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 
Abstract— In the article offered fractional kinetic model of 

networks with generalized memory. On the basis of fractional 

kinetic model network with hyperchaotic systems, embedded in 

a percolation structure, realized task topologically 

synchronization. While tracing control and stability. Criterion – 

―proximity‖ capture average return time Poincare. Shows a 

visualization of results. 

 
Index Terms—fractional kinetic model, topological 

synchronization, generalize memory, Poincare return time.  

 

I. INTRODUCTION 

  The most control problems of modern philosophy of 

physics are [1, 2]: problem of singularity (space and 

time-mega world); complementarily problem (determinism 

and causality-micro world); the problem of self-organization 

(chaos and order - macro world); problem of the relationship 

of the empirical and the speculative knowledge. 

Accounting and the impact of these problems is 

considerable interest in the context of the analyses and 

synthesis of fractional kinetic Network models 

synchronization, control and stability.  

Naturally that this paradigm is permitted under the 

synergetic approach while remaining within the physics 

Research Area.  

To continue publishing in this article provides a structure 

“Topological synchronization Tracing control stability” is 
permitted in terms of the kinetic model of the network of 

fractional order.  

An important feature of the model is to determine the 

parameters of the percolation at the micro level. Kinetic 

model realized in the space of Poincare fractional order [3].  

II. NOTATION AND PRELIMINARIES 

A. n-dimensional-fractional-order chaotic system. 

 

Consider the following n-dimensional-fractional-order 

chaotic system  

                       θ,X,XFXD
q

0
                            (1) 

 
     Vladimirsky Eduard I., Department of Information Measurement and 

Computing technology, Azerbaijan State Oil and Industry University, Baku, 

Azerbaijan Republic,  

    Ismailov Bahram I., Department of Information Measurement and 

Computing technology, Azerbaijan State Oil and Industry University, Baku, 

Azerbaijan Republic,  

 

where 
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



 

2
1

 denotes the 

n-dimensional state vector of the original system; 
0

X  - 

represents the system initial state, 

  nT

n
Rq,,q,qq  

21
 is a set of fractional order of the 

original system, and    DT

D
Rθ,,θ,θθ  

21
 is the 

value of original system parameters.  

Let the fractional-order derivative of the function  tf  in 

the Caputo sense is defined as:  

                              .tfJtfD
mqmq                      (2) 

Here, q  is the fractional order, m  is an integer that 

satisfies  tf,mqm
m1  is the ordinary m th 

derivative of f , and 


J  is the Riemann-Liouville integral 

operator of order 0 , defined by 

                        ,dgttgJ
t

 


 

0

11


           (3) 

where    denotes the gamma function. A particularly 

important case in many engineering applications is 

10  q . In this situation, Eq. (2) together with Eq. (3)  

                    


 
t

tqq

*
dft

q
tfD

01

1


         (4) 

The operator 
q

*
D  is often called “ q th-order Caputo 

differential operator” and will be used throughout the paper. 
 

B. Network model 

In this paper, we consider a dynamical network consisting 

of N  identical nodes with nonlinear couplings, in which 

each node is a n -dimensional system obeying the following 

fractional kinetic equations [4]: 

                         xfAxxD
q

*
                                  (5) 

where          nT

n
Rtx,tx,txtx  

21
 represents the 

state vector, 
nn

RA
  is a constant matrix, and 

nn
RR:f   represents the nonlinear part of the oscillator 

and is assumed to be smooth enough.  T
n

q,q,qq 
21

  

indicates the fractional orders with all  10,q
i
  and 

 T
n

q

*

q

*

q

*

q

*
xD,,xD,xDxD n

21

21



 . We call system (4) a 
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commensurate order system for
n

qqq  
21

, 

otherwise system (4) is called an incommensurate order 

system.  

The entire network is a system of nN  FDEs particular, 

the state equations are: 

                N,,,i,tsfAxxD
ii

q

*
21              (6) 

where 
n

i
Rx   describes the state of the i -th node and  

  n
Rts   is the coupling signal. These unit systems are 

nonlinearly coupled by the function  

                            
N

x,,x,xhts 
21

                            (7) 

where 
nnN

RR:h   integrates the state of all units 

forming a complex network. It should be noted that the 

integrated function h  can be designed in either linear form 

  





   

N

j jN
x

N
x,,x,xh e.g.,

121

1
  or nonlinear form 

    


N

j jN
xg

N
x,,x,xh e.g.,

121

1
  with smooth 

function 
nn

RR:g  . From the view of synchronization, 

both kinds of function h  would achieve network 

synchronization, but with different synchronized state. 

