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 

Abstract— In this paper we introduce the definitions 
related to quasi-PO-ternary ideals and Bi-PO-ternary 
ideals in PO-ternary semirings and we study the relation 
between quasi-PO-ternary ideals and Bi-PO-ternary 
ideals in PO-ternary semirings. 

Mathematics Subject Classification: 16YIII0, 16Y99. 

 
Index Terms — Quasi PO-k-ternary ideal, quasi-PO- 

ternary ideal of T generated by A, quasi simple, 0-quasi 

simple, quasi k-PO-ternary ideal. 
 

I. INTRODUCTION 

  The notion of semiring was introduced by Vandiver [III] in 
19III4. In fact semiring is a generalization of ring. In 1971 
Lister [2] characterized those additive subgroups of rings 
which are closed under the triple ring product and he called 
this algebraic system a ternary ring.  MadusudhanaRao. D, 
Siva Prasad. P and SrinivasaRao. G [4, 5, 6, 7, 8] studied and 
investigated some results on partially ordered ternary 
semiring.  

II. PRELIMINARIES 

Definition II.1[ 6] : A nonempty set T together with a binary 
operation called addition and a ternary multiplication denoted 
by [ ] is said to be a ternary semiring if T is an additive 
commutative semigroup satisfying the following conditions : 

i) [[abc]de] = [a[bcd]e] = [ab[cde]], 
ii) [(a + b)cd] = [acd] + [bcd], 
iii) [a(b + c)d] = [abd] + [acd], 
iv) [ab(c + d)] = [abc] + [abd] for all a; b; c; d; e ∈T. 

Note II.2[6] : For the convenience we write 1 2 3x x x  instead 

of  1 2 3x x x
 

 

Note II.3[6]: Let Tbe a ternary semiring. If A, B and C are 
three subsets of T, we shall denote the set  

ABC =  : , ,abc a A b B c C    . 
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Note II.4[6] : Let T be a ternary semiring. If A, B are two 
subsets of T, we shall denote the set A + B = 

 : ,a b a A b B    and  2A = { a + a : a∈ A}. 

Note II.5[6] : Any semiring can be reduced to a ternary 
semiring. 

Definition II.6 [6]: A ternary semiring T is said to be a 
partially ordered ternary semiring or simply PO Ternary 

Semiring or Ordered Ternary Semiring provided T is 
partially ordered set such that a ≤ b then   

(1) a + c ≤ b + c and c + a ≤ c + b,  
(2) acd ≤ bcd, cad ≤ cbd and cda ≤ cdb for all a, b, c, d∈ T. 
Throughout T will denote as PO-ternary semiring unless 
otherwise stated. 

Theorem II.7 [6]: Let Tbe a po-ternary semiring and  
A ⊆T, B ⊆T and C ⊆ T. Then (i) A ⊆(A], (ii) ((A]] = (A], 
(iii) (A](B](C] ⊆(ABC] and (iv) A ⊆B ⇒A ⊆(B] and  
(v) A ⊆B ⇒(A] ⊆(B], (vi) (A ∩ B] = (A] ∩ (B], (vii) (A ∪ B] 
= (A] ∪ (B]. 

Definition II.8 [6]: A  nonempty subset A of a PO-ternary 
semiring T is aPO-ternary ideal of T provided A is additive 
subsemigroup of T, ATT   A, TTA ⊆ A, TAT ⊆ A and  

(A] ⊆ A. 

Theorem II.9[8] : Let T be a PO-ternary semiring and A, 
B be two PO-ternary ideals of T, then the sum of A, B 
denoted by A + B is a PO-ternary ideal of T where A + B = 
{x = a + b / a∈ A, b∈ B}. 

Theorem II.10[8]: Let A be a PO-ternary ideal of T. Then 
(A] is an ordered ternary ideal of T generated by A. 

Theorem II.11[8] : The left PO-ternary ideal of a 
PO-ternary semiring T generated by a non-empty subset 
A is the intersection of all left PO-ideals of T containing 
A. 

Theorem II.12[8] : The lateral ideal of a ternary semiring 
T generated by a non-empty subset A is the intersection of 
all lateral ideals of T containing A. 

Theorem II,13[8] : The right PO-ternary ideal of a 
PO-ternary semiring T generated by a nonempty subset 
A is the intersection of all right PO-ternary ideals of T 
containing A. 
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III. QUASI-PO-TERNARY IDEALS 

We now introduce the notion of quasi-PO-ternary ideals in 
PO-ternary semirings. 

Definition III.1: A non-empty subset Q of a PO-ternary 
semiring T is said to be quasi-PO-ternary idealprovided Q is 
a subsemigroups of (T, +) satisfying  
(1) TTQ ∩ TQT ∩ QTT ⊆ Q 
(2) TTQ∩ TTQTT∩ QTT⊆ Q and  
(III) (Q] ⊆ Q. 

Example III.2: Let T = 2 0( )M Z


 be the PO-ternary 

semiring of the set of all 2 × 2 square matrices over 0Z


 , the 

set of all non positive integers.  Let Q = 

0

0
:

0 0

a
a Z

  
  

  
.  Then we can easily verify that Q is a 

quasi-PO-ternary ideal of T. 

Theorem III.3: Every left PO-ternary ideal of a 
PO-ternary semiring T is a quasi-PO-ternary ideal of T. 
Proof: Assume that Q is a left PO-ternary ideal of T.  Then 
(TTQ]⊆ Q, but  (TTQ] ∩ (TQT ∪ TTQTT] ∩ (QTT] ⊆(TTQ]⊆ Q.  Hence Q is a quasi-PO-ternary ideal of T. 

Theorem III.4:Every lateral PO-ternary ideal of a 
PO-ternary semiring T is a quasi-PO-ternary ideal of T. 
Proof :Similar to III.III. 

Theorem III.5:Every right PO-ternary ideal of a 
PO-ternary semiring T is a quasi-PO-ternary ideal of T. 
Proof :Similar to III.III. 

Theorem III.6:Every two sided PO-ternary ideal of a 
PO-ternary semiring T is a quasi-PO-ternary ideal of T. 
Proof : Any two sided PO-ternary ideal of T is a left 
PO-ternary ideal and right PO-ternary ideal and any left 
PO-ternary or any right PO-ternary ideal of T is a 
quasi-PO-ternary ideal of T.  Therefore any two sided 
PO-ternary ideal of T is a quasi-PO-ternary ideal of T.  

Theorem III.7:Every PO-ternary ideal of a PO-ternary 
semiring T is a quasi-PO-ternary ideal of T. 
Proof :Similar to III.6. 

Note III.8: In general a quasi-PO-ternary ideal need not be a 
left PO-ternary ideal, lateral PO-ternary ideal and right 
PO-ternary ideal of T. 

Example III.9: In example III.2, Q is a quasi-PO-ternary 
ideal of T, but Q is not left PO-ternary ideal, lateral 
PO-ternary ideal and right PO-ternary ideal of T. 

