
 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-2, Issue-7, July 2016 Pages 59-64

 59 www.ijntr.org

Abstract—In software maintenance, software testing

consumes 55% of the total software maintenance work. The

problem is how to reduce the software testing work while still

insuring high quality software. Some solutions involve software

execution automation tools, outsourcing the testing tasks at

lower labor rates. Such solutions still depend upon individual

skills in generation of the test cases. In contrast, we focused on

generation of test cases rather than the skills and developed a

method for the automatic generation of test cases by using our

natural language document analysis techniques which use text

parsers for extracting and complementing parameter values

from documents. We applied the method to Internet banking

system maintenance projects and insurance system

maintenance projects. In this paper, we discuss our method and

techniques for automatic generation of test cases and their use

in these industry case studies. Our document analysis tool

helped automatically generate 95% of the required test cases

from the design documents. The work of creating test cases was

reduced by 48% in our case studies.

Index Terms—Generation of Test Cases, Document Analysis,

Pairwise testing, Software Testing, Test Automation.

I. INTRODUCTION

 Software testing requires high test case coverage [5] as

software becomes large and complex [8]. Currently test cases

are most often created manually, so test case coverage

depends upon each individual skill [10]. In software

maintenance, software testing consumes 55% of the total

software maintenance work [3],[13]. The problem is how to

reduce software testing work while still insuring high quality

of software. Some solutions involve software execution

automation tools [4],[6], outsourcing the testing tasks at

lower labor rates. Such solutions still depend upon each

individual skill in testing software. In contrast, we focused on

generation of test cases than the skills and developed a

method for the automatic generation of test cases by using our

natural language document analysis techniques which use

text parsers for extracting and complementing parameter

values from documents. We applied the method to Internet

banking system maintenance projects and insurance system

maintenance projects. In this paper, we discuss our method

and techniques for automatic generation of test cases and

their use in these industry case studies.

The method targets functional testing for Web application

Satoshi Masuda, Department of Risk Engineering, University of

Tsukuba Faculty of Systems and Information Engineering, Tokyo, Japan.

Tohru Matsuodani, Debug Engineering Research Laboratory, Tokyo,

Japan.

Kazuhiko Tsuda, Department of Risk Engineering, University of

Tsukuba Faculty of Systems and Information Engineering, Tokyo, Japan.

systems. The method uses text parsers to identify parameter

values for pairwise testing by using our document analysis

tool for the design documents with boundary analysis and

defects analysis, thus avoiding the dependencies upon

individual skills. The document analysis tool uses natural

language processing which is a technique for modeling the

logic of the documents and testing the analysis [1],[2],[7],[9].

We discuss case studies that demonstrate the method of

automatic generation of test cases using document analysis

techniques.

II. MOTIVATIONS IN AUTOMATED CREATION OF

SOFTWARE TESTING CASES

Software testing verifies and validates software as being

consistencies with the requirements and design

specifications. Effective software testing can improve

software quality, but is expensive. As software becomes

larger and complex, the costs of software testing can rise

exponentially. While both the time for delivery and the work

of software maintenance are must be reduced, one key is to

improve the efficiency of a software testing. The activities of

software testing consist of designing, refining and executing

test cases [11]. The activities of testing design and refinement

are both important, because they impact the effectiveness and

efficiency of software testing. Test cases are created during

the test design work, so if too few test cases are created, then

the functions of the software are not tested sufficiently and

the defects will remain undetected in the software [11].

In this paper, we target functional tests of Web application

in software maintenance for the automatic generation of test

cases using document analysis technique. Currently, test

cases are usually created in three steps. Testing engineers

(S1) read the specifications manually, (S2) identify the input

parameters and values for the Web screens input parameters,

and (S3) apply specialized techniques such as boundary

analysis using their expert knowledge. The quality and

coverage of the resulting test cases depends upon the skills of

the testing engineers, leading to these potential problems

[14]:

 Improper understanding of the specifications.
Misreading or overlooked documents, basically due to
human errors can result in some parameters and values
for the test cases being not properly identified.

 Missing parameters and values. In design documents,
the types of the parameters are described as character
strings, numerical values, dates and so on. Testing
engineers create test values of the parameters by using
their own knowledge.

