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Global Existence of Classical Solutions for A Class
Nonlinear Parabolic Equations

Svetlin G. Georgiev

Abstract— In this article we prove the existence of
classical solutions for a class nonlinear parabolic
equations. We propose new integral representation of
the classical solutions. As an application we give
continuous dependence and differentiability of the
solutions with respect to the initial data and parameters.

Index Terms— parabolic equation, existence, dependence on
initial data,

I. INTRODUCTION

In this article we investigate the Cauchy problem

U U =ftx;u;u)  in (0;0) *R, (1.1)
u(0; x) = dx) in R; (1.2)
Where ® € C*(R), f: [0; ) *R* R* R—» R is a given

continuous function, u : [0; ©©0)*R—» R is unknown.

Our main result is as follows.

Theorem 1.1. Let f € C[0; ) *R* R* R), ® € C*R). Then
the problem (1.1), (1.2) has a solutionu € C'[0; 0); CA(R)).

To prove our main result we propose a new approach
different than the well-known approaches. Also, we propose
new integral representation of the solutions of the initial
value problem (1.1), (1.2).

As an application of our new integral representation we
deduct some results connected with the continuous
dependence on the initial data and parameters of the problem
(1.1), (1.2).

Theorem 1.2. Let f € C[0; ) *R* R* R), %,% exist and
are continuous in [0; ©)*R* R* R, ® € Cz(R). Let also
u(t,x,0, @) € C'[0; o0); C*(R)) be a solution to the problem
(1.1), (1.2). Then u(t,x,0, @) is differentiable with respect to

@ and u(t,x) = (;—L;(t, x, 0, @) satisfies the following initial
value problem

U—Uyy = % (t, x,u(t,x, 0, d),u,(tx,0, (D))u +
% (t, %, u(t, x, 0, ), u, (£, x, 0, ®) Ju,in[0; 0) *R,  (1.3)
u0,x)=1in R (1.4)

II. AUXILIARY RESULTS

We will start with the following important lemma.
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Lemma 2.1. Letf € C([a, b] *[c, d]* R*R), g€ Cz([c; d)).

Then the function u € Cl([a, b]; CZ([c,d])) is a solution to the

problem

U—U = f(t, X, u, uy) in
u(a,x) =g(x) in

(a,b]*[c.d],
[c.d]

@2.1)
2.2)

if and only if it is a solution to the integral equation

fcx fcy(u(t, z) — g(2))dzdy — f;(u(r, x) — u(r,c) — (x —
cux(z,c))dr

= fat f: ny f(z,z,u(t, 2),u, (7, 2) )dzdydr, x€[c,d],t€[ab]

(2.3)

A. Proof. 1.

Let u € C' ([a,b],C*([c,d])) is a solution to the problem
(2.1),(2.2).
We integrate the equation (2.1) with respect to x and we get

fcx u,(t,z)dz — f: Uy, (t,2)dz
= [T f(t.z,u(t, 2),u.(t, 2))dz, x € [c,d],t €[a,b]
fcx u,(t, z)dz — u,(t,2z) + u,(t,c)

= fcx f(t,z,u(t, 2),u,(t,2))dz, x € [c,d],t €[a,b]
Now we integrate the last equation with respect to x and we
find
fcx fcy u,(t, z)dzdy — fcx u, (t,z) — u, (t,¢))dz

= [7 7 f(t,z,u(t, 2), u(t, 2))dzdy, x € [c,d],t €[a,b]
or
fo fcy u, (t, z)dzdy — u(t,x) + u(t,c) + (x — )u,(t,¢)

= [1 7 f(t.zu(t,2),u,(t,2))dzdy,  x€[c.d],t€[ab]
Now we integrate the last equality with respect to t and we
obtain

fat fcx fcy u, (s, z)dzdyds — fat (u(s,x) —u(s,c) —
X—CUXS,CdS

= fat fcx fcyf(s, z,u(s, 2),u, (s, z) )dzdyds,

x € [c,d],t €[a,b]

or

J7 I ut 2) = g(@)dzdy = [ uls,x) = u(s,c) -

x—cux(s,c))ds

= fat fcx fcyf(s, z,u(s, 2),u, (s, z) )dzdyds,

x € [c,d],t €[a,b]

i.e., u satisfies the equation(2.3).