Theorem III.10: Let T be a commutative PO-ternary 
semiring, then every quasi-PO-ternary ideal of T is a 
three sided PO-ternary ideal of T. 
Proof: Assume that T be a commutative PO-ternary semiring.  
Let Q be a quasi-PO-ternary ideal of T.  Then (TTQ]∩ (TQT ∪ TTQTT]∩(QTT]⊆ Q.  Since T be a commutative and Q ⊆ 
T, then TTQ = TQT = QTT = TTQTT.  Now TTQ ∩ (TQT ∪ 
TTQTT) ∩ QTT = (TTQ ∩ TQT ∩ QTT) ∪ (TTQ ∩ TTQTT ∩ QTT) ⊆TTQ ∪TTQ  =(TTQ] + (TTQ] = (TTQ]⊆ Q.  
Hence Q is a left PO-ternary ideal of T.  Similarly Q is lateral 
PO-ternary ideal and right PO-ternary ideal of T.  Therefore, 
every quasi-PO-ternary ideal of T is a three sided ideal of T. 

Theorem III.11: The intersection of any system of 
quasi-PO-ternary ideals is a quasi-PO-ternary ideal of T 
or empty. 

Proof: Let  Q 
 be a family of PO-ternary ideals of T 

and let Q = Q

  

Assume that Q is not empty.  Since Q is a quasi-PO-ternary 

ideal for each  .  Then (Q𝛼TT] ∩ (TQαT + TTQαTT] ∩ 
(TTQα]⊆ Qα for each 𝛼∈ Δ. 

Now for each 𝛼∈ Δ TTQ = TT( Q

 ) = TTQ


 ⊆ 

TTQ𝛼 ⊆ (TTQ𝛼],  TQT= T( Q

 )T = TQ T


 ⊆ 

TQαT⊆ (TQαT],  TTQTT = TT( Q

 )TT = 

TTQ TT

 ⊆ TTQαTT⊆ (TTQαTT], and  TTQ = 

TT( Q

 ) = Q TT


 ⊆ QαTT⊆ (QαTT].  Then (TTQ]∩ 

(TQT ∪ TTQTT]∩(QTT]⊆(TTQ𝛼]∩ (TQαT ∪ 
TTQαTT]∩(QαTT]⊆ Qα for each 𝛼∈Δ.  Therefore  

(TTQ] ∩ (TQT + TTQTT] ∩ (QTT]⊆ Q

  = Q.    

Let x ∈ Q

 and y ∈ T be such that y ≤ x.   Let for each 

𝛼∈Δ. Since y ≤ x and x ∈ Qα, y∈ Qα. Thus y ∈ Q



 

(i.e. (Q] = Q


 
 
 
 ⊆ ( ]Q


 = Q


  = Q) .  Therefore 

Q = Q

 , is a quasi-PO-ternary ideal of T. 

Theorem III.12: Every quasi-PO-ternary ideal of a 
PO-ternary semiring T is a PO-ternary subsemiring of T.  
Proof :Let Q be a quasi-PO-ternary ideal of T.  By definition 
III.1, Q is a subsemigroup of (T, +).  Let a, b, c ∈ Q ⊆ T.  Then 
abc∈(TTQ], abc∈(TQT], and abc∈(QTT].  Therefore 
abc∈(TTQ]∩ (TQT ∪ TTQTT]∩(QTT]⊆ Q, since Q is a 
quasi-PO-ternary ideal of T and hence abc∈ Q.  Therefore Q 
is a PO-ternary subsemiring of T. 

Lemma III.13: If Q is a quasi-PO-ternary ideal of a 
PO-ternary semiringT and S is a PO-ternary 
subsemiringof T, then Q∩S is a quasi-ideal of S. 
Proof: Assume that Q1 = Q∩S ≠ ∅.  Since Q1⊆ Q, it follows 
that  SSQ1 ∩ SQ1S ∩ Q1SS ⊆ TTQ ∩ TQT ∩ QTT ⊆ Q.  
Since Q1⊆ S and S is a PO-ternary subsmigroup of T.  We 
have SSQ1 ∩ SQ1S ∩ Q1SS ⊆ S.  Then SSQ1 ∩ SQ1S ∩ Q1SS ⊆Q1.Let x∈ Q1 and y∈ S such that y ≤ x.  Since x∈ Q, y ∈ Q.So 
y ∈ Q1.  Therefore Q1 is quasi-PO-ternary ideal of S. 
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Theorem III.14: The intersection of left PO-ternary ideal, 
lateral PO-ternary ideal and right PO-ternary ideal is a 
quasi-PO-ternary ideal of T. 

Proof :Let L, M, and R be the left PO-ternary ideal, lateral 
PO-ternary ideal and right PO-ternary ideal of T respectively.  
Let Q = L ∩ M ∩ R.  Choose l∈ L, m∈ M, r∈ R.  Since lmr∈ L ∩ M ∩ R,  Q is not empty.  Since TTQ ⊆ L, TQT ⊆ M and 
QTT ⊆ R, then we have TTQ ∩ TQT ∩ QTT ⊆ L ∩ M ∩ R = 
Q.  Similarly, TTQ ∩ TTQTT ∩ QTT ⊆ Q.Let x∈ L ∩ M ∩ R 
and y∈ T such that y ≤ x.  Since x∈L ∩ M ∩ R, y∈L ∩ M ∩ R.  
Therefore Q = L ∩ M ∩ R is a quasi-PO-ternary ideal of T. 

Theorem III.15: An additive subsemigroup Q of 
PO-ternary semiring T is a quasi-PO-ternary ideal of T, if 
Q is the intersection of a left PO-ternary ideal, a lateral 
PO-ternary ideal and a right PO-ternary ideal of T. 

Proof :Assume that Q is a quasi-PO-ternary ideal of T and L 
= (TTQ ∪ Q], M = (TQT ∪ TTQTT ∪ Q], R = (QTT ∪ Q], 
then by theorems 2.10, III.4, III.5, III.6, we have L is left 
PO-ternary ideal, M is lateral PO-ternary ideal and R is right 
PO-ternary ideal of T containing Q respectively. Thus Q ⊆ L ∩ M ∩ R.  Since Q is quasi-PO-ternary ideal of T.  We have 
    L ∩ M ∩ R = (TTQ ∪ Q] ∩(TQT ∪ TTQTT ∪ Q] ∩ (QTT ∪ Q]   = ((TTQ] ∩ (TQT ∪ TTQTT] ∩ (QTT]) ∪ (Q] ⊆ Q ∪ (Q] = Q..  Therefore Q = L ∩ M ∩ R and hence Q is the 
intersection of left PO-ternary ideal, lateral PO-ternary ideal 
and right PO-ternary ideal of T.  

Definition III.16: Let A be a nonempty subset of an ordered 
ternary semi-ring T. The intersection of all quasi-PO-ternary 
ideals of T containing A is calledthe quasi-PO-ternary ideal 

of T generated by A and is denoted by Q(A). Moreover,Q(A) 
is the smallest quasi-PO-ternary ideal of T containing A. If A 
= {a}, wealso write Q({a}) as Q(a) or <a>q.  