Automatic Generation of Test Cases Using Document

Analysis Techniques

Satoshi Masuda, Tohru Matsuodani, Kazuhiko Tsuda

Automatic Generation of Test Cases Using Document Analysis Techniques

 60 www.ijntr.org

 Insufficient combinatorial test cases. It is difficult to
manually create combinatorial test cases, again
depending upon individual skills in understanding the
required test coverage.

These kinds of problems motivate automatic generation of

software test cases.

III. CREATING TEST CASES BY USING DOCUMENT

ANALYSIS TECHNIQUES

In this section, we discuss about our method to address

these problems, reducing the need to depend upon individual

skills and using document analysis techniques instead.

A. Overview

Figure.1 shows our approach to automatic generation of

test cases from the design documents. The document analysis

tool reads and analyzes the design documents. Examples of

design documents include data specifications for screens,

screens design specifications, and event process

specifications. By using text parsers to analyze the

documents, the analysis tool can output parameters and

values with boundary analysis, event conditions, events and

expected results. Then our pairwise testing tool uses the

parameters and values to create combinatorial test cases [15].

We applied our method to Japanese documents in this paper.

Fig. 1. Automatic creating test cases by using document analysis techniques

The document analysis tool divides its results for the test

cases into two parts. The first part is the test data and

conditions and the second part is the expected results. The

test data and conditions consist of parameters and values,

event conditions and events. The expected results are the

expected results of execution with the test data and conditions

and are described at the bottom of the test cases matrix.

B. Problems in automatic generation of test cases from

documents

In document-based automatic test case generation, we have

two problems: (P1) How to automatically extract the

parameter values, such as test conditions and test values, from

document set; (P2) How to infer the test conditions and test

data that are not explicitly described. The descriptions in the

documents have different formats in each project and usually

contain natural language descriptions for which information

extraction is not easy. So we need flexible information

extraction techniques to extract the parameter values from the

documents. In addition, the target documents do not explicitly

mention all of the required parameter values. This is because

such documents are not intended to describe how to test the

system. The information that is not described explicitly needs

to be complemented or extracted by knowledge about testing

and about the systems under test. The extracted information

needs to be automatically integrated into the test cases. This

also requires special knowledge, such as how to combine

parameters and values, which must be derived from the

system under test. For these problems, we identify

technologies and mechanism that support the automation in

each test case generation phase, such as text parser and

knowledge for extracting test values.

This figure is an overview of the automatic extraction of

parameters and values from the design documents:

Fig. 2. Overview of automatic extracting parameters and values from

design documents

As shown in Figure 2, there are two main phases

corresponding to the above two problems facing automatic

test case generation. We discuss each phase next two sub

sections:

C. Generation of Parameter Values

Figure 3 shows the generation of parameter values flow.

We need a flexible generation of parameter values to support

various kinds of documents and description formats. Recent

document analysis and parsing techniques [1],[12] support

such flexible information extraction. Document modeling

and format checking [1] support the information extraction

for various user-defined document-structures and our text

parsers combination system [12] makes it easy to create

various information extraction parsers at the text description

level. For examples, by using the system [12] and combining

some formal or natural language parsers, we can flexibly

create text parsers that extract the parameters, conditions,

values and some dependencies from the text descriptions in

target documents.

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-2, Issue-7, July 2016 Pages 59-64

 61 www.ijntr.org

Fig. 3. Generation of parameter values flow

The knowledge of information which is used for

identification candidates of parameter values is information

that accumulated the results of the boundary analysis pattern

from the attributes of the factor in description of

specifications. In this paper, we use information which is the

results from identify parameter values by patterning the

attributes information according with patterns in table I.

TABLE I. KNOWLEDGE PATTERN OF PARAMETER VALUES

Pattern

No.

Pattern of parameter values

A1 Character or numeric

A2 Maximum number of characters

A3 Double bytes characters or not

A4 Single byte character or not

TABLE II. EXAMPLE FOR PATTERN OF 4 DIGIT INTEGER PARAMETER

VALUES

Pattern

No.

