€ Q.

Converse is obvious.

Theorem IV.12: Let T be a PO-ternary semiring and Q be
a quasi-PO-ternary ideal of T. Then Q is prime if and
only if ((TTa]l] N (TaTUTTaTT] N (aTT).(TTH] N
(THTUTTHTT] N (BTTD.(TTe] N (TcTUTTCTT] N
(cTT)) € Q implies a€ Q or b€ Q or c€ Q.

v
Ngxlﬁc_n

Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T
and let ((TTa]l N (TaTUTTaTT] N (@TT).(TTh] N
(TPTUTTHTT] N (bTT]).((TTc] N (TcTUTTCTT] N (cTT))
€ Qforsome a, b, c€ T. Clearly, ((TTa] N (TaTUTTaTT] N
(@TT], ((TTh] n (TPTUTTHTT] n (BTT], (TTc] N
(TcTUTTCETT] N (cTT]) are quasi-PO-ternary ideals of
T.Since Q is prime, therefore ((TTa] N (TaTUTTaTT] N
@TTDhE Q or (TTh] N (THTUTTHTT] N (bTT]) € Q or
((TTc] N (TcTUTTCTT] N (¢cTTHE Q. If ((TTa]l N
(TaTUTTaTT] N (@aTTDHE Q, then <a>,E Q implies that a€
Q. Similarly, b€ Q or c€ Q.

Converse is obvious.

Theorem IV.13: Let T be a PO-ternary semiring. If the
quasi-PO-ternary ideal of T with respect to inclusion
relation form a chain, then every weakly prime
quasi-PO-ternary ideal is a prime quasi-PO-ternary ideal
of T.

Proof: Let Q be a weakly prime quasi-PO-ternary ideal of T.
Let A, B, C are quasi-PO-ternary ideal of T such that ABC €
Q. Suppose that A £ Q, B € Q and C € Q. By the statement
since Q € A, Q € B and Q € C. Since Q is weakly prime
quasi-PO-ternary ideal of T. Therefore A=QorB=QorC=
Q. This is a contradiction. Hence AS QorB<S QorC c Q.
Therefore Q is a prime quasi-PO-ternary ideal of T.

Theorem IV.14: Let T be a PO-ternary semiring. Then
the following are equivalent

(1) The quasi-PO-ternary
idempotent.

(2) If A, B, C are three quasi-PO-ternary ideals
of T such that ANB N C #@, thenANBNC
= ABC.

(3) <a>, =[<a>,]’ for all a€ T.

Proof: (1) = (2): Suppose that A, B, C are quasi-PO-ternary

ideals of T such that ANBNC # @. Then by theorem

IL.11,ANBNC is a quasi-PO-ternary ideal of T. Since every

quasi-PO-ternary ideal is an idempotent. Therefore
(ANBNC) = (ANBNC)’ = (ANBNC)(ANBNC)(ANBNC)

C ABC.

(2) = (3): Itis straight forward and (3) = (1) is obvious.

ideal of T is

Definition IV.15: A non-empty subset A of a PO-ternary
semiring T is said to be m,-system provided for any a, b, c€
A, there exist x €<a>,, y €<b>,, z E<c>,and d € A such that
xyz<d.

Note IV.16: A non-empty subset A of a PO-ternary semiring
T is called an mg-system if a, b, c€ A, there existx€<a>,,
YE<b>,, zE<c>, such that xyz € (A].

Definition IV.17: A non-empty subset A of a PO-ternary
semiring T is said to be n,-system provided for any a € A,
there exist x, y, z €E<a>,and d € A such that xyz <d.

Note IV.18: A non-empty subset A of a PO-ternary semiring
T is said to be n,-systemprovided for any a€ A, there exist x,
¥, zE<a>, such that xyz € (A].

Theorem IV.19: Every m,system is angsystem of
PO-ternary semiring T.

Proof: Suppose that the non-empty subset A of a PO-ternary
semiring T is an m-system. Let for any a€ A, there exist x, y,
Z €<a>, Since A is am,-system and hence xyz€(A].
therefore A is a ng-system of T.
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Note IV.20: The converse of the theorem 4.19, need not be
true. i.e., every ng-system of a PO-ternary semiring T need
not be am,-system of T.

Example IV.21: Let T = Z_ is a PO-ternary semiring under

usual addition, multiplication modulo 6 and natural ordering.
Let A = {-2,-3}. Then A is an,-system but not anm,-system.

Theorem IV.22: Let T be a PO-ternary semiring and Q is
a quasi-PO-ternary ideal of T. Then Q is prime
quasi-PO-ternary ideal of T if and only if T\Q is
anm -system of T.

Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T.
Let a, b, ce T\Q.

Suppose that xyz£d for all d€ T\Q and for all x €<a>,, y €
<b>,and z € <c>,.

Then <a>,<b>,<c>,C
quasi-PO-ternary ideal of T.
Therefore a€ Q or b€ Q or c€ Q. This is a contradiction.
Therefore xyz< d for some x€<a>,, yE<b>, and zE<c>,.
Hence T\Q is anm,-system of T.