Therefore, for simplicity, we shall later on restrict ourselves 

to the linear case, i.e., to linear integrated function h . For 

such networks, the state equations can be explicitly written as 

    ,,,2,1,
1

* Nix
N

fAxxD
N

j

jii

q 







 




         (8) 

where R  is the coupling strength.  

C. Topology of  fractional-order space 

Definition 1. The number is called as a metric order of a 

compact A  

                   ln/Nlnlimk
A

                             (9) 

where   - the sphere of radius  ;  N  - number of 

spheres in a final sub covering of a set. 

The lower bound of metric orders for all metrics of a 

compact A  (called by metric dimension) is equal his 

Lebesgue to dimension.  

However it appeared that the metric order entered in [5], 

coincides with the lower side the fractal dimension of 

Hausdorff-Bezikovich defined in the terms “box-counting”. 
Takes place 

Theorem 1 [5]. For any compact metric space X . 

 













Xonmetricaisd:
log

XNlog
liminfXdim

d,




 0

,  

where  

 












meshwithX

oferingopenfiniteaisUU
XN d

cov:
min,

. 

From here  
f

d,X  - compact fractal metric space with 

dimension
f

d . 

Here it is important to note that at the description of 

properties of systems with fractional structure it is impossible 

to use representation of Euclidean geometry. There is a need 

of the analysis of these processes for terms of geometry of 

fractional dimension.  

Remark. In [6] presented results of communication of a 

fractional integrodifferentiation (in Rimana-Liouville or 

Gryunvalda-Letnikov’s terms) with Koch’s curves.  

It is noted that biunique communication between fractals 

and fractional operators does not exist: fractals can be 

generated and described without use of fractional operations, 

and defined the fractional operator not necessarily generates 

defined (unambiguously with it connected) fractal process or 

fractal variety. 

However use of fractional operations allows generating 

other fractal process (variety) which fractal dimension is 

connected with an indicator of a fractional 

integrodifferentiation a linear ratio on the basis of the set 

fractal process (variety).   

In [6] fractional integrals of Riman-Liouville are 

understood as integrals on space of fractional dimension. 

Thus the indicator of integration is connected with dimension 

of space an unambiguous ratio. 

In this regard consideration of dimension of chaotic 

systems of a fractional order causes interest. So, in [9] was 

noted that dimension of such systems can be defined by the 

sum of fractional exponents Σ , and  3Σ  is the most 

effective.  

Let the chaotic fractional system of Lorentz take place [7]: 

  bzxyz
dt

d
,'xzyxy

dt

d
,xyx

dt

d














   (10) 

here 110382810  r,,,;/b,,  . 

Then fractional dimension of system of the equations (6) 

will have an appearance [9]: 

                                                               (11) 

So, for example, for Lorentz’s system with fractional 

exponents 990.  , effective dimension 

972. . 

This, in the context of fractional dynamics let X
~

  - any set 

of nonlinear physical systems, 


A  - a subset of a set X
~

 of 
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systems of a fractional order with memory X
~

A 
. Then a 

triad  
,A,X

~
– compact fractional metric space with 

dimension . 

Let’s designate  
f

d,XW  . On the basis [8] and 

remarks   W,A,X
~ 

. 

Let’s consider transformation W  at an angle of 

communications of average time of return of Poincare   

with 
f

d  and “residual” general memory (GM).  

Here ,GMd:ld:g
ff
   l,g:  . 

From here  ,XU   - the generalized compact metric 

space of Poincare with dimension  . 

D. Generalized systems with memory 

Let   W,A,X
~ 

; Z  the set of all integers [9]: 

  ,R 0
0

,  0
0

,R  ,  ,,Z 21
0
 , and 

 ,,,Z 210
0

 . 

Definition 2. Let   W,A,X
~ 

 be GM . 

