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Abstract— The reliability of an interconnection network is an 

important issue for multiprocessor systems. We know that 

connectivity and the diagnosability are two important 

parameters for measuring the reliability of an interconnection 

network. In 2012, Peng et al. proposed the g -good-neighbor 

diagnosability, which has been widely accepted as a new 

measure of the diagnosability by restricting that every fault-free 

vertex contains at least g  fault-free neighbors. As an 

important variant of the hypercube, the n -dimensional crossed 

cube 
n

CQ  has many good properties. In this paper, we show 

that (1) the 2-good-neighbor connectivity of 
n

CQ  is 4 8n  for 

4n , (2) 
n

CQ  is tightly (4 8)n  super 2-good-neighbor 

connected for 6n  and (3) the 2-good-neighbor diagnosability 

of 
n

CQ  is 4 5n  under the PMC model and MM* model for 

5n . 

Index Terms—Interconnection network, Crossed cube, 

Connectivity,  Diagnosability  

I. INTRODUCTION 

   Mass data processing and complex problem solving have 
higher and higher demands for performance of 
multiprocessor systems. Many multiprocessor systems have 
interconnection networks (networks for short) as underlying 
topologies and a network is usually represented by a graph 
where nodes represent processors and links represent 
communication links between processors. The network 
determines the performance of a multiprocessor system. So 
study of topological properties of its network is important. 
However, a system of nodes may be faulty when the system is 
in operation. The fault diagnosis is used to identify faulty 
processors in a system. All the faulty nodes are replaced by 
fault-free nodes after a system has been diagnosed. The 
diagnosability of a system is the maximum number of faulty 
nodes that can be found during the fault diagnosis. For a 
diagnosable system, Dahbura and Masson [2] proposed an 

algorithm with time complex 2.5( )O n , which can effectively 

identify the set of faulty processors. 
To diagnose a system, several different models have been 

proposed. Two important diagnosis models are the Preparata, 
Metze, and Chien's (PMC) model [9] and the Malek and 
Maeng's (MM)  model [7]. In the PMC model, only 
neighboring processors are allowed to test each other. In the 
MM model, a node tests its two neighbors, and then compares 
their responses. Sengupta and Dahbura [11] suggested a 
special case of the MM model, namely the MM* model and 
each node must test its any pair of adjacent nodes in the MM*. 
They also presented a polynomial algorithm for identifying 
faulty nodes in a system under the MM* model if the system 
is diagnosable. 

A new measure of a system called the g -good-neighbor 

diagnosability was introduced by Peng et al. [8] in 2012, 
which restricts that every fault-free node contains at least g  

fault-free neighbors. In [8] they proved that the 

g -good-neighbor diagnosability of the n -dimensional 

hypercube under the PMC model is 2 ( ) 2 1g g
n g    for 

0 3g n   . In 2016, Wang and Han  [12] showed the 

g -good-neighbor diagnosability of the n -dimensional 

hypercube under the MM *  model. In [5], Liu et al. 
determined that the g -good-neighbor diagnosability of the 

exchanged hypercube under the PMC model is  

2 ( 2 ) 1g
s g    for 1 s t   and 0 g s  . In 2016, Xu et 

al. [18] showed the g -good-neighbor diagnosability of 

complete cubic networks under the PMC model and MM *  
model. In 2016, Ren and Wang [10] gave some properties of 
the g -good-neighbor diagnosability of a multiprocessor 

system. Yuan et al. [19,20] studied that the g -good-neighbor 

diagnosability of the k -ary n -cube ( 3)k   under the PMC 

model and MM *  model. In [13,14], Wang et al.  proved that 
the g -good-neighbor diagnosability of the Cayley graph 

generated by the transposition tree under the PMC model and 

MM *  model for {1,2}g . In 2017, Wang et al. [15] 

determined that the 2-good-neighbor connectivity and 
2-good-neighbor diagnosability of the bubble-sort star graph. 

The n -dimensional hypercube is a major type of 

interconnection networks. As an important variant of the 
hypercube, the n -dimensional crossed cube [3] (denoted by 

n
CQ ) has better properties such as  smaller degree, diameter 

and average distance. In this paper, we proved that (1) the 

2-good-neighbor connectivity of 
n

CQ  is 4 8n  for 4n ; 

(2) 
n

CQ  is tightly (4 8)n  super 2-good-neighbor 

connected for 6n ; (3) the 2-good-neighbor diagnosability 

of 
n

CQ  is 4 5n  under the PMC model for 5n ; (4) the 

2-good-neighbor diagnosability of 
n

CQ  is 4 5n  under the 

MM* model for 5n . 

II. PRELIMINARIES 

A. Notations 

A multiprocessor system is modeled as an undirected 

simple graph ( , )G V E , whose vertices (nodes) represent 

processors and edges (links) represent communication links. 

The degree ( )
G

d v  of a vertex v  is the number of edges 

incident with v . The minimum degree of a vertex in G  is 
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denoted by ( )G . For a vertex v , ( )
G

N v  is the set of 

vertices adjacent to v  in G . Given a nonempty vertex subset 

V
  of V , the induced subgraph by V

  in G , denoted by 

[ ]G V
 , is a graph, whose vertex set is V   and the edge set is 

the set of all the edges of G  with both endpoints in V  . For 

( )S V G , let ( ) ( ) \
G v S G

N S N v S . A cycle with length 

n  is called an n -cycle. We use 1 2 n
P v v v   to denote a 

path that begins with 1v  and ends with 
n

v . A path of the 

length n  is denoted by n -path. A bipartite graph is one 

whose vertex set can be partitioned into two subsets X  and 
Y , so that each edge has one end in X  and one end in Y ; 

such a partition ( , )X Y  is called a bipartition of the graph. A 

complete bipartite graph is a simple bipartite graph with 

bipartition ( , )X Y  in which each vertex of X  is joined to 

each vertex of Y . If | |X m  and | |Y n , such a graph is 

denoted by ,m n
K . The connectivity ( )G  of a connected 

graph G  is the minimum number of vertices whose removal 

results in a disconnected graph or only one vertex left when 

G  is complete. Let 1F  and 2F  be two distinct subsets of V , 

and let the symmetric difference 1 2 1 2 2 1\ ( \( ) )F F F F F F   . 

For graph-theoretical terminology and notation not defined 
here we follow [1]. 

Definition 2.1 [19]. Let ( , )G V E  ba an undirected simple 

graph. A faulty set F V  is called a g -good-neighbor 

faulty set if | ( ) ( \ ) |N v V F g  for every vertex v  in 

\V F . 

Definition 2.2 [19]. A g -good-neighbor cut of a connected 

graph G  is a g -good-neighbor faulty set F  such that 

G F  is disconnected. The minimum cardinality of 

g -good-neighbor cuts is said to be the g -good-neighbor 

connectivity of G , denoted by ( ) ( )g
G . 

In  [4], Hsieh et al. showed that 2 -good-neighbor 
connectivity of the n -dimensional locally twisted cubes is 

4 8n  for 4n , and showed that 3 -good-neighbor 

connectivity is equal to 8 24n  for 5n . In  [17], Wei and 

Hsieh studied that the g -good-neighbor connectivity of 

locally twisted cubes is 2 ( )g
n g  for 0 2g n   . 

B. The crossed cube 
n

CQ  

Definition 2.3 [16]. Let 

{(00,00),(10,10),(01,11),(11,01)}R  . Two digit binary 

strings 1 0u u u  and 1 0v v v  are pair related, denoted as 

~u v , if and only if ( , ) .u v R  

Definition 2.4 [16]. The vertex set of a crossed cube 
n

CQ  is 

1 2 0{ : 0 1, {0,1}}
n n i

v v v i n v      . Two vertices 

1 2 0n n
u u u u    and 1 2 0n n

v v v v    are adjacent if and 

only if one of the following conditions is satisfied. 

1. There exists an integer (1 1)l l n    such that  

(1) 1 2 1 2n n l n n l
u u u v v v     ; 

(2) 1 1l l
u v  ; 

(3) if l  is even, 2 2l l
u v  ; 

(4) 2 1 2 2 1 2~
i i i i

u u v v  , for 
1

0
2

l
i

     
. 