B. Proof 2
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Let u €C'([a, b], C*([c, d])) be a solution to the integral
equation (2.3). We differentiate the equation (2.3) with
respect to x and we get

71wt 2) = g(@)dz = [ (e (5, %) = u(s,©))ds
t
= 77 F(s, zu(s, 2),u,(s, 2))dzdyds,
x € [c,d],t €[a,b]
Again we differentiate with respect to x and we find
u(t,x)-g(x) - f: Uy, (5,%)ds
= fat f(s,x,u(s, x), u, (s, x))ds, x € [c,d],t €[a,b]

Now we put t=a in the last equation and we find

U(a,x) = g(x), x€[c.d],
i.e., the function u satisfies (2.2).
Now we differentiate the equation (2.4) with respect to t and
we find
u (6,%) — uy (6,%) = £(6x,ult,x),u,(t,x)),

x € [c,d],t €[a,b]

The proof of the existence result is based on the following
theorem.
Theorem 2.2. [1] Let X be a nonempty closed convex subset
of a Banach space Y. Suppose that T and S map X into Y such
that
1. S is continuous and S(x) resides in a compact subset of Y .

2. T: X—»Y is expansive and onto.
Then there exists a point x* € X such that

Sx +Tx =x
Definition 2.3. Let (X; d) be a metric space and M be a subset
of X. The mapping T : M —®X is said to be expansive if there
exists a constant h > 1 such that
d(T, ,T,) >hd(x; y)

for any x, y €M.

III. PROOF OF THE EXISTENCE RESULT
Step 1. Firstly, we will prove that the problem

U - Uy = f(t,x, u, uy) in 0, 17110, 1], 3.1

u0,x)=®x) in [0, 1] (3.2)

has a solution u € C'([0; 1]; C2([0; 1])).
Let E11 = C1([0,1], C([0,1])) be endowed with the norm

[lul| =max{max;,efoq17lu(t, x)|, maxe efoq7lu.(t, x)|
maxlux (tl x) | ]

Xy max ye[o,1]| U (€, %)}

With K, we donate the set of all equicontinuous families
in Ejj, i.e., for every >0 there exist d(g) > 0 such that
Ju (ti.xp) —u (t.x) <&, [ug(t,x1) — ug (t2,x,)] <,
ue(t,X1) — ux (t2,X0)| <&, U (t1,X 1) — UXy (t,%0)| < &

Whenever | t;-ty] <3, | x;-X,| < 3.
Let B > 0 be arbitrarily chosen, K |; = K_ll,
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K1y = {u€, Ky : [jul| <B}.
Since @ € C([0,1]), f€ C([0, 1]* [0, 1]* [- B, B] *[- B,B]) we
have that there exists a constant M;; > 0 such that
|Px)[ <My in [0,1],
[f(t,x,y,2)| < My, in [0, 17* [0, 1]* [- B, B] *[- B,B]

Let I>0 be chosen so that

L(5B + 2 M,,)<B (3.3)

Let also, 7
L]] = {u€ K 11 - ||u|| < (1+1) B}
We note that K, is a closed convex subset of L,
For u € L, we define the operators
Tii (0 (tx) = (1+]) u(t,x),
Sii () (tx) =-lutx) +1 [ [ (u(t,2) — ®(2))dzdy —

L0tut,x—ur,0—xuxt,0dr—00x0y f(T,z,ut, z,ux(7,2) )dzdy
ar.

a) Sll . K11_> KH. Letu€ K11. Then Sll(u)€ Cl ([0,1],
CZ([O, 1])) and for (t, x) 2 [0, 1] [0, 1], using the choice (3.6)
of the constant 1, we have