Theorem III.17:Let A be a nonempty subset of an 
ordered ternary semi-ring T. Then  
Q(A) = (A]∪ [((TTA]∩(TAT∪TTATT]∩(ATT]).  
In particular, Q(a) = <a>q = (a] ∪((TTa] ∩(TaT∪TTaTT] ∩(aTT]) for all a ∈T. 
Proof: By the theorem II.11, II.12, and II.13, we have (A ∪ 
TTA], (A ∪ TAT ∪ TTATT] and (A ∪ ATT] are left 
PO-ternary ideal, lateral PO-ternary ideal and right 
PO-ternary ideal of T  containing A, respectively.  By 
theorem III.15, we have (TTA ∪ A] ∩ (TAT ∪ TTATT ∪ A] ∩ (ATT ∪ A] is a quasi-PO-ternary ideal of T containing A.  
Thus  Q(A) ⊆ (TTA ∪ A] ∩ (TAT ∪ TTATT ∪ A] ∩ (ATT ∪ 
A]  
          = (A] ∪ ((TTA] ∪ (TAT ∪ TTATT] ∪ (ATT]).  By the 
theorem III.15, we have  
 (A] ∪ ((TTA] ∪ (TAT ∪ TTATT] ∪ (ATT])  
 = (TTA ∪ A] ∩ (TAT ∪ TTATT ∪ A] ∩ (ATT ∪ A]  
 ⊆ (TTQ(a) ∪ Q(A)] ∩ (TQ(A)T ∪ TTQ(A)TT] ∩ (TTQ(A) ∪ Q(A)]⊆ Q(A). 
Hence Q(A) = (A] ∪ ((TTA] ∪ (TAT ∪ TTATT] ∪ (ATT]). 
 Now we characterize the relationship between the 
minimality of the quasi-PO-ternary ideals and a quasi-simple 
and 0-quasi simple-PO-ternary semirings. 

Definition III.18 :Let T be a PO-ternary semiring with a zero 
element.  Then T is called quasi simple if T has no proper 
quasi-PO-ternary ideals of T. 

Theorem III.19: Let T be a PO-ternary semiring without 
a zero element.  Then the following are equivalent. 
(1) T is a quasi-simple. 
(2) (TTa] ∩ (TaT∪TTaTT] ∩ (aTT] = T for all a∈ T. 
(III) Q(a) = T for all a∈ T. 
Proof: (1) ⇒ (2) :Suppose that T is quasi-simple and let a∈T.  
By the theorem 2.11, 2.12, and 2.1III, we have (a∪TTa], 
(a∪TaT∪TTaTT] and (a∪aTT] are left PO-ternary ideal, 
lateral PO-ternary ideal and right PO-ternary ideal of T 
containing A, respectively.  By theorem III.15, we have 

(TTa∪a] ∩ (TaT∪TTaTT∪a] ∩ (aTT∪a] is a 
quasi-PO-ternary ideal of T containing a.  Since T is 
quasi-simple, thus (TTa∪a] ∩ (TaT∪TTaTT∪a] ∩ (aTT∪a] 
= T. 
(2) ⇒ (III) :Assume that (TTa] ∩ (TaT∪TTaTT] ∩ (aTT] = T 
for all a∈ T.  By theorem III.18, we have T = (TTa] ∩ 
(TaT∪TTaTT] ∩ (aTT]) ⊆(a] ∪ ((TTa] ∩ (TaT∪TTaTT] ∩ 
(aTT]) = Q(a).  Therefore Q(a) = T. 
(III) ⇒ (1) :Assume that Q(a) = T for all a∈ T.  Let Q be a 
quasi-PO-ternary ideal of T and let a∈ Q.  Then Q(a) = T, and 
so Q(a) ⊆ Q ⊆ T.  Therefore T = Q and hence T is 
quasi-simple. 

Definition III.20: Let T be a PO-ternary semiring with zero 
element, TIII≠ {0} and | T | > 1.  Then T is called 
0-quasi-simpleif T has no non zero proper quasi-PO-ternary 
ideals. 

Theorem III.21: Let T be a PO-ternary semiring with 
zero element, TIII≠ {0} and | T | > 1.  Then T is a 
0-quasi-simple if and only if Q(a) = T for a∈ T\{0}. 
Proof: Suppose that T is a 0-quasi-simple and a∈ T\{0}.  
Then Q(a) ≠ {0}.  Since T is 0-quasi simple, therefore Q(a) = 
T. 
 Conversely, suppose that Q(a) = T for all a∈ T\{0}.  Let Q 
be a non-zero quasi-PO-ternary ideal of T and a∈ Q\{0}.  
Then Q(a) = T and Q(a) ⊆ Q ⊆ T implies that T = Q.  
Therefore, T is a 0-quasi-simple. 

Definition III.22: Aleft quasi-PO-ternary ideal Q of an 
ordered ternary semiringT without a zero element is called a 
minimal left quasi-PO-ternary ideal of T if thereis no aleft 
quasi-PO-ternary ideal A of T such that A ⊆Q. Equivalently, 
if for anyleft quasi-PO-ternary ideal A of T such that A ⊆Q, 
we have A = Q. 

Definition III.23: Alateral quasi-PO-ternary ideal Q of an 
ordered ternary semiringT without a zero element is called a 
minimal lateral quasi-PO-ternary ideal of T if thereis no 
alateral quasi-PO-ternary ideal A of T such that A ⊆Q. 
Equivalently, if for any lateral quasi-PO-ternary ideal A of T 
such that A ⊆Q, we have A = Q. 

Definition III.24: Aright quasi-PO-ternary ideal Q of an 
ordered ternary semiringT without a zero element is called a 
minimal right quasi-PO-ternary ideal of T if thereis no 
aright quasi-PO-ternary ideal A of T such that A ⊆Q. 
Equivalently, if for any right quasi-PO-ternary ideal A of T 
such that A ⊆Q, we have A = Q. 

Definition III.25: Atwo sided quasi-PO-ternary ideal Q of an 
ordered ternary semiringT without a zero element is called a 
minimal two sided quasi-PO-ternary ideal of T if thereis no 
atwo sided quasi-PO-ternary ideal A of T such that A ⊆Q. 
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Equivalently, if for any two sided quasi-PO-ternary ideal A of 
T such that A ⊆Q, we have A = Q. 

Definition III.26: A quasi-PO-ternary ideal Q of an ordered 
ternary semiringT without a zero element is called a minimal 

quasi-PO-ternary ideal of T if thereis no a quasi-PO-ternary 
ideal A of T such that A ⊆Q. Equivalently, if for 
anyquasi-PO-ternary ideal A of T such that A ⊆Q, we have A 
= Q. 