2.  

(1) 1 1n n
u v  ; 

(2)if n  is even, 2 2n n
u v  ; 

(3) 2 1 2 2 1 2~
i i i i

u u v v   for 
1

0
2

l
i

     
. 

Let 2n . We define two graphs 0
n

CQ  and 1
n

CQ  as 

follows. If 2 3 0 1( )
n n n

u u u u V CQ    , then 
0 0

2 3 00 ( )
n n n

u u u u V CQ    

and 1 1
2 3 01 ( )

n n n
u u u u V CQ   . If 1( )

n
uv E CQ  , then  

0 0 0( )
n

u v E CQ  and  1 1 1( )
n

u v E CQ . Then 0
1n n

CQ CQ   

and 1
1n n

CQ CQ  . Define the edges between the vertices of 
0
n

CQ  and 1
n

CQ  according to the following rules. The vertex 
0

2 3 00 ( )
n n n

u u u u V CQ    and the 

vertex 1
2 3 01 ( )

n n n
v v v v V CQ    are adjacent if and only if 

1. 2 2n n
u v   if n  is even; 

2. 2 1 2 2 1 2( , )
i i i i

u u v v R   , for 
1

0
2

n
i

     
 . 

   The edges between the vertices of 0
n

CQ  and 1
n

CQ  are said 

to be cross edges. 

Proposition 2.1 [16]. All cross edges of 
n

CQ  is a perfect 

matching. 

   By Proposition 2.1,  
n

CQ  can be recursively defined as 

follows. 

Definition 2.5 [16]. Define that 1 2CQ K  and 

1( ) {0,1}V CQ  . For 2n , 
n

CQ  is obtained by 0
n

CQ  

and 1
n

CQ , and a perfect matching between the vertices of 
0
n

CQ  and 1
n

CQ  according to the following rules (see Fig.1). 

The vertex 0
2 3 00 ( )

n n n
u u u u V CQ    and the 

vertex 1
2 3 01 ( )

n n n
v v v v V CQ    are adjacent in 

n
CQ  if 

and only if 

1. 2 2n n
u v   if n  is even; 

    2. 2 1 2 2 1 2( , )
i i i i

u u v v R   , for
1

0
2

n
i

     
. 
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Fig. 1. 2CQ  ,  3CQ  , and 4CQ  

C. The PMC Model and the MM* Model 

 
Table 1. Comparison results under the PMC model 

 
 
Table 2. Comparison results under the MM* model 

 
Let ( ( ), ( ))G V G E G  be a system. In the PMC model, a 

processor (vertex) can perform tests on its neighbors. For two 

adjacent vertices u  and v  in ( )V G , the ordered pair ( , )u v  

represents u  test v . In this case, u  is a tester and v  is a 

tested. Because the faults considered here are permanent, the 
result of a test is reliable if and only if u  is fault-free. A test 

assignment T  for G  is a collection of tests and thus can be 

modeled as a directed graph ( ( ), )T V G L , where ( , )u v L  

if and only if ( )uv E G . The collection of all test results 

from T  is called a syndrome. Formally, a syndrome of T  is 

a mapping : {0,1}L  . Table 1 shows all possible test 

results of the test (( , ))u v . For a given syndrome  , a 

subset of vertices ( )F V G  is said to be consistent with   

if syndrome   can be produced from the situation that, for 

any ( , )u v L  such that \u V F , ( , ) 1u v   if and only if 

v F . Let ( )F  denote the set of all syndromes which F  

is consistent with. Two distinct vertex sets 1F  and 2F  are 

indistinguishable (respectively, distinguishable) if 

1 2( ) ( )F F    (respectively, 1 2( ) ( )F F   ), then 

we say 1 2( , )F F  is  an indistinguishable pair (respectively, 

distinguishable pair). 
In the MM model, the comparison scheme of a system 

( ( ), ( ))G V G E G  is modeled as a multigraph, denoted by 

( ( ), )M V G L , where L  is the labeled edge set. If ( , )u v  is 

an edge labeled by w , then the labeled edge ( , )
w

u v  belongs 

to L , which implies that vertices u  and v  are being 

compared by vertex w . If the comparator w  is faulty, then 

the result of comparison is unreliable. For ( , )
w

u v L , we use 

*(( , ) )
w

u v  denote the result of comparing vertices u  and 

v  by w . The collection of all comparison result is given by a 

function *: {0,1}L  , which is called the syndrome of the 

diagnosis. Table 2 shows all possible test results of the test 

*(( , ) )
w

u v . The MM *  model is a special case of the MM 

model. In the MM *  model, all comparisons of G  are in the 

comparison scheme of G , i.e., if , ( )uw vw E G , then 

( , )
w

u v L . Similarly to the PMC model, we can define a 

subset of vertices ( )F V G  to be consistent with a given 

syndrome *  and two distinct sets 1F  and 2F  in ( )V G   to 

be indistinguishable (resp. distinguishable) under the MM *  
model. 

III. THE CONNECTIVITY OF THE CROSSED CUBE 
n

CQ  

Lemma 3.1 [3].  n
CQ n   for 1n  . 

Lemma 3.2 [6].  1 2 2
n

CQ n    for 3n . 

Lemma 3.3 [6]. There are at most two common neighbors for 

any pair of vertices in the crossed cube 
n

CQ  for 2n .  

Lemma 3.4 [16]. Let ( )
n

F V CQ  ( 3)n 
 
with 

2 3n F n   . If
n

CQ F  is disconnected, then 
n

CQ F  

has exactly two components, one of which is an isolated 
vertex. 

Lemma 3.5 [16].  Let ( )
n

F V CQ  5n  with 

2 2 3 6n F n    . If
n

CQ F is disconnected, 

then
n

CQ F satisfies one of the following conditions: 

(1) 
n

CQ F has two components, one of which is a 2K ; 

(2) 
n

CQ F has two components, one of which is an 

isolated vertex; 

(3) 
n

CQ F has three components, two of which are 

isolated vertices. 
A connected graph G is super g-extra connected if every 

minimum g-extra cut F of G isolates one connected subgraph 
of order 1g  . In addition, if G F has two components, one 
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of which is the connected subgraph of order 1g  , then G is 

tightly F  super g-extra connected. 

Lemma 3.6 [16].  For 5n , the crossed cube
n

CQ is 

tightly  3 5n  super 2-extra connected. 

Lemma 3.7 [1].  Let G be a graph.  If   2G  , then G 

contains a cycle. 
A connected graph G  is super 2-good-neighbor connected 

if every minimum 2-good-neighbor cut F of G isolates one 
connected subgraph of minimum degree 2. If, in addition, 
G F has two components, one of which is a connected 

subgraph of minimum degree 2, then G is tightly F  super 

2-good-neighbor connected.  

Lemma 3.8. Let
n

CQ be the crossed cube, and let H be a 

connected subgraph of
n

CQ with   2H  such that it 

contains  n
V CQ as least as possible. Then H is a 4-cycle. 

Proof. Since ( ) 2H  , by Lemma 3.7, 
n

CQ contains a 

cycle. Note that 
n

CQ does not have triangle. 

So   4
n

V CQ  . Since
n

CQ contains 4-cycles, we have 

that H is a 4-cycle. The proof  is complete. 

Lemma 3.9. Let C be a 4-cycle in the crossed cube 

 3
n

CQ n  . Then any pair of vertices in C have no common 

neighbors outside C . 

Proof.  Clearly,   2n
CQ V C CQ   . Since

n
CQ has no 

triangle, there is no common neighbor for any pair of adjacent 
vertices in C . By Lemma 3.3, there are at most two common 

neighbors for any pair of vertices in
n

CQ . Combining this 

with the 4-cycle C , we have that any pair of nonadjacent 
vertices in C has no common neighbor outside C . Therefore, 
any pair of vertices in C has no common neighbor outside C . 
The proof  is complete. 

Lemma 3.10. Let C be a 5-cycle in the crossed 

cube  3
n

CQ n  . The    5 12
nCQ

N V C n  . 