IS ) (0] = |~tu(t,2) + 1 [ J7 (ult2) -

Dzdzdy (0tur,y—ur,0—xuxr,0dr—/

0t0x0y [T,z ut,zuxt,zdzdydr/,

< lu@ 0|+ 1) [ (lult, 2)| + |0(2))dzdy +
[0t (ur,x+uz,0+xfuxt,0))dr+L0:0x0y]f(t,z,ur,z,uxr,z)|d
zdydr <[B+IB+M11+3/B+[M11=5F+2M11/<5,

S11 () (t,0) = —lu (6, %) + L[} [7 . (t, 2)dzdy —
lut x—ut,0—xuxt,0—[0x0y /¢ z,ut, zyuxt, zdzdy

< (6,201 + 1[5 [ Tue (6, 2)[dzdy + 1(Ju(t, )| +
ut,0+xuxt,0+0x0y [/t z,ut, zuxt, zadzdy

<IB +IB +31B +IM,, =I(5B+ M,;) <B,

Sy (%) = —lue(t,x) + 1 [, (u(t,z) — D(2))dz —
L0t (uxt,x— uxs,0)dr—0t0xf(1,z,ur,z,uxt,z) ) dzdT,

1511 (Wi (&, )| = | = lu, (6,) + 1 [, (u(t, 2) — D(2))dz —
L0t (uxt,x— uxt,0)dr—1060xf (1, z,ut, z,uxr,z)dzdz/,

<lu (&, )| + 1 [, (lu(t, 2)| + P(2)|dz +
[ 0t(Jux(t.x)|+uxt,0dr+00t0x[f(1,z.ut, 2, uxt,z)/dzdr

<IB+ (B +Mj;)+2IB+1My; =1(4B + 2M;;) <B,
Sy (Wi (6,%) = —luge (t,2) + L(u(t, x) — @) —
lfot(uxx (t,x)dt — lf(:f(r,x,u(r,x),ux(r, x))dr,
1S11 (Wx (8, X)| = | = Ty (£, 2) + L(u(t, x) — P(x)) +
lfot(uxx (t,x)dt — lfotf(r,x,u(r, x), u, (z,%))d|,
<IB+I1(B+M;;)+IB+1My; =1(3B+2My;) <B,

We note that {S;;(u) : u € K;,} is an equicontinuous family in

E;;. Consequently Sy, : Ki;=» Kj;}. Also, S;1(Kyy) CKy; €
Ly, i.e., S11(Ky;) resides in a compact subset of L.
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b) Si1: K1 = Kj; is a continuous operator. We note that if
{u,}oo,-; be a sequence of elements of K;; such thatu, = u
in K;; as n = oo, then S;;(u,)—=» S;;(u) in K;; asn 4 ©
Therefore Sy, : Ki; = Kj; is a continuous operator.
¢) Ty, : Ky; Ly, is an expansive operator and onto. For u,v
€ K, we have that
[T11 () - TuW)l| = (1+41) [lu-v]],
ie., Ty; @ Ky —»Ly;is an expansive operator with constant
141
Letv€ L;; Then v\1+l € K;; and
T, 1(V\1+1) =V,

i.e. , T]] . K] 1_> L]] is onto.
From a), b), ¢) and from theorm 2.2, it follows that there is
u;€ K;; such that

T+ Siup=uy
Or

(1 + Duyg (6%) = lugy (63) + 1[0 (upp (62) —
O(z))dzdy — fot u11 (7, %) — u11 (1, 0) — xuq1,(7,0))d7 —
[060x0yf(t,zull(5,z)ullx(t,z))dzdyvdr=ull(tx),

Or

I3 1 (w1 (6 2) = D(2))dzdy — 1 [ ury (7, %) — sy (7,0) —
xullixr,0)dr—/
0t0x0yf(t,zull(r,z)ullx(z,2))dzdydr=0,