Theorem III.27: Let Q be a quasi-PO-ternary ideal of an 
ordered ternary semi-ring T without a zero element. 
Then Q is a minimal quasi-PO-ternary ideal of T if and 
only if it is the intersection of a minimal ordered left, a 
minimal ordered right and a minimal ordered lateral 
PO-ternary ideal of T. 
Proof: Suppose that Q is a minimal quasi-PO-ternary ideal of 
T.   Then(TTQ] ∩ (TQT ∪ TTQTT] ∩ (QTT]) ⊆ Q.  By the 
theorems2.11, 2.12, and 2.1III, we have (TTQ], (TQT∪ 
TTQTT] and (QTT] are left PO-ternary ideal, lateral 
PO-ternary ideal and right PO-ternary ideal of T and by 
theorem III.15, we have  (TTQ] ∩ (TQT ∪ TTQTT] ∩ (QTT]) 
is a quasi-PO-ternary ideal of T.   
Since Q is minimal quasi-PO-ternary ideal of T.   
We have Q = (TTQ] ∩ (TQT ∪ TTQTT] ∩ (QTT]).   
We claim that (TTQ] is a minimal left PO-ternary ideal of T.  
Let L be a left PO-ternary ideal of T such that L ⊆ (TTQ].  
Then (TTL] ⊆(L] = L ⊆(TTQ]. 
Therefore, (TTL]∩(TQT ∪TTQTT]∩(QTT] ⊆(TTQ]∩ (TQT ∪TTQTT]∩(QTT] = Q. 
Since (TTL]∩(TQT∪TTQTT]∩(QTT] is a quasi-PO-ternary 
ideal of T and Q is aminimal quasi-PO-ternary ideal of T,we 
have (TTL]∩(TQT ∪TTQTT]∩(QTT] =Q.  
Thus Q ⊆(TTL] and so (TTQ] ⊆ (TT(TTL]] ⊆(TT(L]] = 
(TTL] ⊆L. 
Hence, L = (TTQ]. Therefore, (TTQ] is a minimal left 
PO-ternary ideal of T. 
Similarly, we can show that (QTT] and (TQT [TTQTT] 
areminimal right PO-ternary ideal and minimal lateral 
PO-ternary ideal of T, respectively. 
Conversely, let Q = L ∩ M ∩ R where L, M and R are a 
minimal left PO-ternary ideal, a minimal lateral PO-ternary 
ideal and a minimal rightPO-ternary ideal of a PO-ternary 
semiringT, respectively.  By theorem III.15, Q is a 
quasi-PO-ternary ideal of T.  Let A be a quasi-PO-ternary 
ideal of T such that A ⊆ Q.  By theorems 2.11, 2.12, and 
2.1III, we have (TTA], (TAT ∪ TTATT] and (ATT] are left 
PO-ternary ideal, lateral PO-ternary ideal and right 
PO-ternary ideal of T.  Now (TTA] ⊆(TTQ] ⊆(TTL) ⊆(L] = 
L.  Since L is a minimal left PO-ternary ideal of T, we have 
(TTA] = L.Similarly, (TAT ∪ TTATT] = M and (ATT] = R.  
Since A is a quasi-PO-ternary ideal of T and hence  
Q = L ∩ M ∩ R = (TTA] ∩ (TAT ∪ TTATT] ∩ (ATT] ⊆ A.  
Therefore A = Q.  Hence, Q is a minimal quasi-PO-ternary 
ideal of PO-ternary semiringT. 

Theorem III.28: Let Q be a quasi-PO-ternary ideal of an 
ordered ternary semi-ring T without a zero element. If Q 
is quasi-simple, then Q is a minimal quasi-PO-ternary 
ideal of T. 
Proof :Suppose that Q is quasi-simple and let A be a 
quasi-PO-ternary ideal ofT such that A ⊆Q.  Therefore 
(QQA] ∩ (QAQ ∪ QQAQQ] ∩ (AQQ] ⊆ (TTA] ∩ (TAT ∪ 
TTATT] ∩ (ATT] ⊆ A and (A] ∩ Q ⊆ (A] = A.  Therefore A 

is a quasi-PO-ternary ideal of Q.  Since Q is quasi-simple and 
hence Q = A.  Hence Q is a minimal quasi-PO-ternary ideal of 
T. 

Theorem III.29: Let T be an ordered ternary semiring 
without a zero element having proper quasi-PO-ternary 
ideals. Then every proper quasi-PO-ternary ideal of T is 
minimal if and only if the intersection of any two distinct 
proper quasi-PO-ternary ideals is empty. 
Proof: Let Q1 and Q2be two distinct proper quasi-PO-ternary 
ideals of T. Byassumption, we have that Q1 and Q2 are 
minimal.If Q1∩Q2≠∅, then by Theorem III.11, Q1∩Q2is a 
quasi-PO-ternary ideal of T.Since Q1∩Q2⊆Q1 andQ1 is 
minimal, we have Q1∩Q2 = Q1.Since Q1∩Q2⊆Q2 andQ2 is 
minimal, we have Q1∩Q2 = Q2.  Therefore Q1 = Q1∩ Q2 = Q2.   
This is a contradiction and hence Q1∩Q2=∅. 
 Conversely, suppose that Q be a proper quasi-PO-ternary 
ideal of T and let A be a quasi-PO-ternary ideal of T such that 
A ⊆Q. Then A is a proper quasi-PO-ternary idealof T. If A ≠ 
Q, then by assumption, A = A∩Q = ∅. That is acontradiction. 
Hence, A = Q. Therefore, Q is a minimal quasi-PO-ternary 
idealof T. 

Definition III.30: A nonzero quasi-PO-ternary ideal Q of a 
PO-ternarysemiring T with a zero element is called a 
0-minimal quasi-PO-ternary idealof T if there is no a 
nonzero quasi-PO-ternary ideal A of T such that A ⊆Q.Equivalently, if for any nonzero quasi-PO-ternary ideal A 
of T such that A ⊆Q,we have A = Q. 

Note III.31: We also define a 0-minimal left PO-ternary 
ideal, a 0-minimal lateral PO-ternary  anda 0-minimal right 
PO-ternary ideal of an ordered ternary semiring T with a 
zeroelement in the same way of a 0-minimal 
quasi-PO-ternary ideal. 

Theorem III.32: Let T be a PO-ternary semiring with a 
zero element.  Then the intersection of a 0-minimal left 
PO-ternary ideal, a 0-minimal right PO-ternary ideal and 
a 0-minimal lateral PO-ternary ideal of T is either {0}or a 
0-minimal quasi-PO-ternary ideal of T. 
Proof : Let Q = L ∩ M ∩ R ≠ {0} where L, M, and R are a 
0-minimal left  PO-ternary ideal, a 0-minimal lateral 
PO-ternary ideal and a 0-minimal right PO-ternary ideal of T, 
respectively.  By theorem III.14, Q is a quasi-PO-ternary ideal 
of T.  Let A be a non zero quasi-PO-ternary ideal of T such 
that A ⊆ Q.  By theorems II.11, II.12, and II.13, (TTA], (TAT ∪ TTATT], (ATT] are left PO-ternary ideal, lateral 
PO-ternary ideal and right PO-ternary ideals of T 
respectively.  Then we get the following two cases: 
Case-1:(TTA] = {0}, (TAT ∪ TTATT] = {0}, (ATT] = {0}.  
If (TTA] = {0}, then (TTA] = {0} ⊆A. Thus A is a nonzero 
left PO-ternary ideal of T.  Since A ⊆ Q ⊆ L and L is a 
0-minimal left PO-ternary ideal of T.  Then we have A = L.  
Therefore A = Q.  Similarly, if (ATT] = {0} or (TAT ∪ 
TTATT] = {0], we get A = Q. 
Case-2:(TTA] ≠ {0}, (TAT ∪ TTATT] ≠ {0}, (ATT] ≠ {0}.  
Now (TTA] ⊆(TTQ] ⊆(TTL) ⊆(L] = L.Since L is a 
0-minimal left PO-ternary ideal of T, we have (TTA] = L. 
Similarly,(TAT ∪TTATT] = M and (ATT] = R. 
Since A is a quasi-PO-ideal ofT, we haveQ = L ∩M ∩R = 
(TTA] ∩(TAT ∪TTATT] ∩(ATT] ⊆A⇒ A = Q.  Hence, Q is 
a 0-minimal ordered quasi-ideal ofT. 
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Theorem III.33: Let Q be anon-zero quasi-PO-ternary 
ideal of an ordered ternary semi-ring T with a zero 
element. If Q is 0-quasi-simple, then Q is a 0-minimal 
quasi-PO-ternary ideal of T. 
Proof :Suppose that Q is 0-quasi-simple and let A be 
anon-zero quasi-PO-ternary ideal ofT such that A ⊆Q.  
Therefore (QQA] ∩ (QAQ ∪ QQAQQ] ∩ (AQQ] ⊆ (TTA] ∩ 
(TAT ∪ TTATT] ∩ (ATT] ⊆ A and (A] ∩ Q ⊆ (A] = A.  
Therefore A is a non-zero quasi-PO-ternary ideal of Q.  Since 
Q is 0-quasi-simple and hence Q = A.  Hence Q is a 
0-minimal quasi-PO-ternary ideal of T. 

