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 
Abstract—The empirical relationship between 

travel-time of flood peaks and peak discharge was studied 

on a reach of the Poprad River in Slovakia. The data were 

fitted by regression and compared with the expected 

shapes as described in the literature. Further a chain of 

linear segments has been considered as the model of that 

relation. The number of segments parameters and the 

angles between theses in this piecewise linear model were 

fitted by optimisation of a conceptual multilinear flood 

routing model performance on a large flood wave with 

the help of a genetic algorithm. In the setup of the 

multilinear model the travel-time parameter of the model 

was allowed to vary with discharge according to the 

piecewise linear model of the travel time of flood peaks. 

The discrete state space representation of the 

Kalinin-Miljukov model was used as the basis for a 

multilinear discrete cascade flood routing model. The 

resulting relationship was compared with empirical data 

on travel times and used to model the variability of the 

time parameter in the discrete state space representation 

of the Kalinin and Miljukov model on three verification 

floods. The modelling results showed that the inclusion of 

empirical information on the variability of the travel-time 

with discharge even from one flood enables satisfactory 

accuracy for the prediction of the flood propagation 

process. 

 
Index Terms— Multi-linearity, flood routing, relationship 

between travel-time and discharge, Poprad River.  

 

I. INTRODUCTION 

  The use of conceptual models rather than physically 

based (hydraulic) routing models is usually preferred for 

forecasting and planning purposes. There is a vast amount of 

information on the subject of these models. The current 

state-of-the-art will therefore not be discussed here in detail 

(see e.g. [19], [20]). Only some assumptions and limitations 

of their use will be touched upon. We will rather concentrate 

here on the practical problem of model calibration in the case 
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of sparse data, which is often a case in real-life situations 

when models are used for planning purposes. In several 

previous studies we have shown that the empirical 

relationships between travel-time of flood peaks and the peak 

discharge can be used to parameterise a multi-linear flood 

routing model based on the state space representation of the 

classical Kalinin - Miljukov cascade [19], [18]. The time 

parameter of the state space model was allowed to vary with 

input discharge according to the travel-time peak-discharge 

relationship.  

In this paper the direct estimation of the relationship 

between the travel time of flood peaks and peak discharge on 

the Poprad River by multilinear flood routing was attempted. 

A piecewise linear model of that relation has been considered 

consisting of a chain of linear segments. The shape of that 

relationship (number and length and the angles between 

consecutive the segments, Fig. 4) was fitted by optimisation 

of the performance of multilinear routing model on a recent 

large flood wave with the help of a genetic algorithm. The 

empirical relationship between travel-time of flood peaks and 

peak discharge was also studied using recent flood data. The 

fitted piecewise linear relationship was compared with the 

empirical data on travel times and also used in the Kalinin 

and Miljukov model on three verification floods. 

 

II. THE EMPIRICAL FLOOD PEAK TRAVEL-TIME AND FLOOD 

PEAK DISCHARGE RELATIONSHIP ON THE POPRAD RIVER 

In this case study, the Poprad River basin was selected as a 

reach for flood routing. It is located in the northern Slovakia 

(Fig. 1). The reach between Matejovce and Nižné Ružbachy 
of length of 35.2 km was chosen. 

 

 
 

Fig. 1 The Poprad River Basin  
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For the analyses of the travel time of flood waves, hourly 

discharge data from 1992 to 2002 were used (data were 

provided by the Slovak Hydrometeorological Institute). 

In [12] was formulated a wave speed-discharge relation, 

which can be interpreted as two power functions, one for the 

main channel and the other for over-bank flow, joined by an 

S-shaped transition curve (Fig. 2). Wave speed-discharge 

investigations carried out by [22], [23] on six Australian river 

reaches showed consistent variations of wave speed with 

discharge, which were considered as an empirical 

confirmation of the relation by [13]. In [6], [17], [9] similar 

behaviour was observed on the Danube. 

 

 
Fig. 2 Wave speed – discharge relationship (or travel 

time – discharge) according to [12] 

 

Here, the physically-based derivation of such a relationship 

is not envisaged. To estimate the wave-speed discharge 

relationship from the flood data, the procedure used by [22], 

[23] was adopted. An estimate of the wave speed in the reach 

resulted from the travel-time of the main and intermediate 

flood peaks. 

Travel time data of peak discharges for several flood waves 

were collected from the period 1992-2002. The resulting 

relationship is shown in Fig. 3. 

 

 
Fig. 3 Flood peak travel-time – and peak discharge 

relationship between Matejovce and Nižné Ružbachy 
fitted by regression 

 

No theoretical model of the wave speed - discharge 

relationship was considered in this study, the empirical data 

were just fitted by regression for comparison purposes, since 

the mail goal of the study was the direct estimation of the 

relationship between the travel time of flood peaks and peak 

discharge on the Poprad River by multilinear flood routing. 