Whereupon, using Lemma 2.1, we conclude that
uy1€ C'([0,1], C* ([0,1])) is a solution to the problem (3.1),
(3.2).
Step 2. Now we consider the problem
Uty = ftxu(x),ugtx))  in (0,11%[1,2], (3.4)
u(0,x) =® (x) in [1,2] (3.5)
Let E;, =C' ([0,1], C? ([1,2])) be endowed with the norm

lJull =

max {max ye[o,1]+[1,2] 14 (& X[, Max, vepo,17:1,211ue (¢, %)
max
1

Ex€[0 ]*[1‘2]|ux ()|, maxeefo,11+01,2] | Uex (6, X) [}
With K, we denote the set of all equicontinuous families in
Ep. Let K 1, = Kpp, ,
Ki2 = {u€ K , ||u| <B}
Since @ € C([1,2]), f€ C([0,1]*[1,2]*[-B,B]*[-B,B]) we have
that there exists a constant M, >0 such that
[D(x)| < M2 in  [1,2],
|f(t,x,y.Z)| < M12
in [0,1]1 X [1,2] X [-B,B] X [-B, B].
Let 1, >0 be chosen so that
I, (5B+2M;,) <B.
Let also,

(3.6)
L, ={uekK :||ul|<@+1)B}

We note that K, is a closed convex subset of L,
For u € L, we define the operators
T, (W) (8, 0= (1 + lyu(t, x),

S12(w)(t, x)

x ry

= —Lu(t,x) + 1, f f (u(t,2) — 8(2))dzdy
. 1 1

-4 f (u(r, %) — w1 (1, 1) — (x — Dy, (7, 1))dr
0

-4 J: flx J;yf(r,Z'u(‘r,z),vx(‘r,z))dzdydr

As in Step 2one can prove that there is u;, € C'
([0,11,C*([1,2])) which is a solution to the problem(3.4),
(3.5). This solution u,, satisfies the integral equation
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flx fly(uu (t,z) — 0(2))dzdy
—fo (u12(7, %) =1 (7, 1) = (x — Dy, (7, 1))dr

(3.7)

t ,rx ry
- f f f f(‘r, Z,Uq5 (T, 2), U1, (T, z))dzdydr =0
01 )1

Now we put x=1 in (3.7) and we find

t
f (u12(7, 1) —uyy (7, Ddr = 0,
0

Which we differentiate with respect to t and we get
up (6, 1) = ui (6, 1)

in [0,1]. (3.8)

Now we differentiate (3.7) with respect to x and we find
1 ¢

fx (u12(t, z) — d>(z))dz - fo (U124 (7, %) — U1, (7, 1))dr —
t

fo flx f(TI Z,U1p (TI Z)l ule(T; Z))dZdT =0

In the last equation we put x=1 and we become
t

fo (U124 (7, %) — u11, (7, 1))d7r = 0,

Which we differentiate with respect to t and we get

U2y (t, 1) = ullx(t, 1) in [0,1] (39)
Now we differentiate (3.8) with respect to t and we get
uth(t, 1) = ullt(t, 1) in [0,1]

Hence , (3.8),(3.9) and

(61, ug1 (6, 1), w11 (8 1)) = £(6 L urz (6 1), ugax (8, 1)),
we find

U12xx (t, 1) = uth(t' 1) - f(t! 1, U2 (tr 1)! ule(t: 1))
=u;(6,1) = (6, Lu (6D w6 1) = g0 (1)
in [0,1].

Consequently the function

uqq (t,x) in
Uy, (8, %) in

[0,1] * [0,1]

Ux,t) = { [0,1] * [1,2],

C'([0,1], C* ([0,2])) is a solution to the problem

U — Uy = ftx,u(t,x),u(t,x)) in  (0,11*[0,2],
u(0,x) = O(x) in [0,2].
Then we consider the problem
U, — Uy, = f(tx,ut,x),u(t,x)) in  (0,1]*[2,3] (3.10)
u(0,x) = O(x) in [2,3].