Theorem III.34: Let Tbe an ordered ternary semiring 
with a zero element having non-zero proper 
quasi-PO-ternary ideals. Then every non-zero proper 
quasi-PO-ternary ideal of T is 0-minimal if and only if the 
intersection of any two distinct non-zero proper 
quasi-PO-ternary ideals is {0}. 
Proof: Let Q1 and Q2be two distinct non-zero proper 
quasi-PO-ternary ideals of T. Byassumption, we have that Q1 
and Q2 are 0-minimal.If Q1∩Q2≠{0}, then by Theorem III.11, 
Q1∩Q2is anon-zero quasi-PO-ternary ideal of T.Since 
Q1∩Q2⊆Q1 andQ1 is 0-minimal, we have Q1∩Q2 = Q1.Since 
Q1∩Q2⊆Q2 andQ2 is 0-minimal, we have Q1∩Q2 = Q2.  
Therefore Q1 = Q1∩ Q2 = Q2.   This is a contradiction and 
hence Q1∩Q2={0}. 

 Conversely, suppose that Q be anon-zero proper 
quasi-PO-ternary ideal of T and let A be anon-zero 
quasi-PO-ternary ideal of T such that A ⊆Q. Then A is a 
non-zero properquasi-PO-ternary idealof T. If A ≠ Q, then by 
assumption, A = A∩Q = {0}. That is acontradiction. Hence, A 
= Q. Therefore, Q is a 0-minimal quasi-PO-ternary idealof T. 

Theorem III.35: Let x be an idempotent element of a 
PO-ternary semiringT, that is, xIII(=xxx) ≥x. If R is a 
right PO-ternary ideal, M a lateral PO-ternary ideal, and 
L a left PO-ternary ideal of T, then (Rxx], (xxMxx],and 
(xxL] are quasi-PO-ternary ideals of T. 
Proof: To show (Rxx], (xxMxx], and (xxL] are quasi-ideals of 
S, it is sufficient to show that  
(Rxx] = (R]∩(TxT+TTxTT] ∩(TTx],(xxMxx] = 

(xTT]∩(M]∩(SSx], and  
(xxL]= (xTT]∩(TxT∪TTxTT ]∩(L]. 
For the first case, it is clear that (Rxx]⊆R ∩ TTx = (R ∩ TTx] 
= (R] ∩ (TTx].   
Let a∈ (R] ∩ (TTx] ⇒a∈ (R] and a∈ (TTx].   

Now, a∈ (TTx]⇒a ≤
1

n

i i

i

s t x

  for some si, ti∈ T. 

Therefore axx≤ (
1

n

i i

i

s t x

 )xx = 

1

(
n

i i

i

s t x

 xx) ≥

1

n

i i

i

s t x

 ≥a.   

It follows that a∈ (Rxx] and hence (Rxx] = (R] ∩ (TTx].   
Again a≤axx⇒a∈ (TxT].  Therefore we have a∈ 
(TxT∪TTxTT].   
Thus (R] ∩ (TTx] ⊆ (TxT∪TTxTT].  Therefore, (Rxx]= 

(R]∩(TxT+TTxTT] ∩(TTx]. 
For the second case, we see that (xxMxx] ⊆(xTT] ∩ (M] ∩ 
(TTx].  Let a∈ (xTT] ∩ (M] ∩ (TTx].  Then a∈ (xTT], a∈ (M] 
and a∈ (TTx].  Now a∈ (xTT] and a∈ (TTx]  ⇒a≤

1

n

i i

i

s t x

  = 

1

m

j j

j

xu v

  for some si, ti, uj, vj∈ T.  

 Therefore xxaxx ≤ xx(
1

n

i i

i

s t x

 )xx  

= xx

1

(
n

i i

i

s t x

 xx)≥xx

1

n

i i

i

s t x

  = xx

1

m

j j

j

xu v

 =  

1

( )
m

j j

j

xxx u v

 ≥

1

m

j j

j

xu v

 ≥a  ⇒ a ∈ (xxMxx] and hence (xxMxx]= (xTT]∩(M]∩(SSx]. 

For the third case it is similar to first case. 
 

IV. PRIME QUASI-PO-TERNARY IDEALS 

In this section, we introduce the notions of prime 
and semiprime quasi-PO-ternary ideals in PO-ternary 
semirings and some relevant counter examples are also 
indicated. 

Definition IV.1: A proper quasi-PO-ternary ideal Q of a 
PO-ternary semiring T is said to be prime quasi-PO-ternary 

idealprovided ABC ⊆ Q implies that A ⊆ Q or B ⊆ Q or C ⊆ 
Q for some quasi-PO-ternary ideals A, B, C of T. 

Definition IV.2: A proper quasi-PO-ternary ideal Q of a 
PO-ternary semiring T is said to be semiprime 

quasi-PO-ternary idealprovided A3⊆ Q implies that A ⊆ Q 
for some quasi-PO-ternary ideal A of T. 

Definition IV.3: A proper quasi-PO-ternary ideal Q of a 
PO-ternary semiring T is said to be weakly prime 

quasi-PO-ternary ideal provided Q ⊆ A, B ⊆ Q, C ⊆ Q and 
ABC ⊆ Q implies that A = Q or B = Q or C = Q for some 
quasi-PO-ternary ideals of T. 

Theorem IV.4: Every prime quasi-PO-ternary ideal of T 
is a Semiprime quasi-PO-ternary ideal of T. 
Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T 
and A be any quasi-PO-ternary ideal of T such that A3 = AAA ⊆ Q.  Since Q is prime.  Therefore A ⊆ Q and hence Q is a 
Semiprime quasi-PO-ternary ideal of T. 

Note IV.5: The converse of the theorem 4.4. need not be true.  
i.e., every Semiprime quasi-PO-ternary ideal of T need not be 
a prime quasi-PO-ternary ideal of T. 

Example IV.6: Let T = 2 0( )M Z


 is a PO-ternary semiring 

of 2 × 2 square matrices over 0Z


.  Let  

Q = 0

   0
:   Z

0    0

a
a

  
  

  
 and a≤b for a, b∈ 0Z


.  Then Q 

is a Semiprime quasi-PO-ternary ideal of T.  But Q is not a 
prime quasi-PO-ternary ideal of T.   