ZRGM   is called a compact generalized memory of 

[4]: 

                               00  QQGM ,                             (12) 

where:                     
1

0
10




 

j

j
jj

j,t,tQ  

and:                     
k

k
kk

k,s,sQ
1

10
1


   

for same finite of observed: 

jik
tttsss  

100
0 . 

III. TOPOLOGICAL SYNCHRONIZATION 

Unlike traditional methods of synchronization in [10] 

proposed the concept of topological synchronization of 

coupled chaotic systems.  

Definition 3[10]. Two systems are topologically 

synchronized, if Poincare return times behave a similar way.  

Thus match the dimensions of these two systems – a 

necessary condition for the topological synchronization: well 

indicates the “average similarity” [10]. It is known that the 

synchronization feature is the preservation of a certain 

frequency: in this case, is the relationship between the 

Poincare return times.  

Invariance of these ratios, are the timing mode. 

A. Synchronization between the two fractional 

hyperchaotic systems 

In the general case, synchronization of chaotic 

fractional-order systems, united has the form: 

             tUYĝ
dt

Yd
,Xf

dt

Xd










               (13) 

where   - order of derivative, ,  10, , master’s nRX  

and slave 
nRY  systems; 

nn RRf :  and 

nn
RR:ĝ   - vector fields master and slave systems. In 

the general case condition synchronization systems defined 

as:    T
n

u,,utU 
1

 , i.e. YX
t

lim , where   - 

Euclidean norm.  

B. Topological control 

Consider the following general structure of the 

fractional-order nonlinear system under control:  

                      ,tButxftxD
q

t


0
                        (14) 

where         T
m

tutututu 
21

  is m - dimensional 

input vector that will be used and following control structure 

will be considered for state feedback: 

                         tututu
sweq

 ,                                    (15) 

where  tu
eq

 is equivalent control and  tu
sw

  is the 

switching control of the system (10). 

With regard to the task the topological control will be 

submitting a number of definitions [11]. 

Definition 4. The system topologically controllable if and 

only if coincides with x̂  on the basis of the criterion metrics 

“proximity” Hausdorff. 

Theorem 2 [12]. Let E  and F  is compact subset 
n

R , 

0 . Hausdorf  distance  F,EH  satisfies the relation. 

   ˆFEˆF,EH  and  ˆEF , 

where 0̂  the allowable threshold. 

Topological control of the formation of a new 

structure made by the algorithm – “a comparison of the 

prototype”. 
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Common challenges in the implementation of 

topological synchronization and topological control is a base 

– definition, theorem and intelligent iterative algorithm.  

Fractional-order iterative learning control scheme is 

given as [9,12]: 

                          
        te,tUFtU

kkpk



,                                                  

where                         tYtYte
kdk

 . 

 

Fig. 1. The basic scheme of iterative learning control with 

 tY
d

 being the trajectory,   tU
k

 and  tY
k

 the input 

signal. 

 

Definition 4. Two systems topologically controllable if and 

only if they are synchronized topologically. 

Remark. If you synchronize at the same time a regularity at 

the exit system there is a situation called passive control.  

Otherwise the usual iterative procedure for the organization 

of regular structure on the system output.  

C. Formation of loss memory 

The [9] mentioned that Poincare return time for 

chaotic systems are determined by the well-known fractal 

dimension of the process. The spectrum of the Poincare 

return time on the reversibility is chaotic systems as well 

hence the equivalence between spectrum and distribution 

generalized memory. 

Therefore, memory loss is determined by the 

difference between the global and local fractal dimensions.  

Thus required to resolve the problem in the context of 

the generalized memory.  

D. Poincare recurrence diagram 

Displayed the system on the two-dimensional square 

matrices  N,N  and of formula [13]: 

  UxjiNjiR jii xxi
m

ji
 ,,,,1,,

,

,



, 

 

where N  - number of considered (examined) condition 
i

x ; 

  - size of a neighborhood of a point x  at the moment i ; 

  - norm;    - function of Heaviside.  

E. Topological stability of hyperchaotic - order systems 

Determine the stability of the zero solution on the 

system  

   
ˆˆ,ωˆ,ˆ 

dt

dx
qq

N

nnqq


0
. 