Conversely suppose that, A, B, C are
quasi-PO-ternary ideals of T such that ABC € Q. Assume
that AZ Q,BZ Qand C £ Q. Let a€ A\Q, b€ B\Q and c€
C\Q. Then a, b, c€ T\Q. Since T\Q is an m,-system.
Therefore there exist an element d€ T\Q such that xyz <d for
some x € <a>, y € <b>, and z € <c>, But xyz €
<a>,<b><c>,€ ABC € Q. This is a contradiction. Hence A
C Qor B S Qor C<c Q Therefore Q is a prime
quasi-PO-ternary ideal of T.

Since Q is a prime

Theorem IV.23: Let T be a PO-ternary semiring and Q is
a quasi-PO-ternary ideal of T. Then Q is semiprime
quasi-PO-ternary ideal of T if and only if T\Q is an
ng-system of T.

Proof: Similar to the proof of the theorem IV.22.

Definition IV.24: A quasi-PO-ternary ideal of a PO-ternary
semiring T is said to be T-prime quasi-PO-ternary ideal of T
provided xTyTz € Q impliesx EQory € Qorz € Q.

Definition IV.25: A quasi-PO-ternary ideal of a PO-ternary
semiring T is said to be T-semiprime quasi-PO-ternary ideal
of T provided xTxTxC Q impliesx€ Q.

Theorem IV.26: A quasi-PO-ternary ideal Q of a
PO-ternary semiringT is T-prime if and only if RML €Q
implies R €Q or M €Q or L €Q for any right PO-ternary
ideal R, lateral PO-ternary ideal M and left PO-ternary
ideal L of T.

Proof: Let Q be a T-prime quasi-PO-ternary ideal of T and
RML € Q. Suppose R € Qand M € Q. Then there exist x&
R\Q and ye M\Q. Letz€ L. Then xTyTzE RTMTL € RMLC
Q. Since Q is T-prime. Therefore, x€ Q or y€ Q or z€ Q.But
x€ Q and y¢ Q.Hence z€ Q and hence L € Q.

Conversely, suppose that xTyTzE Q.  Then
TTYTYyT)(TTz) SxTyTz& Q. Since xTT is a right
PO-ternary ideal of T, TyT is a lateral PO-ternary ideal of T
and TTz is a left PO-ternary ideal of T. Therefore, by
hypothesis XTTS Q or TYTES Q or TTzE Q.If XTTE Q, then
X EXTTCO.

Now <x><x>,<x>; = @UXTT](xUTXTUTTxXTT](xUTTx]
c(x]’'u (xTT] € Q. By hypothesis <x>,C Q or <x>,Z Q or

v
N‘(-:xl)g_c_n

<x>,€ Q. Therefore x€ Q. Similarly, if TYTS Q =y€ Q and
if TTzE Q =z€ Q. Hence Q is T-prime PO-ternary ideal of T.

Notation I'V.27: we use the following set defined as
LQ) = {x€ Q: (TTx] € Q},
M(Q) = { x€ Q : (TxTUTTATT] € Q}
R(Q)={x€ Q: (xTT] € Q}
I = { xe L(Q) : (TTx]< 1(Q)}
mlv = { XE M(Q) : (TXTUTTXTT]E M(Q)}
Ik = { x€ R(Q) : TT]< R(Q)}.

Theorem 1V.28: Let Q be a quasi-PO-ternary ideal of T.
Then L(Q) is a left PO-ternary ideal of T contained in Q if
Q is non-empty.

Proof: Let x, yEL(Q) and s, t€ T. Thenx, yEL(Q) =stx€
(TTx] € Q, stye (TTy] € Q.

=>stx, sty€ Q =stx + sty =st(x +y) € (TT(x + y)] SO=>x + y€
Q)

Now TTstxC€TTx= (TTstx] € (TTx] € Q. Therefore
stx€L(Q).

Consequently, TTL(Q) € Q. Hence L(Q) is a left PO-ternary
ideal of T.

Theorem 1V.29: Let Q be a quasi-PO-ternary ideal of T.
Then M(Q) is a lateral PO-ternary ideal of T contained in
Q if Q is non-empty.

Proof: Let x, yeM(Q) and s, t€ T. Then x, yEM(Q) =sxt€
(TxT) € Q, syte (TyT] € Q.

=>sxt, syt€ Q = sxt + syt = s(x + y)t€ (T(x + y)T] €O

=x+y € M(Q)

Now TsxtTETxTUTTXTT= (TsxfT] € (TxTUTTXTT] € Q.
Therefore sxteM(Q).

Consequently, TM(Q)TU TTM(Q)TT< Q. Hence M(Q) is a
lateral PO-ternary ideal of T.

Theorem 1V.30: Let Q be a quasi-PO-ternary ideal of T.
Then R(Q) is a right PO-ternary ideal of T contained in Q
if Q is non-empty.

Proof: Let x, yeR(Q) and s, t€ T. Then x, yER(Q)

= xst€ (xTx] € Q, yste (yTT] € Q.