Predefined

parameter

values

Objectives of testing

B1 -1 To test error process for negative

values

B2 0 To test error process for zero values

B3 1 and 9999 To test normal process for 4 digit

integer

B4 10000 To test error process for 5 digit

integer

TABLE III. EXAMPLE FOR PATTERN OF 6 DIGIT CHARACTER

PARAMETER VALUES

Pattern

No.

Predefined

parameter

values

Objectives of testing

C1 ABCDEFG To test 7 digits characters

C2 ABCDEF To test 6 digits characters

C3 ABCDE To test 5 digits characters

C4 To test 5 digit double bytes

Katakana characters

C5 To test 5 digit single byte Katakana

characters

C6 123 To test numeric

Document analysis tool identify parameter values by suing

boundary analysis and apply predefined values from the

results of analysis about the attributes pattern, such as a

character string, a numerical value and length, and a digit

number, and so on. This enables not to depend on individual

skill, the parameter values can be identified a level of

coverage and used for test cases. Comparing create test cases

by manually, this way makes test cases have better quality

and more efficient in creation of test cases.

For examples about predefined values in the case of the

attribute of the integer of 4 digits, by an experienced person's

knowledge, parameter values are created by the patterns

showed in table II. The pattern number from B1 to B4 come

from the results of boundary analysis and B5 comes from the

knowledge of problem information. The document analysis

tool creates the predefined values according with the

attributes of values.

Another example about predefined vales in the case of the

attribute of the character string of 6 digits, by using the

knowledge of experienced person the predefined parameter

values are created in a similar manner as table III. The pattern

number from C1 to C4 come from the results of boundary

analysis and C5 and C6 comes from the knowledge of

problem information.

D. Problems in automatic generation of test cases from

documents

In the last step, the pairwise testing tool creates

combinatorial test cases from the identified parameters and

values. So we can create the combinatorial pairwise test cases

not depending upon individual skill. The test cases have a

level of quality as high as pairwise combination, and the work

of generation test cases are reduced by using the tool.

Each technique in our method is known techniques, such as

text parser, boundary analysis, pairwise testing and so on. Our

method is, however, unique for combining of them to create

test cases automatically from design documents. Our method

also solves the problems which are miss-reading of the

documents, lacks of identification of parameter values, and

insufficient of a combination test cases. Comparing manual

test cases as ideal test case [12], our document analysis tool

helped automatically generate 95% of the required test cases

from the design documents.

IV. CASE STUDIES FOR APPLYING THE METHOD

We applied our method to testing for Web applications in

internet banking system and insurance system. The case

studies are functional testing by inputting test data from Web

screens. The Web application documents are Web screens

parameter specifications which describe attributes of

parameter on Web screens input data, Web screens design

documents which describe screens layout and precondition of

events, and an event lists which describe the post processes of

the events by clicking the buttons. In order to compare

activities and work between manual way of creating test cases

and our method way of automatic generation of test cases,

each activity of creating testing cases are listed in Table VI.

The activities list shows activity number, name of activities,

breakdown activities and comparing manual way and our

method.

We applied our method to the following four case studies:

Automatic Generation of Test Cases Using Document Analysis Techniques

 62 www.ijntr.org

 Case 1: The generation test cases from an Internet
Banking system project.

 Case 2: The generation test cases from another Internet
Banking system project.

 Case 3: The generation test cases from Insurance
system the input data of a batch job.

 Case 4: The generation test cases from Insurance
system the screens of Web application

Table V shows the results of work. Each of case studies is

compared between manual way and our method. The work in

the generation test cases by our method was reduced from

23% to 48%. So our method improved work of generation

test cases about twice as much as manual way.

TABLE IV. CREATING TEST CASES ACTIVITIES COMPARISON

Act

No.

Activities Break down

activities

Manual

way

Our

method

1-1 Create test data

and variation

Analyze

document

Analyze

manually

Analyze

by tools

1-2 Create test data Identify

manually

Identify by

tools

1-3 Create

parameter

values

Create

manually

Create by

tools

2-1 Identify

pre-conditions

Analyze

document

Analyze

manually

Analyze

by tools

2-2 Identify

pre-conditions

Identify

manually

Identify by

tools

3-1 Identify event

conditions

Analyze

document

Analyze

manually

Analyze

by tools

3-2 Identify event

conditions

Identify

manually

Identify by

tools

4-1 Create test cases Create test cases

which verify

conditions

Create

manually

Create test

cases by

tools.