Since A = 0

0   
:   Z

0    0

b
b

  
  

  
,  

B = 0

0   0
:   Z

0    
c

c

  
  

  
and  
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C = 0

0   0
:   Z

    0
d

d

  
  

  
 are quasi-PO-ternary ideal of T 

such that ABC ⊆ Q.  But A ⊈ Q, B ⊈ Q and C ⊈ Q. 

Theorem IV.7: Every prime quasi-PO-ternary ideal Q of 
a PO-ternary semiring T is a weakly prime 
quasi-PO-ternary ideal of T. 
Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T.  
Then there exist quasi-PO-ternary ideals A, B, C of T such 
that ABC ⊆ Q.  If Q ⊆ A, Q ⊆ B, C ⊆ Q and ABC ⊆ Q, Q is 
a prime quasi-PO-ternary ideal of T implies that A ⊆ Q or B ⊆ Q or C ⊆ Q.  Therefore A = Q or B = Q or C = Q and hence 
Q is a weakly prime quasi-PO-ternary ideal of T. 

Note IV.8: The converse of the theorem 4.7. need not be true.  
i.e., every weakly prime quasi-PO-ternary ideal of T is not 
prime quasi-PO-ternary ideal of T. 

Example IV.9: Let T = 2 0( )M Z


 is a PO-ternary semiring 

of 2 × 2 square matrices over 0Z


.  Let Q = 

0

   0
:   30Z

0    0

a
a

  
  

  
 and a≤b for a, b∈ 0Z


 .  Then Q 

is a weakly prime quasi-PO-ternary ideal of T.  But Q is not a 
prime quasi-PO-ternary ideal of T.  Since A = 

0

   0
:   2Z

0    0

a
a

  
  

  
, B = 0

   0
:   3Z

0    0

a
a

  
  

  
and 

C = 0

   0
:   5Z

0    0

a
a

  
  

  
 are quasi-PO-ternary ideal of T 

such that ABC ⊆ Q.  But Q⊈ A, Q⊈ B and Q⊈C. 

Theorem IV.10: Let T be a PO-ternary semiring and Q be 
a quasi-PO-ternary ideal of T.  If Q is prime, then Q is left 
or lateral or right PO-ternary ideal of T. 
Proof: Let Q be a prime quasi-PO-ternary ideal of T.  Then 
(TTQ)(TQT ∪ TTQTT)(QTT) ⊆ TTQ ∩ ( TQT ∪ TTQTT) ∩ 
QTT ⊆ Q.  Since Q is prime, we have TTQ ⊆ Q or TQT ∩ 
TTQTT ⊆ Q or QTT ⊆ Q.  therefore Q is left or lateral or 
right PO-ternary ideal of T. 

Theorem IV.11: Let T be a commutative PO-ternary 
semiring and Q be a quasi-PO-ternary ideal of T.  Then Q 
is prime if and only if abc∈ Q implies a∈ Q or b∈ Q or c∈ 
Q. 
Proof :Suppose that Q is a prime quasi-PO-ternary ideal of T.  
Let abc∈ Q.  Then by theorem4.10, Q is a PO-ternary ideal of 
T.  Let x∈<a>q<b>q<c>q.  Then x = ((a] ∩ (TTa]∩ 
(TaT∪TTaTT] ∩ (aTT]).((b] ∩ (TTb] ∩(TbT∪TTaTT] ∩ 
(bTT]).((c] ∩ (TTc] ∩ (TcT∪TTcTT] ∩ (cTT]).  Since abc∈ 
Q and Q is a PO-ternary ideal of T.  Therefore x∈ Q.  Thus 
<a>q<b>q<c>q⊆ Q.  Since Q is prime quasi-PO-ternary ideal 
of T.   Hence a∈ Q or b∈ Q or c∈ Q. 
Converse is obvious. 

Theorem IV.12: Let T be a PO-ternary semiring and Q be 
a quasi-PO-ternary ideal of T.  Then Q is prime if and 
only if ((TTa] ∩ (TaT∪TTaTT] ∩ (aTT]).((TTb] ∩ 
(TbT∪TTbTT] ∩ (bTT]).((TTc] ∩ (TcT∪TTcTT] ∩ 
(cTT]) ⊆ Q implies a∈ Q or b∈ Q or c∈ Q. 

Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T 
and let ((TTa] ∩ (TaT∪TTaTT] ∩ (aTT]).((TTb] ∩ 
(TbT∪TTbTT] ∩ (bTT]).((TTc] ∩ (TcT∪TTcTT] ∩ (cTT]) ⊆ Q for some a, b, c∈ T.  Clearly, ((TTa] ∩ (TaT∪TTaTT] ∩ 
(aTT]), ((TTb] ∩ (TbT∪TTbTT] ∩ (bTT]), ((TTc] ∩ 
(TcT∪TTcTT] ∩ (cTT]) are quasi-PO-ternary ideals of 
T.Since Q is prime, therefore ((TTa] ∩ (TaT∪TTaTT] ∩ 
(aTT])⊆ Q or ((TTb] ∩ (TbT∪TTbTT] ∩ (bTT]) ⊆ Q or 
((TTc] ∩ (TcT∪TTcTT] ∩ (cTT])⊆ Q.  If ((TTa] ∩ 
(TaT∪TTaTT] ∩ (aTT])⊆ Q, then <a>q⊆ Q implies that a∈ 
Q.  Similarly, b∈ Q or c∈ Q. 
Converse is obvious. 

Theorem IV.13: Let T be a PO-ternary semiring.  If the 
quasi-PO-ternary ideal of T with respect to inclusion 
relation form a chain, then every weakly prime 
quasi-PO-ternary ideal is a prime quasi-PO-ternary ideal 
of T. 
Proof: Let Q be a weakly prime quasi-PO-ternary ideal of T.  
Let A, B, C are quasi-PO-ternary ideal of T such that ABC ⊆ 
Q.  Suppose that A ⊈ Q, B ⊈ Q and C ⊈ Q.  By the statement 
since Q ⊆ A, Q ⊆ B and Q ⊆ C.  Since Q is weakly prime 
quasi-PO-ternary ideal of T.  Therefore A = Q or B = Q or C = 
Q.  This is a contradiction.  Hence A ⊆ Q or B ⊆ Q or C ⊆ Q.  
Therefore Q is a prime quasi-PO-ternary ideal of T. 

Theorem IV.14: Let T be a PO-ternary semiring.  Then 
the following are equivalent 

(1) The quasi-PO-ternary ideal of T is 
idempotent. 

(2) If A, B, C are three quasi-PO-ternary ideals 
of T such that A∩ B ∩ C ≠∅, then A ∩ B ∩ C 
= ABC. 

(3) <a>q = [<a>q]
3 for all a∈ T. 

Proof: (1) ⇒ (2): Suppose that A, B, C are quasi-PO-ternary 
ideals of T such that A∩B∩C ≠ ∅.  Then by theorem 
III.11,A∩B∩C is a quasi-PO-ternary ideal of T.  Since every 
quasi-PO-ternary ideal is an idempotent.  Therefore 
 (A∩B∩C) = (A∩B∩C)3 = (A∩B∩C)(A∩B∩C)(A∩B∩C) ⊆ ABC. 
(2) ⇒ (3):  It is straight forward and (3) ⇒ (1) is obvious.  