Proof.  Let 1 2 3 4 5 1C v v v v v v . We prove the lemma by 

induction on n. When 3n  , it is easy to see 

that   
3

3 5 3 12
CQ

N V C     (see Fig.1). We assume that 

the lemma is true for 1n , i.e., 

    
1

5 1 12 5 17
nCQ

N V C n n


     . We will show that 

the lemma is true for  4n n  .We decompose
n

CQ along 

dimension 1n into 0
n

CQ and 1
n

CQ . Then both 
0
n

CQ
 
and 

1
n

CQ are isomorphic to 1n
CQ  . 

Case 1.    0
n

V C V CQ    or    1
n

V C V CQ  . 

   Without loss of generality, let    1
n

V C V CQ  . Then 

   0
n

V C V CQ . By the inductive hypothesis, 

  0 5 17
nCQ

N V C n  . By Proposition 2.1, C has five 

neighbors in 1
n

CQ . 

Thus,    5 17 5 5 12
nCQ

N V C n n     . 

Case 2.    0
n

V C V CQ    and    1
n

V C V CQ   . 

   By Proposition 2.1,    0 2
n

V C V CQ   or 

   1 2
n

V C V CQ  . Without loss of generality, 

let    0 2
n

V C V CQ  . Then    1 3
n

V C V CQ  . 

Let      0
1 2,

n
V C V CQ v v 

 
and 

     1
3 4 5, ,

n
V C V CQ v v v  . Then 1 2 2v v K and 

3 4 5P v v v is a 2-path. By Lemma 3.3, 3v and 5v have at most 

two common neighbors in 1
n

CQ , one of which is 4v . Thus, 

3v and 5v  may have another common neighbor in 1
n

CQ  . By 

Proposition 2.1, 4v has a neighbor '
4v in 0

n
CQ . Since 

n
CQ has 

no triangle, '
4v may be adjacent to 1v or 2v . So C  has at most 

two common neighbors in
n

CQ .Thus, 

| ( ( )) | 5( 2) 2 5 12
nCQ

N V C n n     . The proof  is 

complete. 

Lemma 3.11. Let 
n

CQ be the crossed cube and let 

 0 000,0 001,0 010,0 011A      . If 4n , 

 1 nCQ
F N A ,  2 nCQ

F A N A  , then 1 4 8F n  , 

2 4 4F n  , 1F is a 2-good-neighbor cut of 
n

CQ , and 

1n
CQ F has two components 2n

CQ F and  n
CQ A . 

Proof. By the definition of crossed cube,  n
CQ A is a 

4-cycle. By Lemma 3.9, we get that any two vertices 
in A have no common neighbors outside A . Thus, 

   1 4 2 4 8
nCQ

F N A n n     and

2 1 4 4F A F n    . We will prove that 2n
CQ F is 

connected and  2 2
n

CQ F   by induction on n . When 

4n  , it is easy to see that 4 2CQ F is connected and 

 4 2 2CQ F    (see Fig. 1). We assume that the result is 

true for 1n , i.e., 1 2n
CQ F  is connected 

an  1 2 2
n

CQ F    . Now we show that the result is also 

true for  5n n  . We can decompose
n

CQ along 

dimension 1n into 0
n

CQ and 1
n

CQ . Then 

both 0
n

CQ and 1
n

CQ are isomorphic to 
n

CQ . Let 

 0 0
2 2 n

F F V CQ   and  1 1
2 2 n

F F V CQ  . 

Then 0 1
2 2 2F F F  . Note that  0

n
A V CQ . By the 

inductive hypothesis, 0 0
2n

CQ F is connected and 

 0 0
2 2

n
CQ F   . Note that 

 0 000,0 001,0 010,0 011A      and  0
n

A V CQ . 

By Proposition 2.1 and Definition 2.4, we have 
1 1
2 ( ) ( ) {1 000,10 011,10 010,10 01}

nCQ n
F N A V CQ      

. By the definition of crossed cube, 1
2n

CQ F    is a 4-cycle. 

Case 1. 1 1
2n

CQ F is connected. 

   Since 0 0 1
2| ( | 2 (4 8) 1n

n
V CQ F n

      ( 5)n    , by 

Proposition 2.1, 

   0 0 1 1
2 2 2n n n n

CQ V CQ F V CQ F CQ F        is 

connected.  Note that 1
2n

CQ F    is a 4-cycle. By Lemma 3.9, 
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every vertex in 1 1
2n

CQ F has at most one neighbor in 1
2F . 

Thus,    1 1
2 1 1 2 5

n
CQ F n n       . Note that 

 0 0
2 2

n
CQ F   and 2n

CQ F   is connected. We can 

get  2 2
n

CQ F   . 

Case 2.  1 1
2n

CQ F is disconnected. 

   By Lemma 3.1, we have    1 1 4 5
n

CQ n n     . So we 

get 1 1
2n

CQ F is connected when 6n , a contradiction. We 

consider 1
5CQ . Note that 1

5 4CQ CQ and 1
2 4F  . By Lemma 

3.4, 1 1
5 2CQ F has two components, one of which is an 

isolated vertex. Let u be the isolated vertex. Since 

 1
5

1
2CQ

N u F and  1
5

1
2 4

CQ
N u F  , we 

have  1
5

1
2CQ

N u F . Note that 1
2n

CQ F    is a 4-cycle. We can 

get that u and an edge of 1
2n

CQ F    form a triangle, a 

contradiction. Thus, this case does not exist. Note 

that 1n
CQ F has two components 2n

CQ F and  n
CQ A with 

 2 2
n

CQ F   and   2A  . Therefore, 1F is a 

2-good-neighbor cut of 
n

CQ . The proof  is complete. 

Lemma 3.12.  The 2-good-neighbor connectivity 
(2) ( ) 4 8

n
CQ n    for 4n . 

Proof.  Let A  be defined in Lemma 3.11, and ( )
nCQ

F N A . 

Obviously, 
n

CQ F  is disconnected, | | 4 8F n  , and F  

is a 2-good-neighbor cut. By the definition of 

2-good-neighbor connectivity, 2 ( ) | | 4 8
n

CQ F n    . The 

proof  is complete. 

Lemma 3.13. Let 4( )F V CQ  with | | 7F  . Suppose that 

4CQ F  is disconnected. Then F  is not a 2-good-neighbor 

cut of 4CQ . 

Proof. We can decompose 4CQ  along dimension 3 into 
0
4CQ  and 1

4CQ . Then both 0
4CQ  and 1

4CQ  are isomorphic to 

3CQ . Let 0
0 4( )F F V CQ   and 1

1 4( )F F V CQ   with 

0 1| | | |F F . Note that | | 7F  . Thus, 0| | 3F  . 

 Case 1. 0
4 0CQ F  is connected. 

   Suppose that 1
4 1CQ F  is connected. Since 32 7 1  , by 

Proposition 2.1, 
0 1

4 4 0 4 1 4[ ( ) ( )]CQ V CQ F V CQ F CQ F      is connected, a 

contradiction. So we suppose that 1
4 1CQ F  is disconnected. 

Let the components of 1
4 1CQ F  be 1 2, , ,

k
C C C  ( 2)k  . 

Note that 0| | 3F  . If every component 
i

C  ( {1, , })i k   of 
1
4 1CQ F  such that | ( ) | 4

i
V C  , by Proposition 2.1, then 

0
4 4 0 1 4[ ( ) ( ) ( )]

k
CQ V CQ F V C V C CQ F       is 

connected, a contradiction. Thus, there is at least a 

component j
C  (1 )j k   such that | ( ) | 3

j
V C  . If every 

component j
C  such that j

C  is connected to 0
4 0CQ F , then 

4CQ F  is connected, a contradiction. Thus, there is a j
C  

such that 
4

0
4 0( ( ) ( )

CQ j
N V C V CQ F  . Then j

C  is a 

component of 4CQ F . Since | ( ) | 3
j

V C  , by Lemma 3.8, 

j
C  is not a 2-good-neighbor component of 4CQ F . Thus, 

F  is not a 2-good-neighbor cut of 4CQ . 

 Case 2. 0
4 0CQ F  is disconnected. 