4-2 Create

combinatorial

test cases.

Create

manually

Create by

pairwise

tools

5 Review test

cases

Review test

cases

Review

manually

Review

manually

TABLE V. WORKLOAD COMPARISON OF TEST CASE GENERATION

 Case1 Case2 Case3a Case4 a

No. M(h)
c
 O(h)

c

M(h) O(h) M(h) O(h) M(h) O(h)

1-1 5 1 5 1 2 1 1 1

1-2 12 1 5 1 3 1 2 1

1-3 10 4 10 3 4 2 2 1

2-1 5 1 5 1 2 1 1 1

2-2 13 5 15 4 6 3 3 2

3-1 8 1 5 1 - b - b 1 1

3-2 15 5 15 4 - b - b 3 2

4-1 62 42 60 50 10 8 4 4

4-2 38 20 40 30 10 7 4 3

5 15 15 10 10 3 3 1 1

Tot. 183 95 170 105 40 26 22 17

Reduction of

work
48% 38% 35% 23%

a. About the workload of the case 3 and 4, the work of manual method is from interviews and the work

of our method are calculated out on paper

b. The case 3 did not have event description of a button, a link, etc. for batch input data.

c. M(h): Manual results(hours), O(h): Our method results(hours)

V. OBSERVATIONS AND LESSONS LEARNED

We devised a method of automatic generation of test cases

by using document analysis technique and applied the method

to several case studies. The work for the generation of test

cases was reduced by up to 48%. We demonstrated that our

new method improved the effectiveness creating test cases

and also studied how we could apply our method to actual

cases. If we can automate the review of the test cases, then the

improvement will be larger. In the actual case studies, all of

the design documents were not formalized according to the

document standards, because the participants had been

allowed to freely describe their design specifications.

Notwithstanding, our text parser was able to read their

document and create up to 95% of the required test cases for

satisfactory testing.

VI. RELATED WORKS

Natural language processing and checking consistency are

essential in requirement engineering. Yan2015 present

formal consistency checking over specifications in natural

languages [16]. The paper present: a requirement consistency

maintenance framework to produce consistent

representations. The first part is the automatic translation

from natural languages describing functionalities to formal

logic with an abstraction of time. It extends pure syntactic

parsing by adding semantic reasoning and the support of

partitioning input and output variables. The second part is the

use of synthesis techniques to examine if the requirements are

consistent in terms of realizability [16]. This paper presents

the differences from Yan2015 as follows, abstraction logic by

transforming propositional logic not only time constraints,

using input data patterns to find logical inconsistency and

semantic role labeling.

(A)ga
((A))

(C)ha
((C))

(D)dearu
is (D)

(B)nobaai
(if .. is (b))

Fig. 4. An example condition logic dependency [17] in Japanese.

Fig. 5. Steps to retrieve conditions and actions from sentences [17] in

Japanese.

 International Journal of New Technology and Research (IJNTR)

 ISSN:2454-4116, Volume-2, Issue-7, July 2016 Pages 59-64

 63 www.ijntr.org

SAT solver is a solution for checking logical constraint

[26]. SAT solves about validity and consistency. The validity

and consistency are really two ways of looking at the same

thing and each may be described in terms of syntax or

semantics [28]. Combinatorial testing is the solution for data

patterns. Combinatorial Testing (CT) can detect failures

triggered by interactions of parameters in the Software Under

Test (SUT) with a covering array test suite generated by some

sampling mechanisms [27]. There is a method of creating

testing pattern for Pair-wise method by using knowledge of

parameter values. The method uses knowledge base for

identifying pair-wise parameter values by using document

analysis to specification documents, boundary analysis and

defects analysis [14].

