
                                                                                   International Journal of New Technology and Research (IJNTR) 

                                                                                   ISSN:2454-4116,  Volume-2, Issue-1, January 2016  Pages 01-05 

                                                                                1                                                                 www.ijntr.org 

 

 
Abstract— The motion of the surface particles of Rayleigh 

waves in the prestressed heterogeneous elastic half space is 

discussed in detail. The analytical expressions for displacement 

components are derived and showed that these components are 

effected by initial stress and inhomogeneity factor. It is also 

proved that  motion of the surface particles becomes retrograde 

elliptical in unstressed heterogeneous half space. For λ=0, the 
ratio of the major and minor axes are derived and showed that 

the ratio becomes unity at the cut-off frequency. 

Index Terms— Rayleigh waves, prestressed heterogeneous 

medium, orthotropic medium, retrograde elliptic, retrograde 

circular..  

 

I. INTRODUCTION 

  The surface wave method is most widely used to find the 

mechanical properties of the medium, because it is 

non-destructive, has less inspection time, low cost and has 

wide range of applications in various fields like seismology, 

geophysics and materials science. 

The study of  propagation of  Rayleigh  waves in 

heterogeneous half space have been studied among others 

Stonely(1934), Wilson(1942), Newlands(1950), 

Hook(1961), Dutta(1963), Karlson(1963), Singh(1965) and 

Sidhu(1970). A good amount of literature can be found in the 

standard books like pilant (1979) and A. Ben-Menahem and 

S.J. Singh (2000) etc. 

In most of above studies, the effect of inhomogenity factor in 

different forms are discussed for the study of propagation of 

Rayleigh waves. Though, earth is prestressed heterogeneous 

medium due to many factors like gravity field and variation in 

temperature etc. 

Biot (1965) was the first that has shown anisotropy was 

developed due to initial stress present in the medium. Using 

basic equation of Biot, some researchers like Sidhu and Singh 

(1983) hasshown the effect of prestress on the propagation of  

P, SV,SH seismic waves. 

  Due to complexity of the problem, the study of transmission 

of Rayleigh waves in the prestressed heterogeneous half 

space was not enough. Das et al. (1992), abd-alla et al. (2009) 

and Kakar and Kakar (2013) have tried to drive the dispersive 

equationsof Rayleigh waves in prestressed heterogeneous 

media. Most of them used potential method to solve these 

problems. Norries (1983) also has pointed out that potential 
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method is not suitable for prestressed media 

In the present paper authors want to discuss the motion of 

surface particles in the prestressed heterogeneous elastic half 

space using matrix method. The expressions for the 

components of displacement are derived. For that purpose the 

basic equations are taken from their previous paper (Gupta 

and Kumar, proceeding ISTAM, 2014). Here it is assumed 

that material properties and initial stress components are 

varying as 

λ= ,μ= ,ρ=

  (a>0). 

II. BASIC EQUATION 

Consider a semi-infinite, perfectly elastic prestressed, 

heterogeneous medium .The materials is either 

isotropic in finite strain or anisotropic with orthotropic 

symmetry .The principle directions of prestressed are 

chosen to coincide with the direction of elastic 

symmetry and the co-ordinate axes . The general 

equations of motion for prestressed solid in the absence 

of external forces are given by Gupta and Kumar 

(proceedingISTAM, 2014). 

    (1) 

+

=   (2) 

+

 (3) 

where , , , , ,  and ,  are elastic 

coefficients and initial stresses in homogeneous 

orthotropic prestressed medium . ,  ,  are Lami’s 
constant and density of material at the free surface. 

Suppose the solutions of Eqs. (1-3) in the form of 

displacement components are as follow: 
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   (4)                                                            

, 

where . Then eq. (4) define a plane harmonic 

wave propagating in the direction of the normal to the 

plane    (5) 

as shown in Fig. 1 

 
 

withperiod , wave length  and phase velocity  

where 

 
On  simplification of Eqs. (1-6)  , we get  

    (7) 

 

 
where 

 

 
   (8) 

 

 

 

 
 

The set of Eq.(7) can be written in the following matrix form 

     (9)     

where T is column matrix with elements , , , , ,  

and A is 6x6 matrix(given by Gupta and Kumar) . Let the 

solution of Eq. (9)is of the form T=  

which is satisfied for all z if , (10)                                                                                                                      

where I denoting six order unit matrix. 