   By Lemma 3.1, we have 0
4( ) 3CQ  . Since 0

4 0CQ F  is 

disconnected, 0| | 3F  . By Lemma 3.4, 0
4 0CQ F  has two 

components, one of which is an isolated vertex. Let u  be the 

isolated vertex. If u  is connected to one of 1F , then u  is an 

isolated vertex component of 4CQ F .  So F  is not a 

2-good-neighbor cut of 4CQ . If u  is connected to one of 
1
4 1( )V CQ F , then 

4
( ) 1

CQ F
d u  . Thus, F  is not a 

2-good-neighbor cut of 4CQ . The proof  is complete. 

Lemma 3.14.  Let 5( )F V CQ  with | | 11F  . Suppose that 

5CQ F  is disconnected. Then F  is not a 2-good-neighbor 

cut of 5CQ . 

Proof. We can decompose 5CQ  along dimension 4 into 
0
5CQ  and 1

5CQ . Then both 0
5CQ  and 1

5CQ  are isomorphic to 

4CQ . Let 0
0 5( )F F V CQ   and 1

1 5( )F F V CQ   with 

0 1| | | |F F . Since | | 11F  , we have 0| | 5F  . Note that 

0| | 2( 1) 3 5F n    . By Lemma 3.4, 0
5 0CQ F  is 

connected or has two components, one of which is an isolated 

vertex. Suppose that 0
5 0CQ F  is disconnected. Let u  be the 

isolated vertex. If u  is connected to one of 1F , then u  is an 

isolated vertex in 5CQ F . Thus, F  is not a 

2-good-neighbor cut. If u  is connected to one of 
1
5 1( )V CQ F , then 

5
( ) 1

CQ F
d u  . Thus, F  is not a 

2-good-neighbor cut. Then we suppose that 0
5 0CQ F  is 

connected. Suppose that 1
5 1CQ F  is connected. Since 

42 11 1  , by Proposition 2.1, 
0 1

5 5 0 5 1 5[ ( ) ( )]CQ V CQ F V CQ F CQ F      is connected, a 

contradiction. So we suppose that 1
5 1CQ F  is disconnected. 

Let the components of 1
5 1CQ F  be 1 2, , ,

k
C C C  ( 2)k  . 

 Case 1. 0| | 5F  . 

   In this case, 1| | 6F  . If every component 
i

C  of 1
5 1CQ F  

such that | ( ) | 6
i

V C   for {1, , }i k  , by Proposition 2.1, 

then 0
5 5 0 1 5[ ( ) ( ) ( )]

k
CQ V CQ F V C V C CQ F       is 

connected, a contradiction. Thus, there exists at least one 

component j
C  (1 )j k   such that | ( ) | 5

j
V C  . If every 

component j
C  such that j

C  is connected to one 

of 0
5 0( )V CQ F , then 5CQ F  is connected, a contradiction. 

Thus, there is a j
C  such that 

5

0
5 0( ( )) ( )

CQ j
N V C V CQ F  . 

Then j
C  is a component of 5CQ F . If j

C  is a 5-cycle, by 

Lemma 3.10, then 1
5

| ( ( )) | 5( 1) 12 8
jCQ

N V C n    . 

Since j
C  is also a component of 1

5 1CQ F , we have 

1
5

1( ( ))
jCQ

N V C F . Then 1
5

18 | ( ( )) | | | 6
jCQ

N V C F   , a 

contradiction. Thus, j
C  is not a 5-cycle. If j

C  is a 4-cycle, 

by Lemma 3.9, then 1
5

| ( ( )) | 4( 1 2) 8
jCQ

N V C n    . 

Similarly, j
C  is also not a 4-cycle. By Lemma 3.8, j

C  is not 



The Tightly Super 2-good-neighbor connectivity and 2-good-neighbor Diagnosability  of Crossed Cubes 

 

                                                                                75                                                                 www.ijntr.org 

 

a 2-good-neighbor component with | ( ) | 5
j

V C  . Thus, F  is 

not a 2-good-neighbor cut of 5CQ . 

 Case 2. 0| | 4F  . 

   In this case, 1| | 7F  . If every component 
i

C  

( {1, , })i k   of 1
5 1CQ F  such that | ( ) | 5

i
V C  , then 

0
5 5 0 1 5[ ( ) ( ) ( )]

k
CQ V CQ F V C V C CQ F       is 

connected, a contradiction. Thus, there exists at least one 

component 
j

C  (1 )j k   such that | ( ) | 4
j

V C  . If every 

component 
j

C  such that 
j

C  is connected to one 

of 0
5 0( )V CQ F , then 5CQ F  is connected, a contradiction. 

Thus, there is a 
j

C  such that 
5

0
5 0( ( )) ( )

CQ j
N V C V CQ F  . 

Then 
j

C  is a component of 5CQ F .  If 
j

C  is a 4-cycle, 

then it is similar to Case 1. We get 

1
5

18 | ( ( )) | | | 7
jCQ

N V C F   , a contradiction. So 
j

C  is not a 

4-cycle. By Lemma 3.8, 
j

C  is not a 2-good-neighbor 

component with | ( ) | 4
j

V C  . Thus, F  is not a 

2-good-neighbor cut of 5CQ . 

 Case 3. 0| | 3F  . 

   By Proposition 2.1, there are at most three vertices in 1
5CQ  

such that they are connected to one of 0F , respectively. Since 

5CQ F  is disconnected, there is a component C  in 

5CQ F  such that | ( ) | 3V C  . By Lemma 3.8, C  is not a 

2-good-neighbor component in 5CQ F . Therefore, F  is 

not a 2-good-neighbor cut of 5CQ . The proof  is complete. 

Lemma 3.15. Let 4( )F V CQ . If | | 6F  , then 4CQ F  

satisfies one of the following conditions: 

(1) 4CQ F  is connected; 

(2) 4CQ F  has two components, one of which is a 2K ; 

(3) 4CQ F  has two components, one of which is an 

isolated vertex; 

(4) 4CQ F  has three components, two of which are 

isolated vertices; 

(5) 4CQ F  has two components 1H , 2H , and | ( ) | 5
i

V H   

and ( ) 1
i

H   for 1,2i  . 

Proof . We can decompose 4CQ  along dimension 3 into 
0
4CQ  and 1

4CQ . Then both 0
4CQ  and 1

4CQ  are isomorphic to 

3CQ . Let 0
0 4( )F F V CQ   and 1

1 4( )F F V CQ   with 

0 1| | | |F F . Since | | 6F  , we have 0| | 3F  . 

 Case 1. 0| | 3F  . 

   In this case, 0 1| | | | 3 2( 1) 3F F n     . By Lemma 3.4, 

4
i

i
CQ F  ( {0,1})i  is connected or has two components, 

one of which is an isolated vertex. Let 
i

u  be the isolated 

vertex and let 
i

B  be the other component for {0,1}i . Then 
3

4| ( ) | | ( ) ( { }) | 2 (3 1) 4i

i i i
V B V CQ F u     ‚ . 

 Case 1.1. 0u  is connected to 1u . 

   Note that | | 3 4 | ( ) |
i i

F V B    for {0,1}i . By 

Proposition 2.1, 4CQ F  satisfies the condition (2). 

 Case 1.2. 0u  is connected to one of 1F . 

   If 1u  is connected to one of 0F , by Proposition 2.1, 

4CQ F  satisfies the condition (4). 

If 1u  is connected to one of 0( )V B , by Proposition 2.1, 

4CQ F  satisfies the condition (3). 

 Case 1.3. 0u  is connected to one of 1( )V B . 

   If 1u  is connected to one of 0F , by Proposition 2.1, 

4CQ F  satisfies the condition (3). If 1u  is connected to one 

of 0( )V B , by Proposition 2.1, 4CQ F  satisfies the 

condition (1) or (5). 

 Case 2. 0| | 2F  . 

   In this case, 0
4 0CQ F  is connected. Note 

that 1 0| | | | | | 4F F F   . By Lemma 3.1, 
1

1 4| | 4 3 ( )F CQ   . Then 1
4 1CQ F  is connected or 

disconnected. Suppose that 1
4 1CQ F  is connected. Since 

32 6 1  , by Proposition 2.1, 4CQ F  is connected. Then 

we suppose that 1
4 1CQ F  is disconnected. Let the 

components of 1
4 1CQ F  be 1 2, , ,

k
C C C  ( 2)k  . Note that  

0| | 2F  . If every component 
i

C  ( {1, , })i k   of 1
4 1CQ F  

such that | ( ) | 3
i

V C  , then 
0

4 4 0 1 4[ ( ) ( ) ( )]
k

CQ V CQ F V C V C CQ F       is 

connected, a contradiction. Thus, there exists at least one 

component 
i

C  (1 )i k   such that | ( ) | 2
i

V C  . Thus, 

4CQ F  satisfies one of the conditions (1)-(4). The proof  is 

complete.  

