
 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-2, Issue-4, April 2016 Pages 153-155

 153 www.ijntr.org

Abstract— Software Development is a complex and often

difficult process requiring the synthesis of many disciplines, like

modelling and design to code generation, project management,

testing, deployment, change management and beyond. Software

development organizations follow some process while

developing a software product. A key component of any

software development process is the lifecycle model on which

the process is based.

Index Terms— Software Development Process, Software

Development Models.

I. INTRODUCTION

The main objective of software process research is to

improve software development practice by proposing:

a) Better ways of designing the developer organization

processes.

b) Better ways of improving the organization at the level of

individual processes and the organization as a whole. To this

end, there are two lines of software process studies, software

process modelling and software process evaluation and

improvement.

In theory, the two kinds of models should be similar or the

same, but in practice, they are not. Building a process model

and discussing its sub processes help the team understand this

gap between what should be and what it is [1].

A. REASONS FOR MODELLING A PROCESS.

There are several other reasons for modelling a process:

 When a group writes down a description of its

development process, it forms a common understanding of

the activities, resources, and constraints involved in software

development.

Creating a process model helps the development team find

inconsistencies, redundancies, and omissions in the process

and in the constituent parts.

The models should reflect the goals of development, such as

building high-quality software, finding faults early in

development, and meeting required budget and schedule

constraints. As the models are built, the development team

evaluates candidate activities for their appropriateness with

these goals.

Every process should be tailored for the special situation in

which it will be used. Building a process model helps the

Deepshikha Jamwal, Assistant Professor, Govt Degree College

Udhampur, University of Jammu.

 Prof Devanand, Central University Jammu

development team understand where that tailoring is to occur

[3].

B. SOFTWARE DEVELOPMENT PROCESS MODELS:

Every software development process model includes system

requirement as input and a delivered product as output. Many

such models have been proposed over the years some of these

models are discussed:

Code and Fix Model: “This basic model was used in the
earliest days of software development” and is not formally
documented due to its simplicity. The code and Fix model is

often used by default. To use the code and Fix model, start

with a general idea of what is to be built. The coding and

fixing continue until the product is released or project is

cancelled.

Waterfall Model: One of the early models proposed was the

waterfall model, where the stages are depicted as cascading

from one to another. As the figure implies, one development

stage should be completed before the next begins. Thus,

when all of the requirements are elicited from the customer,

analyzed for completeness and consistency and documented,

then the development team can go on to system design and

development.

V-Process Model: The V model is a variation of the waterfall

model that demonstrates how the testing activities are related

to analysis and design. , Coding forms the pointed edge of the

V, with analysis and design on the left arm of V & testing and

maintenance on the right arm of the V. Unit and integration

testing addresses the correctness of programs. The V model

suggests that unit and integration testing also be used to

verify the program design.

Spiral Model: Boehm viewed the software development

process in the light of the risks involved, suggesting that a

spiral model could combine development activities with risks

management to minimize and control risks. The spiral model

is an evolutionary software process model that couples the

iterative nature of prototyping with the controlled and

systematic aspects of the linear sequential model. It provides

the potential for rapid development of incremental versions

of the software. In the spiral model, software is developed in

a series of incremental releases.

A Study of Software Development Models for Small

Organisations

Deepshikha Jamwal, Devanand

A Study of Software Development Models for Small Organisations

 154 www.ijntr.org

Table 1. Strengths and Weaknesses of Models.

Incremental Model: This model is similar to the waterfall

model, but without the heavy documentation requirement

(although this can be specified if required). Multiple

functional product releases are made, with each release

incrementally adding functionality or increasing

performance. This model is also known as the „Incremental
Development‟ model or „Staged Delivery‟ model. A slight
variation of this model is to allocate specific module delivery

to each stage, rather than a complete system. The

architectural design phase identifies which modules are

required for a formal release. The stages, in which these

modules are to be delivered, are developed in parallel [4].

II. ASSUMPTIONS FOR THE MODEL

In order to develop a simple model that focuses on the more

important aspects of the methodologies and the objective of

this study, some assumptions were employed. These

assumptions are as follows:

1. Constant number of tasks is not a frequent scenario. This

assumption was made because this is a management issue and

is independent of the methodology approach used and

therefore, out of the scope of this study.

2. No delay or other factors affecting the motivation are

considered. Unlike the previous assumption, changes in the

motivation can dramatically impact the development speed

and quality of a project. They can also be different in an

iterative or sequential approach. However, since the model

represents small projects it is reasonable to assume that the

impact of changes on the motivation is not significant.