The set Eq.(10) has a non –vanishing solution vector   if and 

only if  

     (11) 

The determinant of Eq.(11)is a sixth order equation in s and 

gives the following six distinct values, 

 

 

    (12) 

 

2
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1
4

2
s a p a      

2

6 2

1
4

2
s a p a      

 
Where  

.     (13) 

The general solution of Eq.(9) is ,therefore 

    (14) 

Writing the column vector  in the symbolic form as  

 ,  in Eq.(14) and 

equating the corresponding elements ,we get  

 

,     

  (15) 

We replace s by  in Eq. (10) ,we get 

.      (16) 

Here we assume, that each of the sets of six  for any given 

i must be consistent. It means all six solution are L.D. ,we can 

express one in terms of L.C. of other five. For that, fixed i , 

and express them in such a way that none of the values of 

i=1,2,3…..6, the coefficient determinate becomes zero. It will 
be possible, if  we write (j=2,3,….,6) as = (say). For 

each i, Eq. (16) gives a set of six homogeneous equations in 

six unknowns (j=1,2,3,….,6)as  
2 0 2

2 1 1 4 3 2 3

2 0 2 0 2 0
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C K
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When the elastic half space is unstressed heterogeneous 

infinite isotropic solidthen put P=R=0 in Eq. (8), we get 

 (21) 

(18) 

(19) 

(20) 
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C = ( , 

D = ( , 

and  

E= . 

After some manipulation, we obtain 

,    (22) 

 

,   (23) 

where  

  (24) 

and 

).    (25) 

Substituting for these in Eq.(15), we obtain 

, 

,      (26) 

. 

Appropriate solution to be used from Eq.(26) which satisfy 

the radiation as  are for ,where we 

must ensure that  Therefore putting 

 in Eq.(26),we get    

, 

,      (27) 

. 

The  boundary conditions are( Gupta and Kumar, proceeding 

ISTAM,2014) 

+  = 0, 

+ =0,at z =0               (28) 

+  

where ( )  and 

defined by 

, ,

i

i j

j

u
u

x





. 

Using Eq. (27) in Eq. (28), we get 

+ /2) + - /2) ] +[( + /2) - /2)

] + + /2) =0, 

[ ) +  

] +[( ) ] + - /2) =0,   

 (29) 

[ + ) - ] +[

+( + ] =0 

If we put  , =0  then  first two 

Eqs.Of Eqs. (29) becomes identical and from Eq. (29) , we get 

+ - ) ] +[ - ) ] =0, 

[ + ) - ] +[

+( + ] =0      (30) 

Elimination of nd  from Eq. (30) gives 

  

 

=0, 

(31) 

 

which is the frequency equation of Rayleigh waves 

propagating over the free surface of heterogeneous 

prestressed medium. 

On Simplification, the determinate value of Eq. (31) becomes  

 [  - N{ ( + +mE+m }]=0,

 (32) 

Where 

L=A  + - ) , 

N= A ) + .               (33) 

A= ) + ) , 

=E- -a , ( i =3,4)    

and can be expressed as follow 
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  (34)Since σ 

and  ≠0, we must have  = 0, the Eq. (27) reduces to  

= +  

= +     (35) 

= + ] 

Putting the value of  ,  and  in Eq.(4) and taking real 

part , we get

3 4

3 4

3 4

3 4

3 4

3 3 4 4
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(36)              

which give the displacements everywhere. For surface 

displacements we put z=0. FromEq.(30) 

 
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Using Eq. (37) in Eq. (36), we obtain 
*

*

*
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where 
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(37) 

(38) 

(39) 

(40) 
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When the medium is heterogeneous unstressed ( =0, 

=0), then Eqs. (40),(42) and (43) reduce to 

 * * 2

0 3 4 3 4 3 4( ) ( ) ,    A D a l s s a m E ls s D D         (44) 
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(45) 

and 
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From Eqs.(21), (44) to (46), we have 
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For  the case =0,we will make use of following notations  
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    (50) 

From Eqs.(12) and (13), we obtain 
2 2

32 , 0
p s

C C p  , 

2

3

1
4 ( 1)

2
s a a       

 and  

2

4

1 1
4 ( )  .                                                                                                    (51)
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 From Eq. (32), we get 

3 42                                                                                                                                                            (52)s s 
 

After some simplification and removal of irrelevant factors 

+a=0, we get 
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for 
3s and 

4s  are real and positive iff  
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From Eq. (34) in this case 
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Using Eqs. (51) to (56) in Eqs. (44)  and (45), we get 
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where  
*

0D  is the value of 
*

D  for λ=0. 
Elimination of t from first two of Eq. (38) gives 

0u v       (59) 

and from first and third gives 

2 2

2 2

* *

2

1
u w

A B


 

     (60) 

It is clear that the particles lie on the curve obtain from two 

Eqs. (59) and (60). 