Lemma 3.16.   Let 5( )F V CQ . If | | 10F  , then 5CQ F  

satisfies one of the following conditions: 

(1) 5CQ F  is connected; 

(2) 5CQ F  has two components, one of which is a 2K ; 

(3) 5CQ F  has two components, one of which is a 2-path; 

(4) 5CQ F  has two components, one of which is an isolated 

vertex; 

(5) 5CQ F  has three components, two of which are isolated 

vertices; 

(6) 5CQ F  has four components, three of which are 

isolated vertices; 

(7) 5CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K . 

Proof.  We can decompose 5CQ  along dimension 4 into 
0
5CQ  and 1

5CQ . Then both 0
5CQ  and 1

5CQ  are isomorphic to 

4CQ . Let 0
0 5( )F F V CQ   and 1

1 5( )F F V CQ   with 

0 1| | | |F F . Since | | 10F  , we have 0| | 5F  . 

 Case 1. 0| | 5F  . 

   In this case, 0 1| | | | 5 2( 1) 3F F n     . By Lemma 3.4, 

5
i

i
CQ F  ( {0,1})i  is connected or has two components, 

one of which is an isolated vertex. Since 42 10 2 1   , by 

Proposition 2.1, 5CQ F  satisfies one of the conditions 

(1)-(7). 

 Case 2. 0| | 4F  . 

   Note that 0| | 4 1F n   . By Lemma 3.4, 0
5 0CQ F  is 

connected or has two components, one of which is an isolated 
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vertex. Let u  be the isolated vertex and B  be the other 
component. 

Then 0 4
5 0| ( ) | | ( ) \ ( { }) | 2 (4 1) 11V B V CQ F u      . 

In this case, 1| | 6F  . By Lemma 3.15, 1
5 1CQ F  satisfies 

one of the following conditions: 

(a) 1
5 1CQ F  is connected; 

(b) 1
5 1CQ F  has two components, one of which is a 2K ; 

(c) 1
5 1CQ F  has two components, one of which is an 

isolated vertex; 

(d) 1
5 1CQ F  has three components, two of which are 

isolated vertices; 

(e) 1
5 1CQ F  has two components, which are two 

components of order 5. 

 Case 2.1.  Both 0
5 0CQ F  and 1

5 1CQ F  are connected. 

   Since 42 10 1  , by Proposition 2.1, 
0 1

5 5 0 5 1 5[ ( ) ( )]CQ V CQ F V CQ F CQ F      is connected. 

 Case 2.2. 
0
5 0CQ F  is disconnected and 1

5 1CQ F  is 

connected. Since 42 10 1 1   , by Proposition 2.1, 
1

5 5 1[ ( ) ( )]CQ V B V CQ F   is connected. Thus, 5CQ F  

satisfies the condition (1) or (4). 

 Case 2.3. 0
5 0CQ F  is connected and 1

5 1CQ F  is 

disconnected. 

   Suppose that 1
5 1CQ F  satisfies one of the conditions 

(b)-(d). Since 42 10 2 1   , by Proposition 2.1, 5CQ F   

satisfies one of the conditions (1)-(7). Note that 0| | 4F  . 

Suppose that 1
5 1CQ F  satisfies the condition (e). By 

Proposition 2.1, 5CQ F  is connected. 

 Case 2.4. Both 0
5 0CQ F  and 1

5 1CQ F  are disconnected. 

   If 1
5 1CQ F  satisfies one of the conditions (b)-(d), by 

Proposition 2.1, then 5CQ F   satisfies one of the conditions 

(1)-(7). Suppose that 1
5 1CQ F  satisfies one of the condition 

(e). Let 1C  and 2C  be two components of order 5 

in 1
5 1CQ F . 

 Case 2.4.1. u  is connected to 1F . 

   Note that 0| | 4 5 | ( ) |
i

F V C    ( {1,2})i . By Proposition 

2.1, 5 1 2[ ( ) ( ) ( )]CQ V B V C V C   is connected. Thus, 

5CQ F  satisfies the condition (4). 

 Case 2.4.2. u  is connected to 1C  or 2C . 

   Without loss of generality, we assume that u  is connected 

to 1C . Note that 0 2| | 4 5 | ( ) |F V C   . By Proposition 2.1, 

5 2[ ( ) ( )]CQ V B V C  is connected. If 5 1[ ( ) ( )]CQ V B V C  is 

connected, then 5CQ F  is connected. We suppose that 

5 1[ ( ) ( )]CQ V B V C  is disconnected. Then 

5

0
1 5 0( ( )) ( ) { }

CQ
N V C V CQ F u   . Thus, 5CQ F  has two 

components, one of which is 5 1[ ( ) { }]CQ V C u  and the other 

is 5 2[ ( ) ( )]CQ V B V C  with 1| ( ) { }| 5 1 6V C u     and 

2| ( ) ( ) | 11 5 16V B V C    . By Lemma 3.6, 5CQ  is tightly 

10 super 2-extra connected, i.e., 5CQ F  has two 

components, one of which is order 3. We get that 5CQ F  

should have a component of order 3. 

This is a contradiction to that 1| ( ) { }| 6V C u   and 

2| ( ) ( ) | 16V B V C  . So the hypothesis is not true. 

 Case 3. 0| | 3F  . 

   By Lemma 3.1, 0
5 0CQ F  is connected. Suppose that 

1
5 1CQ F  is connected. Since 42 10 1  , by Proposition 2.1, 

0 1
5 5 0 5 1 5[ ( ) ( )]CQ V CQ F V CQ F CQ F      is connected. 

Then we suppose that 1
5 1CQ F  is disconnected. Let the 

components of 1
5 1CQ F  be 1C , 2C , ..., 

k
C  ( 2)k  . If every 

component of 1
5 1CQ F  such that | ( ) | 4

i
V C   

for {1, , }i k  , then 
0

5 5 0 1 5[ ( ) ( ) ( )]
k

CQ V CQ F V C V C CQ F       is 

connected. Suppose that there is a components 
i

C  such that 

| ( ) | 3
i

V C  . If 
5

0
5 0( ( )) ( )

CQ i
N V C V CQ F  , then 

i
C  is a 

component of 5CQ F . Thus, 5CQ F  satisfies one of the 

conditions (1)-(7). 
   Therefore, according to the cases 1-3, we can get that 

5CQ F  satisfies one of the conditions (1)-(7). The proof  is 

complete. 

Lemma 3.17.  Let ( )
n

F V CQ  ( 6)n  . If | | 3 5F n  , 

then 
n

CQ F  satisfies one of the following conditions: 

(1) 
n

CQ F  is connected; 

(2) 
n

CQ F  has two components, one of which is a 2K ; 

(3) 
n

CQ F  has two components, one of which is a 2-path; 

(4) 
n

CQ F  has two components, one of which is an 

isolated vertex; 

(5) 
n

CQ F  has three components, two of which are 

isolated vertices; 

(6) 
n

CQ F  has four components, three of which are 

isolated vertices; 

(7) 
n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K . 

Proof.  We can decompose 
n

CQ  along dimension 1n  into 
0
n

CQ  and 1
n

CQ . Then both 0
n

CQ  and 1
n

CQ  are isomorphic to 

1n
CQ  . Let 0

0 ( )
n

F F V CQ   and 1
1 ( )

n
F F V CQ   with 

0 1| | | |F F . Let 
i

B  be the maximum component of i

n i
CQ F  

(If i

n i
CQ F  is connected, then let i

i n i
B CQ F  ) for 

{0,1}i . We have 0

3 -5
0 | | 2 5

2

n
F n

      
 and 

1

3 5
| | 3 5

2

n
n F n

      
 ( 6)n  . 

 Case 1. 1| | 2 5n F n   . 