3. Tasks that need rework are only reworked in the current

phase. In the theory, both iterative and sequential approaches

contemplate the possibility of sending a task back to a

previous phase. Several authors have studied how the cost

increases as the project moves forward to fix a mistake. This

increasing cost is caused by the overhead time to fix tasks

from previous phases and by the additional rework generated

by the tasks associated with errors. Although capturing of this

effect would be beneficial to increase the accuracy of the

model, it would require the creation of a specific set of levels

for each phase, which, in turn, would increase dramatically

the number of elements of the model and their relationships.

For that reason, with the exception of the testing, this model

considers that rework is only done in the current phase.

However, the model does not keep track of the tasks

mistakenly approved in the previous phase and use it as a

variable to calculate the quality of the work done in the next

phase [5].

III CONCEPTIONS FOR THE LIFECYCLE MODEL

The primary objective of the research work is to do the study

of different software development models and to develop a

framework to guide for identifying the most suitable lifecycle

for the projects especially in small organizations.

The objective has been achieved by determining a set of

factors like size of software, software complexity, required

quality, requirements volatility, amount of documentation,

experience of personnel, personnel availability and project

duration, which mostly influence a software project. The

commonly used lifecycle models have been identified and

research work was carried out to identify how the strengths

and weaknesses (attributes) of selected lifecycles influence

these factors.

The data was obtained from experienced software

professionals, primarily working either as software

development professionals or having an advisory role within

the commercial or public sectors. This suggests that the

lifecycle influencing factors data values can be accepted with

confidence and are applicable to a range of environment and

projects [6, 7].

IV. CONCLUSION

In the existing work, the author has tried to purpose a

conceptual model of information system for small

organization. The model recreates these development

considering two different development methodologies: The

first is a Sequential waterfall-based approach & the second is

an Iterative-based approach that gathers elements from agile

and extreme programming methodologies. For these different

STRENGTHS Waterfall Increment

al

Spiral

Allows for work force

specialization

Y Y Y

Orderliness appeals to management Y Y Y

Can be reported about Y Y Y

Facilitates allocation of resources Y X Y

Early functionality Y Y

Does not require a complete set of

requirements at the onset

 Y(*) Y

Resources can be held constant Y

Control costs and risk through

prototyping

 Y

WEAKNESSES

Requires a complete set of

requirements at the onset

Y

Enforcement of

non-implementation attitude

hampers analyst/designer

communications

Y

Beginning with less defined

general objectives may be

uncomfortable for management

 Y Y

Requires clean interfaces between

modules

 Y

Incompatibility with a formal

review and audit procedure

 Y Y

Tendency for difficult problems to

be pushed to the future so that the

initial promise of the first

increment is not met by subsequent

products

 Y Y

(*) The incremental model may be used with a complete set of

requirements or with less defined general objectives.

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-2, Issue-4, April 2016 Pages 153-155

 155 www.ijntr.org

model parameters, model stocks, main variables, main

flows are described, but the model is still not used for any

software project in a small organization. So this work will be

included in the future work.

ACKNOWLWDGEMENT

This work is being partially been supported by university of

Jammu & various software companies. The authors would

like to extend their thanks to IT companies and professionals

for providing data, with the help of which the paper is framed.

REFERENCES

[1] A. M. Davis, H. Bersoff, E. R. Comer, “A Strategy for Comparing
Alternative Software Development Life Cycle Models”, Journal IEEE
Transactions on Software Engineering ,Vol. 14, Issue 10, 1988.

[2] Jennifer Stapleton, DSDM – Dynamic Systems Development Method,

ISBN 0-201-17889-3, Pearson Education, Harlow 1997.

[3] Molokken-Ostvold et.al, “A comparison of software project overruns -
flexible versus sequential development models”, Volume 31, Issue 9,

Page(s): 754 – 766, IEEE CNF, Sept. 2005.

[4] Boehm, B. W. “A spiral model of software development and
enhancement”, ISSN: 0018-9162, Volume: 21, Issue: 5, on page(s): 61-72,

May 1988.

[5] Deepshikha Jamwal, Vinod Sharma, Devanand, Mansotra V., “ A critical

analysis of software Usage vs. cost”, presented and published in
INDIACOM - ISSN no. 0973-7529 & ISBN 978-81-904526-25, 2009.

[6] Deepshikha, Pawanesh Abrol, Devanand, “Study & Analysis of Software
Development and user satisfaction level”, ICSTM, Springer link, 2009.

[7] Deepshikha jamwal, “Analysis of Software Development Models”,
IJCST Vol1, Issue2, ISSN 097-8491, December 2010.