If we rotate the (u,v) axes to (  through an angle of θ 
where cosθ =  , sinθ =  then the relation between two 

co-ordinate axes (u,v) and (  as follows  

' '

' '

,

.

u u v

v u v

 
 
 
 

 

  
     (61) 

Where the direction of propagation of the Rayleigh 

waves and  is perpendicular to it. Then the curve 

represented by Eqs.(59) and (60) is equivalent to 
' 0u   , 

2

2 2

' 2

* *2
2 2

1
v w

A B  
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(62) 

Using Eq.(61) and first two equations of Eq.(38) , we get 
*

' cos( ) cos( )
A

v x y pt A x y pt
    

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where A =
*

A


 

Third equation of Eq.(38) can be written as  
*

sin( ) sin( )
B

w x y pt B x y pt   


      , (64) 

where B =
*

B


 

Eq. (62) shows that, the particle paths are ellipses in vertical 

planes to the direction of Rayleigh wave propagation.  

Eqs. (63) and (64) gives  
2' 2

2 2
1

v w

A B
       (65) 

Hence Eq. (65), shows that the motion is elliptical. The ratio 

of the major and minor axes is given by Eqs.(57) and (58) is  
*

*
2 1

B B

A A



   ,For λ=0    (66) 

Where the range of ψ is taken from the Eq. (55).  Graphically 
we can see that the ratio of major and minor is increase with ψ 
as shown in figure (2). Again we have drawn a graph between   

 and  taking    along y-axis and  along x-axis for λ=0. 

 

 

(47) 

(48) 

(51) 

(52) 

(53) 

(54) 

(57) 

(58) 
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III. STATIONARY RAYLEIGH WAVES:  

For the surface displacements due to stationary Rayleigh 

waves we can take Eqs.(63) and (64) and change the sign of p 

and add, we get 
' 2 cos( )cosv A x y pt   ,   (67) 

2 sin( )cosw B x y pt   .   (68) 

The particle motion is seen to be rectilinear simple harmonic 

and of the same frequency as that of the wave. if we put 

1x y x y p
    
 

     
 

,   (69) 

where 
1p is the distance from the origin in the direction of 

the wave propagation. Eqs.(67) and (68) can be written as     
'

12 cos( )cosv A p pt ,   (70) 

12 sin( )cosw B p pt .   (71) 

From Eq. (6), the wavelength is K=  , then Eqs (67) and (68) 

give 

'

1

1

K 3K 5K
0      ,  when        p = , , ,.........

4 4 4

K 2K 3K
0      ,  when        p =0, , , ,.........

2 2 2

v

w





 

Hence, at interval of one fourth of wavelength , the 

disturbance is alternately vertical and horizontal. 

 

IV. CONCLUSION 

it is clear that the particles lie on the curve obtained by 

intersection of two surfaces represented by two Eqs. (59) and 

(60). From Eq. (65) we conclude that the particle paths are 

ellipses in vertical planes parallel to the direction of Rayleigh 

wave motion. The motion is retrograde elliptical if the signs 

of 
*

A  and 
*

B are same for  =0. For different value of 

 lying in the range 3 5
1

4
 

  ,we can draw the graph of 

B

A
 in unstressed state of medium. When  =0, then  =1 

and 
B

A
 becomes unity at the cut-off frequency. Hence the 

particle motion is retrograde circular. Other than this value of 

the frequency , the particle paths are retrograde elliptical. It is 

clear from the figure (3) that the increasing value of frequency 

the ratio of 
B

A
elongated in the vertical direction.  At 

3 5

4

 

  
 

 upper most value, of the frequency, phase 

velocities approach Rayleigh wave velocities of the 

homogeneous case equal to 5 1

2

 . 
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