   In this case, 0 1| | | | 2 5 2( 1) 3F F n n      . 

By Lemma 3.4, i

n i
CQ F  ( {0,1})i  is connected or has two 

components, one of which is an isolated vertex. Since 
12 (3 5) 2 1n

n
      ( 6)n  , by Proposition 2.1, 

0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 
n

CQ F  satisfies 

one of the conditions (1)-(7). 

 Case 2. 1| | 2 4F n  . 

   In this case, 0| | 3 5 (2 4) 1F n n n      . 
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By Lemma 3.4, 0
0n

CQ F  is connected or has two 

components, one of which is an isolated vertex. Note that 

1| | 2 4 2( 1) 2F n n     . 

By Lemma 3.5, 1
1n

CQ F  satisfies one of the following 

conditions: 

(a) 1
1n

CQ F  is connected; 

(b) 1
1n

CQ F  has two components, one of which is a 2K ; 

(c) 1
1n

CQ F  has two components, one of which is an isolated 

vertex; 

(d) 1
1n

CQ F  has three components, two of which are isolated 

vertices. 

Since 12 (3 5) 3 1n
n

      ( 6)n  , by Proposition 2.1, 

0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 
n

CQ F  satisfies 

one of the conditions (1)-(7). 

 Case 3. 12 3 | | 3 9n F n    . 

   In this case, 0| | 3 5 (2 3) 2F n n n      . By Lemma 3.1, 
0

0n
CQ F  is connected. Note that 

12( 1) 2 2 3 | | 3 9 3( 1) 6n n F n n          . 

By Lemma 3.5, 1
1n

CQ F  satisfies one of the following 

conditions: 

(a) 1
1n

CQ F  is connected; 

(b) 1
1n

CQ F  has two components, one of which is a 2K ; 

(c) 1
1n

CQ F  has two components, one of which is an isolated 

vertex; 

(d) 1
1n

CQ F  has three components, two of which are isolated 

vertices. 

Since 12 (3 5) 2 1n
n

      ( 6)n  , by Proposition 2.1, 

0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 
n

CQ F  satisfies 

one of the conditions (1)-(7). 

 Case 4. 13 8 | | 3 5n F n    . 

   In this case, 0| | 3 5 (3 8) 3F n n     . By Lemma 3.1, 
0

0n
CQ F  is connected for 6n . Suppose that 1

1n
CQ F  is 

connected. Since 12 (3 5) 1n
n

     ( 6)n  , 
0 1

0 1[ ( ) ( )]
n n n n

CQ V CQ F V CQ F CQ F      is connected. 

Then we suppose that 1
1n

CQ F  is disconnected. Let the 

components of 1
1n

CQ F  be 1 2, , ,
k

C C C  ( 2)k  . Note that 

0| | 3F  . If every component 
i

C  (1 )i k   such that 

| ( ) | 4
i

V C  , then 
0

0 1[ ( ) ( ) ( )]
n n k n

CQ V CQ F V C V C CQ F       is 

connected. Suppose that there is a component 
i

C  such that 

| ( ) | 3
i

V C  . If 0
0( ( )) ( )

nCQ i n
N V C V CQ F  , then 

i
C  is a 

component of 
n

CQ F . Thus, 
n

CQ F  satisfies one of the 

conditions (1)-(7). The proof  is complete.. 

Lemma 3.18.  Let 6( )F V CQ . If 14 | | 15F  , then 

6CQ F  satisfies one of the following conditions: 

(1) 6CQ F  is connected; 

(2) 6CQ F  has two components, one of which is a 2K ; 

(3) 6CQ F  has two components, one of which is a 1,3K ; 

(4) 6CQ F  has two components, one of which is a 2-path; 

(5) 6CQ F  has two components, one of which is a 3-path; 

(6) 6CQ F  has two components, one of which is an 

isolated vertex; 

 (7) 6CQ F  has three components, two of which are 

isolated vertices; 

(8) 6CQ F  has four components, three of which are 

isolated vertices; 

(9) 6CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K ; 

(10) 6CQ F  has three components, one of which is an 

isolated vertex and the other is a 2-path. 

Proof.  We can decompose 6CQ  along dimension 5 into 
0
6CQ  and 1

6CQ . Then both 0
6CQ  and 1

6CQ  are isomorphic to 

5CQ . Let 0
0 6( )F F V CQ   and 1

1 6( )F F V CQ   with 

0 1| | | |F F . Let 
i

B  be the maximum component of 6
i

i
CQ F  

(If 6
i

i
CQ F  is connected, then let 6

i

i i
B CQ F  ) for 

{0,1}i . Since 14 | | 15F  , we have 0

15
0 | | 7

2
F

     
 

and 1

14
7 | | 15

2
F   . 

 Case 1. 05 | | 7F  . 

   Note that 05 1 | | 2( 1) 3 7n F n       . 

By Lemma 3.4, 0
6 0CQ F  is connected or has two 

components, one of which is an isolated vertex. 

Since 14 | | 15F  , we can get 17 | | 10F  . 

 Case 1.1. 1| | 7F  . 

   Note that 1| | 7 2( 1) 3F n    . By Lemma 3.4, 1
6 1CQ F  

is connected or has two components, one of which is an 

isolated vertex. Since 52 14 2 1   , by Proposition 2.1, 

6 0 1[ ( ) ( )]CQ V B V B  is connected. Thus, 6CQ F  satisfies 

one of the conditions (1)-(10). 

 Case 1.2.  18 | | 9F  . 

   Note that 18 2( 1) 2 | | 3( 1) 6 9n F n        . By 

Lemma 3.5, 1
6 1CQ F  satisfies one of the following 

conditions: 

(a) 1
6 1CQ F  is connected; 

(b) 1
6 1CQ F  has two components, one of which is a 2K ; 

(c) 1
6 1CQ F  has two components, one of which is an isolated 

vertex; 

(d) 1
6 1CQ F  has three components, two of which are isolated 

vertices. 

Since 52 14 3 1   , by Proposition 2.1, 

6 0 1[ ( ) ( )]CQ V B V B  is connected. Thus, 6CQ F  satisfies 

one of the conditions (1)-(10). 

 Case 1.3. 1| | 10F  . 

   Note that 1| | 3( 1) 5 10F n    . By Lemma 3.16, 
1
6 1CQ F  satisfies one of the following conditions: 

(a) 1
6 1CQ F  is connected; 

(b) 1
6 1CQ F  has two components, one of which is a 2K ; 

(c) 1
6 1CQ F  has two components, one of which is a 2-path; 

(d) 1
6 1CQ F  has two components, one of which is an 

isolated vertex; 
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(e) 1
6 1CQ F  has three components, two of which are isolated 

vertices; 

(f) 1
6 1CQ F  has four components, three of which are 

isolated vertices; 

(g) 1
6 1CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K . 

Since 52 14 4 1   , by Proposition 2.1, 

6 0 1[ ( ) ( )]CQ V B V B  is connected. Thus, 6CQ F  satisfies 

one of the conditions (1)-(10). 

 Case 2. 0| | 4F  . 

   By Lemma 3.1, 0
6 0CQ F  is connected. 

In this case, 110 | | 11F  . 

 Case 2.1. 1| | 10F  . 

   Note that 1| | 3( 1) 5 10F n    . By Lemma 3.16, 
1
6 1CQ F  satisfies one of the conditions (a)-(g) in Case 1.3. 

Since 52 14 3 1   , by Proposition 2.1, 

6 0 1[ ( ) ( )]CQ V B V B  is connected. Thus, 6CQ F  satisfies 

one of the conditions (1)-(10). 

 Case 2.2. 1| | 11F  . 

   Suppose that 1
6 1CQ F  is connected. Since 52 15 1  , by 

Proposition 2.1, 6CQ F  is connected. Then we suppose 

that 1
6 1CQ F  is disconnected. Let the components of 

1
6 1CQ F  be 1C , 2C , ... , 

k
C  ( 2)k  . Note that 0| | 4F  . If 

every component 
i

C  of 1
6 1CQ F  such that | ( ) | 5

i
V C   for 

{1, , }i k  , then 
0

6 6 0 1 6[ ( ) ( ) ( )]
k

CQ V CQ F V C V C CQ F       is 

connected. Suppose that there is a components 
i

C  such that 

| ( ) | 4
i

V C  . If 
6

0
6 0( ( )) ( )

CQ i
N V C V CQ F  , then 

i
C  is a 

component of 6CQ F . 