As in above there is u;; € C'([0,1], C* ([2,3])) which is a
solution to the problem (3.10) and satisfies the integral
equation

5 ) us(t,2) = ®(2))dzdy — f, (wi3(1,%) —
(u120,2—x—2ul2x(1,2))dr—02x 2y f1,z,ul 3t,z,ul3x 1,7
dzdydr=0

The function

uqq (t, x) in [0,1] = [0,1]
Uy, (8, x) in [0,1] % [1,2]
uy3(t, x) in [0,1] = [2,3]

Cl([O,l], c? ([0,3])) is a solution to the problem
u, — Uy = fltx,u(t,x),u(t,x)) in  (0,1]*[0,3],
u(0,x) = O(x) in  [0,3].
An so on. We construct a solution u;3; € Cl([O,l], CR )
which is a solution to the problem
Uy — Uy, = ft,x,u(t,x),u(t,x)) in  (0,1]1*R,
u(0,x) = O(x) in R.
Then we consider the problem
U — Uy, = f(t, X, u(t,x), u(t,x)) in
u(1,x) = u;(t,x) in

(1,2]#[0,1],
[0,1].
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As in above, this problem has a solution u,; € Cl([1,2], c?
([0,1])) which satisfies the integral equation

02 (g (6,2) = wy (1, 2))dzdy —
182 1x—uls,0—xule,0)dr—160x0y /T, z,u21t,z,u2 117,
zdzdydr= 0.

We have that
Uy (t,0) = uy(¢,0), Up1¢(t,0) = uq,(¢,0),

ule(t! 0) = ulx(t' 0)'
Also, we have, x € [0,1],

Uz (1, x) = wy(L,x) = up (1,x), up(1,%) =
(1, %) = uy1,(1,%),

U2 1xx (t' 0) = Ugxx (t' 0) in [1’2]

Up1x(1,0) = up (1, x) = ug1,(1,%), Uz (LX) =
Upyr (1, %) = Upge (1,%).
An so on, we construct a solution u € C'([0,2], C*R)) of the
problem
U — Uy = flt,x,u(t,x),u(t,x)) in  (0,2]*R,

u(0,x) = d(x) in R

And so on, we construct a solution u € C'([0,:0), C*R)) to the
problem (1.1), (1.2).
We note that u,,, satisfies the integral equation

fx fy (o (6,2) — s (m — 1,2))dzdy
n—-1Jn-1

_ ft (umn (1,x) —Up_1(t,n—1)
m-1
— (x —(n- 1))um_1(‘[,n — 1)) dt

t X y
— j J j (T, 2, Uy, (T, Z), Uy (T, 2))dzdydT = 0.
m—-17n-1n-1

IV. PROOF OF THEOREM 1.2

We have that the solution u(t,x,0,®) satisfies the following
integral equation

Q@)= [y [ (u(t,2,0,0(2)) — ©(2)) dzdy -
0t(u(t,x,0,P(x))— u(7,0,0,®(0))—xux(7,0,0,P(0))dr—
L3R fnzu (1,2,0,02),u,(1,2,0,0(2)dz = 0

Then

Q@) -Q (@) =

f; foy (u(t, 2,0,®(2)) —u(t, 2,0, CD(Z))) — (®(2) -
Dlzdzdy0tur,x,0,Px—ur,x,0,P1vdr+0tur,0,0,P0—uz,0,
0,@10dr+xuxt,0,0,P0—uxz,0,0,010)dr—00x0y [T, 2, 117,
20Dzuxt,z,0,@P1zdz—

f(r, z,u(t,z,0,®1(2)),u,(r,20,0; (z)))dzdydr

f; foy (Z—l (t,2,0,®(2)) — 1) dzdy — JZ%(T, x,0,®)drt +

0t0udPz, 0,0, Ddr+ 0txduddxz,0,0,@dr—

a a
f(f o J3 ﬁ (1.2,u(z,2,0,),u, (7, 2,0,0)) == (7, 2,0, ®)

dzdydt —

0 Quy

Where o{®, ®;} —» 0 as O(x) —» @, (x)for every x € R.
Hence, when ®(x) —» @, (x) for every x € R, we get

0=

5 w(t,2) — Ddzdy — [] v(z,x)dr + [ v(z, 0)dr +
Otxvxr,0dr—
0t0x0ydfour,zur,z,0,®,uxz,z0,Pvt,zdzdydr—

0t0x0ydfour,zur,z,0,®,uxz,z,0,Pvrr,zdzdydr 4.1

Which we differentiate twice in X and once in x and we get
that v satisfies (1.3). Now we put t=0 in (4.1) and then we
differentiate twice in X, and we find that u satisfies (1.4).
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