The pattern described in the literature (Fig. 2) is not clearly 

evident in the data due to missing travel time data for very 

large floods (the 100 year discharge is estimated to be 

650m3/s). 

III. ESTIMATION OF THE PEAK FLOW TRAVEL-TIME AND PEAK 

DISCHARGE RELATIONSHIPS BY MULTILINEAR FLOOD ROUTING 

Development of conceptual non-linear reservoir type 

cascade models was one of the approaches how to incorporate 

non-linearity into the class of hydrologic routing models (see 

e.g. [8], [9], [14]). These models use a non-linear 

storage-outflow relationship in conjunction with the lumped 

continuity equation.  

As an alternative to the use of such a relationship, the 

process models can be assumed to respond linearly to the 

input at any point in time, but with the model parameters 

recalculated as a function of flow values. These techniques, 

commonly referred to as multilinear modelling, usually 

distinguish different components in the input hydrograph, 

each of them being subsequently routed through a linear 

sub-model. The overall output of the non-linear system 

consists of the outputs from the linear sub-models. The 

different inflow components can be obtained by dividing the 

input hydrograph into segments horizontally or vertically. 

The former method is called the amplitude distribution 

scheme; the latter is the time distribution scheme. [5] gave an 

extensive description of the principles of these methods.  

These concepts served as a basis for the development of the 

multiple linearization flow routing model [4] and the 

non-linear threshold model [1]. The multilinear discrete 

cascade model for channel routing based on a discrete 

representation of the Nash cascade as derived by [7] was used 

in [10], [11] and [2].  The discrete state-space version of the 

cascade of linear reservoirs, as derived by Szöllösi-Nagy 

(1982) for one input into the model of the cascade of linear 

reservoirs and extended by [15] for external inputs into each 

reservoir of the cascade, is used in this study. The model 

consists of a series of n linear reservoirs, each with the time 

constant (storage coefficient) k. The storage-discharge 

relationship of the ith reservoir in the series is considered in 

the following form:  

ii kQS            (1) 

 

The (n*1) state vector S of the model represents the volumes 

of water stored in each reservoir Si at a given time; Qi 

represents the outflow from the ith reservoir at a given 

instance for the corresponding storage.  

The input to the cascade is given by the (n*1) vector I. 

Here, as in [15], and in contradiction to the usual formulation 

of the Kalinin-Miljukov-Nash cascade, each reservoir is 

allowed to have an external input Ii. In the first reservoir of 

the series, Ii accounts for the inflow to the cascade at cross 

section of the inlet of the modelled reach. In the subsequent 

reservoirs, Ii stands for the lateral inflow (or the withdrawal of 

water) into (from) the corresponding reservoir along the 

reach.  

The continuity equation for the ith reservoir in the series is 

therefore written as: 

iii
i QIQ

dt

dS
 1

         (2) 
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If all the inputs to the cascade I are considered to be 

constant during the sampling interval (a, a+1) of the length T 

(the input hydrograph is schematised as a stepwise constant 

function of time – e.g. the mean flow during the sampling 

interval), then the governing state-space equations of the 

model (the state equation and the outflow equation) can be 

written in the following form [15]: 

 

),1(),1()(),1()1( aaIaaGaSaaFaS   (3) 

)1()1()1(  aSaHaQ       (4) 

 

where S and Q are the (n*1) vectors of the reservoir’s 
volumes and outflows respectively, and H is the (n*n) matrix, 

which equals Id*(1/k), where Id is the identity matrix. The 

elements of the (n*n) state and input transition matrices F and 

G are defined as: 
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or i greater or equal to j and equal to 0 elsewhere. 

 

The discrete state space version of the cascade of linear 

reservoirs (the classical Kalinin - Miljukov cascade [3]) was 

used here as the routing model [21], [12]. The fact that in the 

state space model the state variables vector contains a 

complete past history of the modelled process at a given time, 

is used here for building the multilinear discrete cascade 

model according to the time distribution scheme in the 

following way.  

Following in [5], [1] the time distribution scheme for input 

division in multilinear models was selected. It is based on the 

algorithm for dividing the input I into a series of consecutive 

non overlapping series I1, I2, … It and a set of distinct linear 

sub-models driven by the respective inputs Ii. The response Q 

of the (in general non-linear) multilinear model consists of 

the composition of responses Q1, Q2, … Qt of the sub-models 

to the corresponding input signals I1, I2, … It. 