Figure 4 and 5 shows the logic to which is "If (A) is (B),

(C) is (D)." from a sentence by natural-language processing

[17], but the condition and actions are not identified. There is

also linguistic work for use cases [22] and test case

generation [25]. There is Sneed2007 for the study which

makes test case from a described required specification by a

natural language [23]. The approach which defines

classification of how to interpret the specification of the etc.

which "is description of output" which "is description of

input" as a key word and applies that. There aren't a

morphological analysis and syntactic analysis/analyses using

analysis technology of natural-language processing, and this

can think there are few generalities. There are other related

works. Bos2007 offers the way to change from a natural

sentence to a logical expression and tool BOXER in English

[18].

IEEE830 recommend practice for software requirements

specifications [19], [20]. The standard describes

consideration for producing a good software requirements

specification, parts of them and provide templates. Kim2008

[21] presented measurement of level of quality control

activities in software development. The ambiguity definition

was described in the paper. When we target natural language

requirements, these two papers are very effective at the point

of view, how requirements should be described and how

measure them. Uetsuki2013 presented an efficient software

testing method by decision table verification [24]. Figure 6

shows whole process of decision table logic verification. That

was to verify logics between documents and source codes by

comparing each decision tables which were extracting from

documents and codes. They targeted the document was

described formal language.

Fig. 6. Whole process of decision table logic verification in [25]

VII. CONCLUSIONS

In this paper, we discussed a method of automatic

generation testing cases by using document analysis

techniques. We also discussed four case studies which

demonstrated the efficiency of our approach in creating

high-coverage test cases by using the document analysis tool.

The method targets functional testing of the interaction

screens for Web application systems. The method uses text

parsers that identify input parameters and their acceptable

values by using document analysis on the design documents,

thus avoiding dependencies upon individual skills.

There are still some problems with how we extract the

information from the design documents. Future work

includes applying on other actual cases in order to get learn

how we can configure the text parsers for natural languages.

We are also studying and developing document models of the

design documents to help formalize the documents.

REFERENCES

[1] T. Nakamura. “Enabling analysis and measurement of conventional
software development documents using project-specific formalism”,
6th International Conference on Software Process and Product

Measurement, 2011, pp.48-54.

[2] T. Nakamura, H. Takeuchi, “Document quality verification tool”,
ProVision No.69;2011, pp.78-79. (In Japanese)

[3] IPA. METI, “Report of industry actual survey for embedded software
in 2009”, 2009 (in Japanese)

[4] C. Cadar, “EXE: automatically generating inputs of death.”, ACM
Conference on Computer and Communications Security, Vol. 12, No.

2, Article 10;2006

[5] D. Cohen, “The AETG system: an approach to testing based on
combinatorial design” IEEE Transactions on Software Engineering,
Vol. 23, No. 7,1997, pp.437-444

[6] M. Sharma, “Automatic generation of test suites from decision table -
theory and implementation”, Fifth International Conference on

Software Engineering Advances, 2010, pp.459-464.

[7] A. Sinha, A. Paradkar, H. Takeuchi, T. Nakamura, “Extending
automatic analysis of natural language use cases to other languages”, in
Proceedings of the 18th IEEE International Requirements Engineering

Conference, 2010, pp. 364-369.

[8] B. Curtis, H. Kransner, and N. Iscoe, “A field study of the software
design process for large scale systems”, Communications of the ACM,
Vol. 31, No. 11; 1988, pp.1268-1287

[9] H. Takeuchi, L V Subramaniam, T. Nasukawa, S. Roy, S. Balakrishan.

“A conversation-mining system for gathering insights to improve agent

productivity”, IEEE Joint Conference on E-Commerce Technology

(CEC’07), 2007, pp.465-468

[10] D. Cohen,“The combinatorial design approach to automatic test
generation”, IEEE Software Engineering; 1996, pp.83-88

[11] K. Uetsuki, “Research about a design technique of software testing by
using decision table”, 2013, pp.1-6 (in Japanese)

[12] F. Iwama, T. Nakamura, H. Takeuchi, “Constructing Parser for
Industrial Software Specifications Containing Formal and Natural

Language Description” in ICSE, 2012, pp1012-1020

[13] D. Reifer, J. Allen, B. Fersch, B. Hitchings, J. Judy, “Total cost of
software maintenance workshop” in USC CSSE, 2010, p.11