Definition IV.15: A non-empty subset A of a PO-ternary 
semiring T is said to be mq-system provided for any a, b, c∈ 
A, there exist x ∈<a>q, y ∈<b>q, z ∈<c>q and d ∈ A such that 
xyz≤d. 

Note IV.16: A non-empty subset A of a PO-ternary semiring 
T is called an mq-system if a, b, c∈ A, there existx∈<a>q, 
y∈<b>q, z∈<c>q such that xyz ∈ (A]. 

Definition IV.17: A non-empty subset A of a PO-ternary 
semiring T is said to be nq-system provided for any a ∈ A, 
there exist x, y, z ∈<a>qand d ∈ A such that xyz ≤d. 

Note IV.18: A non-empty subset A of a PO-ternary semiring 
T is said to be nq-systemprovided for any a∈ A, there exist x, 

y, z∈<a>q such that xyz ∈ (A]. 

Theorem IV.19: Every mq-system is anq-system of 
PO-ternary semiring T. 
Proof: Suppose that the non-empty subset A of a PO-ternary 
semiring T is an mq-system.  Let for any a∈ A, there exist x, y, 

z ∈<a>q.  Since A is amq-system and hence xyz∈(A].  
therefore A is a nq-system of T. 
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Note IV.20: The converse of the theorem 4.19, need not be 
true.  i.e., every nq-system of a PO-ternary semiring T need 
not be amq-system of T. 

Example IV.21: Let T = 6Z


 is a PO-ternary semiring under 

usual addition, multiplication modulo 6 and natural ordering.  
Let A = {-2, -3}.  Then A is anq-system but not anmq-system. 

Theorem IV.22: Let T be a PO-ternary semiring and Q is 
a quasi-PO-ternary ideal of T.  Then Q is prime 
quasi-PO-ternary ideal of T if and only if T\Q is 
anmq-system of T. 
Proof: Suppose that Q is a prime quasi-PO-ternary ideal of T.  
Let a, b, c∈ T\Q.   
Suppose that xyz≰d for all d∈ T\Q and for all x ∈<a>q, y ∈ 

<b>q and z ∈ <c>q.   
Then <a>q<b>q<c>q⊆ Q.  Since Q is a prime 
quasi-PO-ternary ideal of T. 
Therefore a∈ Q or b∈ Q or c∈ Q.  This is a contradiction.   
Therefore xyz≤ d for some x∈<a>q, y∈<b>q and z∈<c>q. 
Hence T\Q is anmq-system of T. 

Conversely suppose that, A, B, C are 
quasi-PO-ternary ideals of T such that ABC ⊆ Q.  Assume 
that A ⊈ Q, B ⊈ Q and C ⊈ Q.  Let a∈ A\Q, b∈ B\Q and c∈ 
C\Q.  Then a, b, c∈ T\Q.  Since T\Q is an mq-system.  
Therefore there exist an element d∈ T\Q such that xyz ≤d for 
some x ∈ <a>q, y ∈ <b>q and z ∈ <c>q.  But xyz ∈ 

<a>q<b>q<c>q⊆ ABC ⊆ Q.  This is a contradiction.  Hence A ⊆ Q or B ⊆ Q or C ⊆ Q.  Therefore Q is a prime 
quasi-PO-ternary ideal of T. 

Theorem IV.23: Let T be a PO-ternary semiring and Q is 
a quasi-PO-ternary ideal of T.  Then Q is semiprime 
quasi-PO-ternary ideal of T if and only if T\Q is an 
nq-system of T. 
Proof: Similar to the proof of the theorem IV.22. 

Definition IV.24: A quasi-PO-ternary ideal of a PO-ternary 
semiring T is said to be T-prime quasi-PO-ternary ideal of T 
provided xTyTz ⊆ Q implies x ∈ Q or y ∈  Q or z ∈ Q. 

Definition IV.25: A quasi-PO-ternary ideal of a PO-ternary 
semiring T is said to be T-semiprime quasi-PO-ternary ideal 

of T provided xTxTx⊆ Q impliesx∈ Q. 

Theorem IV.26: A quasi-PO-ternary ideal Q of a 
PO-ternary semiringT is T-prime if and only if RML ⊆Q 
implies R ⊆Q or M ⊆Q or L ⊆Q for any right PO-ternary 
ideal R, lateral PO-ternary ideal M and left PO-ternary 
ideal L of T. 
Proof: Let Q be a T-prime quasi-PO-ternary ideal of T and 
RML ⊆ Q.  Suppose R ⊈ Q and M ⊈ Q.  Then there exist x∈ 
R\Q and y∈ M\Q.  Let z∈ L.  Then xTyTz⊆ RTMTL ⊆ RML⊆ 
Q.  Since Q is T-prime.  Therefore, x∈ Q or y∈ Q or z∈ Q.But 
x∉ Q and y∉ Q.Hence z∈ Q and hence L ⊆ Q. 

Conversely, suppose that xTyTz⊆ Q.  Then 
(xTT)(TyT)(TTz) ⊆xTyTz⊆ Q.  Since xTT is a right 
PO-ternary ideal of T, TyT is a lateral PO-ternary ideal of T 
and TTz is a left PO-ternary ideal of T.  Therefore, by 
hypothesis xTT⊆ Q or TyT⊆ Q or TTz⊆ Q.If xTT⊆ Q, then 
x

3∈xTT⊆Q.   
Now <x>r<x>m<x>l = (x∪xTT](x∪TxT∪TTxTT](x∪TTx] ⊆(x]3∪ (xTT] ⊆ Q.  By hypothesis <x>r⊆ Q or <x>m⊆ Q or 

<x>l⊆ Q.  Therefore x∈ Q.  Similarly, if TyT⊆ Q ⇒y∈ Q and 
if TTz⊆ Q ⇒z∈ Q.  Hence Q is T-prime PO-ternary ideal of T. 

Notation IV.27: we use the following set defined as  
 L(Q) = {x∈ Q : (TTx] ⊆ Q},  
 M(Q) = { x∈ Q : (TxT∪TTxTT] ⊆ Q} 
 R(Q) = { x∈ Q : (xTT] ⊆ Q} 
 IL = { x∈ L(Q) : (TTx]⊆ L(Q)} 
 MIM = { x∈ M(Q) : (TxT∪TTxTT]⊆ M(Q)} 
 IR = { x∈ R(Q) : (xTT]⊆ R(Q)}. 

Theorem IV.28: Let Q be a quasi-PO-ternary ideal of T.  
Then L(Q) is a left PO-ternary ideal of T contained in Q if 
Q is non-empty. 
Proof: Let x, y∈L(Q) and s, t∈ T.  Thenx, y∈L(Q) ⇒stx∈ 
(TTx] ⊆ Q, sty∈ (TTy] ⊆ Q. ⇒stx, sty∈ Q ⇒stx + sty = st(x + y) ∈ (TT(x + y)] ⊆Q⇒x + y∈ 
L(Q) 
Now TTstx⊆TTx⇒ (TTstx] ⊆ (TTx] ⊆ Q.  Therefore 
stx∈L(Q).   
Consequently, TTL(Q) ⊆ Q.  Hence L(Q) is a left PO-ternary 
ideal of T. 