   When | ( ) | 4
i

V C  , 
i

C  is a 4-cycle, 3-path or 1,3K . Since 

i
C  is also a component of 1

6 1CQ F , we have 

1
6

1( ( ))
iCQ

N V C F . 

If 
i

C  is a 4-cycle, then 

1
6

| ( ( )) | 4( 1 2) 4 (5 2) 12
iCQ

N V C n       . Note that 

1
6

1| ( ( )) | 12 11 | |
iCQ

N V C F   . We get 1
6

1( ( ))
iCQ

N V C FÚ , a 

contradiction. So 
i

C  is not a 4-cycle. We get that 
i

C  may be 

a 3-path or 1,3K . Thus, 6CQ F  satisfies the condition (3) or 

(5). When | ( ) | 3
i

V C  , 6CQ F  satisfies one of the 

conditions (1)-(10). 

 Case 3. 0| | 3F  . 

   By Lemma 3.1, 0
0n

CQ F  is connected. Let the 

components of 1
6 1CQ F  be 1C , 2C , ..., 

k
C  ( 2)k  . If every 

component 
i

C  of 1
6 1CQ F  such that | ( ) | 4

i
V C   for 

{1, , }i k  , then 
0

6 6 0 1 6[ ( ) ( ) ( )]
k

CQ V CQ F V C V C CQ F       is 

connected. Suppose that there is a components 
i

C  such that 

| ( ) | 3
i

V C  . If 
6

0
6 0( ( )) ( )

CQ i
N V C V CQ F  , then 

i
C  is a 

component of 6CQ F . Thus, 6CQ F  satisfies one of the 

conditions (1)-(10). The proof  is complete. 

Lemma 3.19.  Let ( )
n

F V CQ  ( 6)n  . If 

3 4 | | 4 9n F n    , then 
n

CQ F  satisfies one of the 

following conditions: 

(1) 
n

CQ F  is connected; 

(2) 
n

CQ F  has two components, one of which is a 2K ; 

(3) 
n

CQ F  has two components, one of which is a 1,3K ; 

(4) 
n

CQ F  has two components, one of which is a 2-path; 

(5) 
n

CQ F  has two components, one of which is a 3-path; 

(6) 
n

CQ F  has two components, one of which is an 

isolated vertex; 

(7) 
n

CQ F  has three components, two of which are 

isolated vertices; 

(8) 
n

CQ F  has four components, three of which are 

isolated vertices; 

(9) 
n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K ; 

(10) 
n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2-path. 
Proof.  We prove the lemma by induction on n . By Lemma 
3.18, the lemma is true for 6n  . We assume that the lemma 

is true for 1n , i.e., if 3 7 | | 4 13n F n    , then 

1n
CQ F  satisfies one of the conditions (1)-(10). Now we 

show that the lemma is also true for n  ( 7)n  . We can 

decompose 
n

CQ  along dimension 1n  into 0
n

CQ  and 1
n

CQ . 

Then both 0
n

CQ  and 1
n

CQ  are isomorphic to 1n
CQ  . Let 

0
0 ( )

n
F F V CQ   and 1

1 ( )
n

F F V CQ   with 0 1| | | |F F . 

Let 
i

B  be the maximum component of i

n i
CQ F  (If 

i

n i
CQ F  is connected, then let i

i n i
B CQ F  ) for {0,1}i . 

Since 3 4 | | 4 9n F n    , we have 

0

4 9
0 | | 2 5

2

n
F n

      
 and 

1

3 4
1 | | 4 9

2

n
n F n

       
 ( 7)n  . We consider the 

following cases. 

Case 1.   11 | | 2 5n F n    . 

Note that 0 1| | | | 2 5F F n   . By Lemma 3.4, i

n i
CQ F  

( {0,1})i  is connected or has two components, one of which 

is an isolated vertex. Since 12 (4 9) 2 1n
n

      ( 7)n  , by 

Proposition 2.1, 0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 

n
CQ F  satisfies one of the conditions (1)-(10). 

Case 2.   12 4 | | 3 9n F n    . 

   Note that 0| | 4 9 (2 4) 2 5F n n n      . By Lemma 3.4, 
0

0n
CQ F  is connected or has two components, one of which 

is an isolated vertex. By Lemma 3.5, 1
1n

CQ F  satisfies one 

of the following conditions: 

(a) 1
1n

CQ F  is connected; 

(b) 1
1n

CQ F  has two components, one of which is a 2K ; 

(c) 1
1n

CQ F  has two components, one of which is an 

isolated vertex; 
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(d) 1
1n

CQ F  has three components, two of which are 

isolated vertices. 

Since 12 (4 9) 3 1n
n

      ( 7)n  , by Proposition 2.1, 

0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 
n

CQ F  satisfies 

one of the conditions (1)-(10). 

Case 3.  1| | 3 8F n  . 

   In this case, 0| | 4 9 (3 8) 1F n n n      . By Lemma 3.4, 
0

0n
CQ F  is connected or has two components, one of which 

is an isolated vertex. Note that 1| | 3 8 3( 1) 5F n n     . 

By Lemma 3.17, 1
1n

CQ F  satisfies one of the following 

conditions: 

(a) 1
1n

CQ F  is connected; 

(b) 1
1n

CQ F  has two components, one of which is a 2K ; 

(c) 1
1n

CQ F  has two components, one of which is a 2-path; 

(d) 1
1n

CQ F  has two components, one of which is an 

isolated vertex; 

(e) 1
1n

CQ F  has three components, two of which are isolated 

vertices; 

(f) 1
1n

CQ F  has four components, three of which are 

isolated vertices; 

(g) 1
1n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K . 

Since 12 (4 9) 4 1n
n

      ( 7)n  , by Proposition 2.1, 

0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 
n

CQ F  satisfies 

one of the conditions (1)-(10). 

Case 4.   13 7 | | 4 13n F n    . 

   In this case, 0| | 4 9 (3 7) 2F n n n      . By Lemma 3.1, 
0

0n
CQ F  is connected. Note that 

13( 1) 4 3 7 | | 4 13 4( 1) 9n n F n n          . By the 

inductive hypothesis, 1
1n

CQ F  satisfies one of the 

conditions (1)-(10). Since 12 (4 9) 4 1n
n

      ( 7)n  , by 

Proposition 2.1, 0 1[ ( ) ( )]
n

CQ V B V B  is connected. Thus, 

n
CQ F  satisfies one of the conditions (1)-(10). 

Case 5.   14 12 | | 4 9n F n    . 

   In this case, 0 1| | | | | | (4 9) (4 12) 3F F F n n       . By 

Lemma 3.1, 0
0n

CQ F  is connected. Suppose that 1
1n

CQ F  

is connected. Since 12 (4 9) 1n
n

     ( 7)n  , 
0 1

0 1[ ( ) ( )]
n n n n

CQ V CQ F V CQ F CQ F      is connected. 

So we suppose that 1
1n

CQ F  is disconnected. Let the 

components of 1
1n

CQ F  be 1 2, , ,
k

C C C ( 2)k  . Note that 

0| | 3F  . If every component 
i

C  such that | ( ) | 4
i

V C   

(1 )i k  , then 
0

0 1[ ( ) ( ) ( )]
n n k n

CQ V CQ F V C V C CQ F       is 

connected. Suppose that there exists one component 
i

C  such 

that | ( ) | 3
i

V C  . If 0
0( ( )) ( )

nCQ i n
N V C V CQ F  , then 

i
C  is 

a component of 
n

CQ F . Thus, 
n

CQ F  satisfies one of 

the conditions (1)-(10). The proof  is complete. 
Lemma 3.20. The 2-good-neighbor connectivity 

(2) ( ) 4 8
n

CQ n    for 4n . 