It is known that the product n.k, where n is the number of 

linear reservoirs in the series and k is the storage coefficient, 

can be regarded as the travel-time of the modelled reach in the 

Kalinin-Miljukov scheme [3]. In several previous studies it 

was shown that the relationship between travel-time of flood 

peaks and the peak discharge could be used to parametrise 

this model. The time parameter of the state space model was 

allowed to vary with input discharge according to the 

travel-time peak-discharge relationship (e.g. [17], [9]). 

In this paper a piecewise linear model of that relation has 

been considered.  

 

 
Fig. 4 The general shape of the peak flow travel-time 

and peak flow relationship as considered in this study 

The shape and parameters of that relationship were 

estimated by optimisation of the multilinear routing model 

performance on a recent flood wave with the help of a genetic 

algorithm. The Nash-Sutcliffe criterion was used as an 

objective function. The following two assumptions were 

made: 

1) A large flood wave has to be selected in order to cover 

the entire interval of flows and their corresponding 

travel-times.   

2) To remain flexible in the determination of the shape of 

the travel-time discharge relationship formed by a chain 

of consecutive linear segments (piecewise linear 

function), the maximum number of sections has to be 

selected a-priori and kept rather high. Up to eight 

segments were considered in this study. 

 

The resulting relationship estimated from one flood wave 

(flood on the 6.7.2001 – 17.8. 2001) is shown in Fig. 5. 

 

 
 

Fig. 5 Piecewise linear relationship fitted by optimising 

the multilinear model performance 

 

The relationships fitted the empirical data surprisingly well. 

The contradictory behaviour of the relationship at small and 

very large discharges is just an artefact introduced by the 

optimisation, because there were no constraints introduced 

and the interval of small and very large discharge was not 

sufficiently covered by the discharge data. This result can be 

considered as a first step toward an (indirect) proof for the 

possibility of using time variable storage parameter in the 

Kalinin-Miljukov model, which had to be verified 

empirically for each application so far. For the verification of 

the concept the model consisting of five segments was 

selected and compared with the empirical data fitted by 

regression (Fig. 6). 
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Fig. 6 The comparison of the relationships between 

travel-time and discharge estimated by genetic 

optimization with data from the Poprad River reach 

consisting of five segments with regression of the data 

(empirical model) 

 

The performance of the respective multilinear models was 

verified on a set of 5 verification floods. Model performance 

was evaluated with the Nash Sutcliffe criterion and compared 

with that of the optimal linear model estimated for each flood 

separately (see results in Table I). 

IV. VERIFICATION OF THE TRAVEL-TIME DISCHARGE 

RELATIONSHIP 

For verification of the proposed multilinear scheme and the 

three empirical relationships between the travel time and the 

discharge, 5 floods were selected for model verification 

(Table I). The performance of the multilinear model was 

assessed by the Nash-Sutcliffe criterion: 
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where N is the number of data, ObsQ  are the observed 

flows, CompQ the simulated flows, and 
Obs

Q is the mean 

value of ObsQ . 

 

The illustration of measured and simulated discharges for 

one flood is shown in Fig. 8. The values of this criterion are 

compared in Table I (for all floods). 

 
Fig. 7 Comparison of measured and simulated flows for 

the optimised travel-time discharge relationship (GA5) 

for the 25.2.1999 – 09.03.1999 verification flood. (C1 - 

measured input discharge, C2 - measured output 

discharge, C3 – simulated output discharge) 

 

In principle it can be said that the multilinear model based 

on the variable travel-time discharge relationship estimated in 

this case study on the basis of only one large flood performed 

nearly as well as the optimal linear model calibrated 

separately for each flood wave by the genetic algorithm. 

 

 

Table I. Nash Sutcliffe coefficients obtained for the 

verification runs of the multilinear model compared to 

the optimal linear model and the empirical regression 

model 

 
 

V. CONCLUSIONS 

The relationship between travel-time of flood peaks and 

peak discharge was studied on a reach of the Poprad River. 

The discrete state space representation of the 

Kalinin-Miljukov model was used as a multilinear flood 

routing model. The time distribution scheme of model inputs 

was employed in the multilinear model and the travel-time 

parameter of the model was allowed to vary with discharge. A 

piecewise linear model of that relation has been considered. 

The shape and parameters of that model were fitted by 

optimisation of the multilinear model performance on one 

large flood wave with the help of a genetic algorithm.  

The resulting relationship fitted empirical data on 

travel-times of flood peaks and was partially consistent with 

the findings in the literature regarding both, the physical 

interpretation of the factors determining the relation and 

empirical evidence. The fitted empirical piecewise linear 

model was used to model the variability of the time parameter 

in the discrete state space representation of the Kalinin and 

Miljukov model on 5 verification floods. The modelling 

results showed that the inclusion of empirical information on 

the variability of the travel-time with discharge even from 

one flood enabled satisfactory accuracy for the prediction of 

the flood propagation process. 
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