=xst, yst€ Q =xst + yst = (x + y)st€ (x + y)TT] €0
=>x+y€RQ)

Now xstTTSxTT= (xstTT] € (xTT] € Q.

Therefore xst € R(Q).

Consequently, R(Q)TT € Q.

Hence R(Q) is a right PO-ternary ideal of T.

Theorem IV.31: Let Q is a T-prime quasi-PO-ternary
ideal of a PO-ternary semiring T. Then Iy is a prime
quasi-PO-ternary ideal of T.

Proof: Let Q be a T-prime quasi-PO-ternary ideal of a
PO-ternary semiring T.

Suppose RML € Ifor any PO-ternary ideals R, M and L of T.
Now I,EL(Q) € Q implies RML € Q. Since Q is T-prime,
therefore, by theorem 4.26, we have R € Q or M € Q or
L € Q. Also I is the largest PO-ternary ideal contained in Q,
therefore, R €l or M € Ig or L € 1 . Hence I is a prime
PO-ternary ideal of T.

Corollary IV.32: Let Q is a Semiprime quasi-PO-ternary
ideal of a PO-ternary semiring T. Then I is a Semiprime
PO-ternary ideal of T.

Theorem 1V.33: If a PO-ternary semiring T is a regular,
then every quasi-PO-ternary ideal of T is T-semiprime.
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Proof: Suppose that T is regular and Q be a quasi-PO-ternary
ideal of T. Let aTaTaS Q for a€ T. Since T is regular,
therefore, for a€ T, there exist x, y€ T such that a<axaya.
Thus a < axaya=a€ (aTaTa] SaTaTa< Q.Therefore a€ Q.
Hence Q is a T-semiprime.

V. QUASI-k-PO-TERNARY IDEALS

Definition V.1: An additive subsemigroup Q of a PO-ternary
semiring T is said to be quasi-k-PO-ternary ideal of T

provided QTT \(TQTUTTOTT)TTQ < QO
QleQ
Theorem V.2: Let T be a PO-ternary semiring and

A,B,CcT. Then ABC = ABC.
Proof: Since A €A, B €Band C €C, therefore, ABC

and

€ ABC . Hence ABC — ABC . Again, let xEA , yEE

and z€ C . Then there exist a;, a,€ A, b;, b,€ B and ¢;, c,€ C
such thatx + a; = az, y+ b; = b and z + ¢; = ¢;. Now

xXyz+ aszC] + a2b1C2 + (1]b2C2 + dlb]C|

=Xxyz + (x+ al)(y + by)c| + axbicy + aibrer + abicy
=xyz + xyc, + xbicy + a\yc| + aibicy + arbicr+abycr + aybic
=xycy + xbic, + ayyc; + aibicy + arbicr+abyer + arbic
=Xycy + xb161 +a)yc; + a1b1C1 + (X + al)b1c2+a1b2c2 + CllblCl
= )C(y + b])C2 + Xb]C] + 111()1 + b])Cl + a1b102+a1b262 + alblcl
= xb2C2 + (x + al)b]C] + (llbzcl + Cl]b]Cz + a1b2C2
= (x + a))bycy + asbic; + abyey + aibico= arbyey + arbicy +
abyc) + aibics.
As abic;€ ABC, where i = 1, 2. Therefore we can prove that

xyz€ ABC for x€ A, y€ B and z€ C. Suppose that

t€ ABC . Then ¢ = Zaibici for some aiEZ , biEE,

€ C. Thus t= ABC . Therefore ABC < ABC . Hence

ABC < ABC = ABC. Therefore ABC = ABC .

Definition IV.3: A PO-ternary semiring T is said to be
k-regular provided for each a € T there exist
x, y€ T such that a + axa = aya.

Theorem IV .4: If a PO-ternary semiring T is k-regular.
Then every quasi-k-PO-ternary ideal Q of T is of the form

Q= QTQTQ=TTQN(TQT UTTQTT)N Q1T .
Proof: Let Q be a quasi-k-PO-ternary ideal of T. Then
OQTTNTQTUTTQTT)NTTQ = Q and Q] € Q.

Let a€ Q and T is k-regular, then there exist x, y€ T such that
a + axa = aya=axa + axaxa = ayaxa. Since axaxa, ayaxa€

QTQTQ. Therefore axae QTQOTQO .
aya€ QTQTQ . Since QTQTQ is k-closed and hence
a€ QTOTQ = QTQOTQ. Therefore Q € QTOTQ . Again

QTQTQ <Q(TTT)T € QTT and QTQTQ & TTQ and
QTQTQ c TTQTT and hence

QTOTQ = TTQ, QTQTQ < QTT
QTOTQ = TOQT UTTQTT as0<TOT .

Similarly,

and

N

Thus we have Q

€ QTQTQ < QIT N(TQTUTTQTT)NTTQ = Q as
Q is quasi-k-PO-ternary ideal of T. Hence Q = QT—QTQ =
OTT N\(TQTUTTQTT)NTTQ.

VI. CONCLUSION

In this paper mainly we studied about quasi po-k-ternary
ideals and full quasi po-k-ternary ideals in PO-ternary
semiring.
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