Theorem IV.29: Let Q be a quasi-PO-ternary ideal of T.  
Then M(Q) is a lateral PO-ternary ideal of T contained in 
Q if Q is non-empty. 
Proof: Let x, y∈M(Q) and s, t∈ T.  Then x, y∈M(Q) ⇒sxt∈ 
(TxT] ⊆ Q, syt∈ (TyT] ⊆ Q. ⇒sxt, syt∈ Q ⇒ sxt + syt = s(x + y)t∈ (T(x + y)T] ⊆Q ⇒x + y ∈ M(Q)  
Now TsxtT⊆TxT∪TTxTT⇒ (TsxtT] ⊆ (TxT∪TTxTT] ⊆ Q.  
Therefore sxt∈M(Q).   
Consequently, TM(Q)T∪ TTM(Q)TT⊆ Q.  Hence M(Q) is a 
lateral PO-ternary ideal of T. 

Theorem IV.30: Let Q be a quasi-PO-ternary ideal of T.  
Then R(Q) is a right PO-ternary ideal of T contained in Q 
if Q is non-empty. 
Proof: Let x, y∈R(Q) and s, t∈ T.  Then x, y∈R(Q)  ⇒ xst∈ (xTx] ⊆ Q, yst∈ (yTT] ⊆ Q. ⇒xst, yst∈ Q ⇒xst + yst = (x + y)st∈ ((x + y)TT] ⊆Q  ⇒ x + y ∈ R(Q)  
Now xstTT⊆xTT⇒ (xstTT] ⊆ (xTT] ⊆ Q.   
Therefore xst ∈ R(Q).   
Consequently, R(Q)TT ⊆ Q.   
Hence R(Q) is a right PO-ternary ideal of T. 

Theorem IV.31: Let Q is a T-prime quasi-PO-ternary 
ideal of a PO-ternary semiring T.  Then IQ is a prime 
quasi-PO-ternary ideal of T. 
Proof: Let Q be a T-prime quasi-PO-ternary ideal of a 
PO-ternary semiring T.   
Suppose RML ⊆ IQfor any PO-ternary ideals R, M and L of T.  
Now IQ⊆L(Q) ⊆ Q implies RML ⊆ Q.  Since Q is T-prime, 
therefore, by theorem 4.26, we have R ⊆ Q or M ⊆ Q or  
L ⊆ Q.  Also IQ is the largest PO-ternary ideal contained in Q, 
therefore, R ⊆IQ  or M ⊆ IQ or L ⊆ IQ .  Hence IQ is a prime 
PO-ternary ideal of T. 

Corollary IV.32: Let Q is a Semiprime quasi-PO-ternary 
ideal of a PO-ternary semiring T.  Then IQ is a Semiprime 
PO-ternary ideal of T. 

Theorem IV.33: If a PO-ternary semiring T is a regular, 
then every quasi-PO-ternary ideal of T is T-semiprime. 
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Proof: Suppose that T is regular and Q be a quasi-PO-ternary 
ideal of T.  Let aTaTa⊆ Q for a∈ T.  Since T is regular, 
therefore, for a∈ T, there exist x, y∈ T such that a≤axaya.   
Thus a ≤ axaya⇒a∈ (aTaTa] ⊆aTaTa⊆ Q.Therefore a∈ Q.  
Hence Q is a T-semiprime. 

V. QUASI-K-PO-TERNARY IDEALS  

Definition V.1: An additive subsemigroup Q of a  PO-ternary 
semiring T is said to be quasi-k-PO-ternary ideal of T 

provided ( )QTT TQT TTQTT TTQ Q   and  

(Q] ⊆ Q. 

Theorem V.2: Let T be a PO-ternary semiring and  

A, B, C ⊆ T.  Then ABC ABC . 

Proof: Since A ⊆ A , B ⊆ B and C ⊆ C , therefore, ABC ⊆ ABC .  Hence ABC ABC .  Again, let x∈ A , y∈ B  

and z∈ C .  Then there exist a1, a2∈ A, b1, b2∈ B and c1, c2∈ C 
such thatx + a1 = a2, y + b1 = b2 and z + c1 = c2.  Now 
 xyz+ a2b2c1 + a2b1c2 + a1b2c2 + a1b1c1 
 = xyz + (x + a1)(y + b1)c1 + a2b1c2 + a1b2c2 + a1b1c1 
= xyz + xyc1 + xb1c1 + a1yc1 + a1b1c1 + a2b1c2+a1b2c2 + a1b1c1 
= xyc2 + xb1c1 + a1yc1 + a1b1c1 + a2b1c2+a1b2c2 + a1b1c1 
= xyc2 + xb1c1 + a1yc1 + a1b1c1 + (x + a1)b1c2+a1b2c2 + a1b1c1 
= x(y + b1)c2 + xb1c1 + a1(y + b1)c1 + a1b1c2+a1b2c2 + a1b1c1 
= xb2c2 + (x + a1)b1c1 + a1b2c1 + a1b1c2 + a1b2c2 
= (x + a1)b2c2 + a2b1c1 + a1b2c1 + a1b1c2= a2b2c2 + a2b1c1 + 
a1b2c1 + a1b1c2. 
As aibici∈ ABC, where i = 1, 2.  Therefore we can prove that 

xyz∈ ABC  for x∈ A , y∈ B  and z∈ C .  Suppose that 

t∈ ABC .  Then t = 
n

i i i

i

a b c

  for some ai∈ A  , bi∈ B , 

ci∈ C .  Thus t= ABC .  Therefore ABC ABC .  Hence 

ABC ABC ABC  .   Therefore ABC ABC  . 

Definition IV.3: A PO-ternary semiring T is said to be 
k-regular provided for each a ∈ T there exist  
x, y∈ T such that a + axa = aya. 

Theorem IV.4: If a PO-ternary semiring T is k-regular.  
Then every quasi-k-PO-ternary ideal Q of T is of the form 

Q = ( )QTQTQ TTQ TQT TTQTT QTT    .  

Proof: Let Q be a quasi-k-PO-ternary ideal of T.  Then 

( )QTT TQT TTQTT TTQ Q    and (Q] ⊆ Q.  

Let a∈ Q and T is k-regular, then there exist x, y∈ T such that 
a + axa = aya⇒axa + axaxa = ayaxa.  Since axaxa, ayaxa∈ 

QTQTQ.  Therefore axa∈ QTQTQ .  Similarly, 

aya∈ QTQTQ .  Since QTQTQ  is k-closed and hence 

a∈ QTQTQ QTQTQ .  Therefore Q ⊆ QTQTQ .  Again 

QTQTQ ⊆Q(TTT)T ⊆ QTT and QTQTQ ⊆ TTQ and 
QTQTQ ⊆ TTQTT and hence 

,  QTQTQ TTQ QTQTQ QTT  and 

QTQTQ TQT TTQTT   as 0 ⊆TQT . 

 

Thus we have Q  ⊆ QTQTQ ⊆ ( )QTT TQT TTQTT TTQ Q   as 

Q is quasi-k-PO-ternary ideal of T.  Hence Q = QTQTQ = 

( )QTT TQT TTQTT TTQ   . 

VI. CONCLUSION 

In this paper mainly we studied about quasi po-k-ternary 
ideals and full quasi po-k-ternary ideals in PO-ternary 
semiring.  
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