Proposition. Let UGM   be structure of 

generalized memory. If there exists a differentiable observed 

 RR:V
n

 such that the following hold: 

 i  - if trajectory will pass thought the point 0, i.e. 

  0xV , the system is stable with  τd
f

 and matches 

GM ; 

 ii  - if trajectory will pass below the point 0, the 

system is asymptotically stable with  τd
f

. 

IV. MAIN THEORETICAL RESULTS 

A. Mathematic model of T -synchronization, tracing control 

and stability with generalized memory (GM). 

Let mathematical model of the network of fractional order 

in the structure “topological synchronization - tracing control 

- stability” of the form 

           
iiiiiii

q
xxGMxxŜxCxSxD    (16) 

where  
i

xS  - synchronization of algorithm i -th systems, 

N,,,i 21 ;  

            
i

xC  - control algorithm i -th systems, 

N,,,i 21 ; 

            
i

xŜ  - stability i -th systems, N,,,i 21 ; 

           





  

T

x
fracAxD i

q: , where  xfrac  is 

the fractional part map of the sawtooth;  

            
i

xGM  - Generalized systems whit memory: 

           PLxD:
i

q  , PL  - percolation lattice.  
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Let  ,XU    is tensioned the mathematical of 

the system  
i

q
xD , i.e. 

                                UxD
i

q  .                                       (17) 

So the analyses and synthesis of model (9) components will 

be implemented in context of compact metric Poincare space 

with dimension  . 

In this section consider the structure “topological 

synchronization - tracing control - stability” of the resolution 

on the example of fractional order hyperchaotic systems.  

B. Information processes in the kinetic model 

In the fractional kinetic model of the network an 

important place occupied by the problem of transport 

information.  

In this context arbitrary kinetic structure with 

elements of heterogeneous fractional-order chaotic maps 

embedding on percolation lattice that is carried out the 

operation in order to from structure of relations links.  

Remark. The formal foundation of system embedding 

is the results of modern general algebra on embedding 

algebraic structures in relative simple algebraic structures.  

Definition 5.  Embedding kinetic model in 

n -dimensional lattice is a map in which the vertices (of the 

system)  are map in the lattice nodes and edges (connections) 

are on the lattice lines.  

Axiom embedding. Let   E,VG   - kinetic 

structure, where V  - set of vertices,  
i

V  , E - set of 

edges   n,,,i,eE
i

21  . 

Let the set of n -dimensional lattice LL  in 
2

E  with 

many of nodes,   
j

mM   and many links,  

  k,,,j,cC
j

21 . 

Let some operator   embedding  E,VG   in 

n -dimensional lattice  C,Mz   has the form [14]: 

                           ZG:  ,                                        (18) 

where 

                    












.otherwise,

CE

MV,

ZG

0

1

          (19) 

Then the percolation lattice will be a geometric and 

dynamic implementation of fractional-order kinetic model of 

the network.  

To describe the topology of a set used geometric 

characteristics of the fractional – called index of connectivity 

[15]. 

It is known that the fractal dimension of percolation cluster 

in general is defined as [3]: 

                            
γ
β

dD   ,                                             (20) 

where d  - space of a two dimensional flow in 
2

E  ; β  - 

coefficient  for two-dimensional percolation; 

13890365 ./γ  ; 21 /γ   - index of correlation. 

However, the real fractal dimension 
f

d   is determined by 

the embedding of heterogeneous systems in a percolation 

lattice.  

Remark. In principle, in general, there should be similarity 

of these dimensions, i.e.  

                                 
f

def

dD  .                                        (21) 

It is important to note that the cluster will determine it’s 

the throughput, i.e.  

                                 
f

d:  ,                                  (22) 

where   - the throughput;   - operator. 

Thus, in the article the task of implementing “topological 

synchronization - tracing control - stability” structure 

fractional percolation lattice of the cases the presence without 

lass of memory and the memory loss. 

C. Algorithm 

Step 1. Let given to the fractional-order hyperchaotic 

system [16]: 

               

 

.hyD

,dzeD

,wzcxbxD

,wxyaD

q

w

yxq

z

q

y

q

x

1

1

1111

111

1

11

1

1

1









                                    (23) 

Here, 10a , 40b , 2c , 52,d  , 

4h , where q  is the fractional-order, 950.q  . 