[14] S. Masuda, T. Matsuodani, K. Tsuda,” A method of creating testing

pattern for pair-wise method by using knowledge of parameter values”,
17th International Conference in Knowledge Based and Intelligent

Information and Engineering Systems(KES), 2013

[15] I. Segall, R. Tzoref-Brill, E. Farchi,“Using Binary Decision Diagrams

for Combinatorial Test Design”, ISSTA '11 Proceedings of the 2011
International Symposium on Software Testing and Analysis, 2011, pp

254-264

[16] R. Yan, C.-H. Cheng, and Y. Chai,"Formal consistency checking over

specifications in natural languages", in EDA ConsortiumProceedings

of the 2015 Design, Automation \& Test in Europe Conference \&

Exhibition,2015,pp.1677--1682

[17] S. Masuda, F. Iwama, N. Hosokawa, T. Matsuodani, and K.Tsuda,

"Semantic analysis technique of logics retrieval for software testing

from specification documents", in IEEESoftware Testing, Verification

Automatic Generation of Test Cases Using Document Analysis Techniques

 64 www.ijntr.org

and Validation Workshops (ICSTW), 2015 IEEE Eighth International

Conference on,2015,pp.1--6

[18] J. Bos,"Wide-coverage semantic analysis with boxer", in Association

for Computational LinguisticsProceedings of the 2008 Conference on

Semantics in Text Processing,2008,pp.277--286

[19] I. C. S. S. E. S. Committee, and I.-S. S. Board,"IEEE Recommended

Practice for Software Requirements Specifications", in Institute of

Electrical and Electronics Engineers,1998

[20] ISO/IEC/IEEE,"Software and systems engineering ― Software testing
― Part 4:Test techniques", ISO/IEC/IEEE JTC 1/SC 7,2015,pp.70--72

[21] C. Kim, S.-M. Kim, and K.-W. Song, "Measurement of Level of

Quality Control Activities in Software Development [Quality Control

Scorecards]", in IEEEConvergence and Hybrid Information

Technology, 2008. ICHIT'08. International Conference

on,2008,pp.763--770

[22] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev,"A linguistic

analysis engine for natural language use case description and its

application to dependability analysis in industrial use cases", in

IEEEDependable Systems \& Networks, 2009. DSN'09. IEEE/IFIP

International Conference on,2009,pp.327--336

[23] H. M. Sneed,"Testing against natural language requirements", in

IEEEQuality Software, 2007. QSIC'07. Seventh International

Conference on,2007,pp.380--387

[24] K. Uetsuki, T. Matsuodani, and K. Tsuda,"An efficient software testing

method by decision table verification", in International Journal of

Computer Applications in Technology,2013,pp.54--64

[25] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal,"Automatic

generation of system test cases from use case specifications", in

ACMProceedings of the 2015 International Symposium on Software

Testing and Analysis, 2015,pp.385--396

[26] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith,"Constraint

models for the covering test problem", in Constraints,

2006,pp.199—219

[27] C. Nie, and H. Leung,"A survey of combinatorial testing", in ACM

Computing Surveys (CSUR), 2011,pp.11

[28] A. Biere, M. Heule, and H. van Maaren,"Handbook of satisfiability", in

,2009

Satoshi Masuda received his B.S. in Mechanical Engineering from

Saitama University in 1991. His research interests include software testing,

natural language processing, information retrieval and algorithm. He is a

senior member of The Information Processing Society Japan and a member

of IEEE Computer Society.

 Tohru Matsuodani received his Ph.D. from Tsukuba University in 2005.

He has been chief executive officer of the Debug Engineering Laboratory.

He is a member of The Information Processing Society Japan and the IEEE

computer society.

Kazuhiko Tsuda has been working as a Professor at the Graduate School

of Business Sciences, University of Tsukuba, Tokyo, Japan since 1998. He

received his BS and PhD in Engineering from Tokushima University in 1986

and 1994, respectively. His research interests include natural language

processing, database, information retrieval, algorithm and human-computer

interaction. He is a member of IEEE Computer Society, The Information

Processing Society of Japan and The Institute of Electronics.