Fractional-order hyperchaotic Chen system following 

[17]: 
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 

,xdxxD

,xbxxD

,xcxxxγD

,xxxaD

q

x

q

x

q

x

q

x

4132

3121

21311

4121

4

4

3

3

2

2

1

1









                                (24) 

where 950
4321

.qqqq  , the system parameters are 

   7,28,3,35γ,,,, 1111 dcba . 

Step 2. Simulation of the system (23) - (24) according to the 

algorithm [9]. 

Step 3. Let  N

nn
xx̂

0  is related observable two 

fractional-order hyperchaotic (23) and (24) systems.  

Step 4. In order to achieve the behavior of synchronization 

between two new hyperchaotic systems by using the proposed 

method, suppose the master is x̂ . 

Step 5. The related observable x̂  perturb of sawtooth wave 







  

T

x
fracAxD i

q: , where  xfrac  is the 

fractional part. 

   xxxfrac  , A  is amplitude, T  is the 

period of the wave, and   is its phase.  

 xSx̂Ŷ  ,  N

nn
yŶ

0 , UŶ  . Ŷ  is slave 

system (fig.1). 

Step 6. Iterative learning algorithm for topological 

synchronization on schematic “master-slave” with while 

tracking control for hyperchaotic nonlinear fractional-order 

systems shows figures 2- gfedcba ,,,,,, . 

Step  7. On the basis theorem and on iterative procedure 

define the effect of the “proximity” capture of the average 

Poincare return time as a criterion for the hyperchaotic 

topologically synchronization systems while tracking control.  

 

 

  

 

-140 -40 60 160 260 360 460

460

360

260

160

60

-40

-140

50

100

150

200

 

                               a                                           b 

  

 

-133 -33 66 166 266 366 466

466

366

266

166

66

-33

-133 0

50

100

150

200

 

                              c                                            d 

0 50 100 150 200 250 300 350 400 450 500

-150

-100

-50

0

  

 

0 100 200 300 400 500

500

400

300

200

100

0 0

20

40

60

80

100

120

140

 0 20 40 60 80 100 120
-0.5

0

0.5

1

1.5

2

2.5

3

 

                e                              f                              g 

Fig.2 Visualization of iterative algorithm  

a,b – first iteration: memory allocation and its recurrence plot; 

c,d – next iteration: memory allocation and its recurrence 

plot; e,f - real memory and its recurrence plot; g – Lyapunov 

indicator of chaoticity, lyap.min=-0,2009, lyap.max=2,7177. 

 

Step 8. Define the Poincare diagram ŷD,x̂D  [13] and 

fractal dimensions: 

2034.1,2586.1
21
 ff dd ; 

the average Poincare return time as: 

..τ,.τ 798857397214283
21
  

Step  9. Effects of the “proximity” define as: 

          εττεττJ
prox

ˆˆ,
2121
 , 

ε̂ττ
prox


12

, where 170.ε̂  . 

The figure f,1  shows regularity-like of tracking control.  

 Step 10. Define Lyapunov stability. 

i ) Let the Lyapunov function is given in the quadratic form 

as: 

  2

2

1 
q

xV  . 

  ii ) We calculate the total derivative of the function 

 xV : 

0



  ˆ
dt

dx

x

V

dt

dV
qq

, 

 where ̂ memory function (fig. 3). 
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Fig.3. Fractional Lyapunov stability. 

 

Step 11. We make embedding fractional kinetic models in 

percolation lattice of rules (18) and (19). On fractional 

percolation lattice is a series connection of heterogeneous 

hyperchaotic fractional mapping (fig.4.). 

 

Fig.4. Structured fractional kinetic model. 

 

The size of the lattice 1616 . Share indignation 

number: 0.763. Number of runs the program: 50. The 

probability of membership node in percolation cluster: 

0.95249. The average cluster size – 4.6076. Probability 

emergence percolation cluster – 0.96.  

V. CONCLUSION 

Resolution structure “topological synchronization – control 

– stability” showed method analyses from generalized 
memory. When tracing control process formed the transition 

of “hyperchaos-chaos” confirmed by a positive Lyapunov 
exponent.  
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