Proof.  Let F  be the minimum 2-good-neighbor cut of 

n
CQ F . If 4n   and | | 7F  , then F  is not a 

2-good-neighbor cut of 4CQ F  by Lemmas 3.4, 3.13 and 

3.15. If 5n   and | | 11F  , then F  is not a 2-good-neighbor 

cut of 5CQ F  by Lemmas 3.4, 3.5, 3.14 and 3.16. If 6n  

and | | 4 9F n  , then F  is not a 2-good-neighbor cut of 

n
CQ F  by Lemma 3.19. Thus, | | 4 8F n   . By the 

definition of 2-good-neighbor connectivity, 
(2) ( ) | | 4 8

n
CQ F n    . The proof  is complete. 

   Combining Lemmas 3.12  and 3.20, we have the following 
theorem. 

Theorem 3.1. Let 
n

CQ  be the crossed cube. Then 
(2) ( ) 4 8

n
CQ n    for 4n . 

Theorem 3.2. For 6n , the crossed cube 
n

CQ  is tightly 

(4 8)n  super 2-good-neighbor connected. 

Proof.  Now we consider 
n

CQ  for any minimum 

2-good-neighbor cut ( )
n

F V CQ . By Theorem 3.1, 

| | 4 8F n  . We can decompose 
n

CQ  along dimension 

1n  into 0
n

CQ  and 1
n

CQ . Then both 0
n

CQ  and 1
n

CQ  are  

isomorphic to 1n
CQ  . Let 0

0 ( )
n

F F V CQ   and 
1

1 ( )
n

F F V CQ   with 0 1| | | |F F . 

Then 1

4 8
| | 2 4

2

n
F n


   . We consider the following cases. 

Case 1.  1| | 2 4F n  . 

   In this case, 0 1| | | | 2 4 2( 1) 2F F n n      . By Lemma 

3.5, i

n i
CQ F  ( {0,1})i  satisfies one of the following 

conditions: 

(1) i

n i
CQ F  is connected; 

(2) i

n i
CQ F  has two components, one of which is a 2K ; 

(3) i

n i
CQ F  has two components, one of which is an 

isolated vertex; 

(4) i

n i
CQ F  has three components, two of which are 

isolated vertices. 

When i

n i
CQ F  ( {0,1})i  satisfies the condition (2), let 

i i
u v  be the component 2K  and let 

i
B  be the other 

component of i

n i
CQ F . Since 12 (4 8) 4 1n

n
      

( 6)n  , by Proposition 2.1, 0 1[ ( ) ( )]
n

CQ V B V B  is 

connected. If 0 0 1 1[{ , , , }]
n

CQ u v u v  is a 4-cycle, then 
n

CQ F  

has two components, one of which is a 4-cycle and the other 

is 0 1[ ( ) ( )]
n

CQ V B V B . Thus, 
n

CQ  is tightly (4 8)n  super 

2-good-neighbor connected. Otherwise, F  is not a 

2-good-neighbor cut of 
n

CQ . 

Case 2.   12 3 | | 3 9n F n    . 

   In this case, 0| | 4 8 (2 3) 2 5F n n n      . By Lemma 

3.4, 0
0n

CQ F  is connected or has two components, one of 

which is an isolated vertex. By Lemma 3.5, 1
1n

CQ F  

satisfies one of the following conditions: 

(1) 1
1n

CQ F  is connected; 

(2) 1
1n

CQ F  has two components, one of which is a 2K ; 

(3) 1
1n

CQ F  has two components, one of which is an 

isolated vertex; 
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(4) 1
1n

CQ F  has three components, two of which are 

isolated vertices. 

By Proposition 2.1, F  is not a 2-good-neighbor cut of 
n

CQ . 

Case 3.   1| | 3 8F n   

   In this case, 0| | 4 8 (3 8)F n n n     . By Lemma 3.4, 
0

0n
CQ F  is connected or has two components, one of which 

is an isolated vertex. Note that 1| | 3 8 3( 1) 5F n n     . 

By Lemma 3.17, 1
1n

CQ F  satisfies one of the following 

conditions: 

(1) 1
1n

CQ F  is connected; 

(2) 1
1n

CQ F  has two components, one of which is a 2K ; 

(3) 1
1n

CQ F  has two components, one of which is a 2-path; 

(4) 1
1n

CQ F  has two components, one of which is an 

isolated vertex; 

(5) 1
1n

CQ F  has three components, two of which are 

isolated vertices; 

(6) 1
1n

CQ F  has four components, three of which are 

isolated vertices; 

(7) 1
1n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K . 

By Proposition 2.1, F  is not a 2-good-neighbor cut of 
n

CQ . 

Case 4.   13 7 | | 4 13n F n    . 

   In this case, 0| | 4 8 (3 7) 1F n n n      . By Lemma 3.4, 
0

0n
CQ F  is connected or has two components, one of which 

is an isolated vertex. By Lemma 3.19, 1
1n

CQ F  satisfies one 

of the following conditions: 

(1) 1
1n

CQ F  is connected; 

(2) 1
1n

CQ F  has two components, one of which is a 2K ; 

(3) 1
1n

CQ F  has two components, one of which is a 1,3K ; 

(4) 1
1n

CQ F  has two components, one of which is a 2-path; 

(5) 1
1n

CQ F  has two components, one of which is a 3-path; 

(6) 1
1n

CQ F  has two components, one of which is an 

isolated vertex; 

(7) 1
1n

CQ F  has three components, two of which are 

isolated vertices; 

(8) 1
1n

CQ F  has four components, three of which are 

isolated vertices; 

(9) 1
1n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2K ; 

(10) 1
1n

CQ F  has three components, one of which is an 

isolated vertex and the other is a 2-path. 

By Proposition 2.1, F  is not a 2-good-neighbor cut of 
n

CQ . 

Case 5.   1| | 4 12F n   

   In this case, 0| | 4 8 (4 12) 4F n n     . By Lemma 3.1, 
0

0n
CQ F  is connected. By Proposition 2.1, there are four 

vertices 1v , 2v , 3v , 4v  in 1
n

CQ  such that 
0

1 2 3 4 0({ , , , }) ( )
nCQ n

N v v v v V CQ F . Suppose that 

1 2 3 4[{ , , , }]
n

CQ v v v v  is a 4-cycle in 1
1n

CQ F . Let 

1 2 3 4[{ , , , }]
n

C CQ v v v v . Then C  is a 2-good-neighbor 

component in 
n

CQ F . By Proposition 2.1, 
0 1

0 1[ ( ) ( ( ))]
n n n

CQ V CQ F V CQ F V C    is connected. Thus, 

n
CQ F  has two components, one of which is a 4-cycle and 

the other is [ ( ) ( )]
n n

CQ V CQ F V C  . Thus, 
n

CQ  is tightly 

(4 8)n  super 2-good-neighbor connected. Otherwise, 
n

CQ  

is not tightly (4 8)n  super 2-good-neighbor connected. 

Case 6.   14 11 | | 4 9n F n    . 

   In this case, 0| | 4 8 (4 11) 3F n n     . By Proposition 

2.1, there are at most three vertices in 1
1n

CQ F  such that 

they are connected to 0F . By Lemma 3.8, there is not a 

2-good-neighbor component in 
n

CQ F . This is a 

contradiction to that F  is a 2-good-neighbor cut of 
n

CQ . 

Case 7.   1| | 4 8F n   

   In this case, 0| | 0F  . By Proposition 2.1, 
n

CQ F  is 

connected. This is a contradiction to that F  is a 

2-good-neighbor cut of 
n

CQ . The proof  is complete. 

IV. THE 2-GOOD-NEIGHBOR DIAGNOSAILITY OF THE CROSSED 

CUBE 
n

CQ  UNDER THE PMC MODEL 

 

 
Fig. 2  Illustration of a distinguishable pair 1 2( , )F F under the 

PMC model 

Theorem 4.1 [19]. A system ( , )G V E  is 

g -good-neighbor t -diagnosable under the PMC model if 

and only if there is an edge uv E  with 1 2\ ( )u V F F   

and 1 2v F F   for each distinct pair of g -good-neighbor 

faulty subsets 1F  and 2F  of ( )
n

V CQ  with 1| |F t  and 

2| |F t  (see Fig.2). 

Lemma 4.1. Let 4n . Then the 2-good-neighbor 

diagnosability of the crossed cube 
n

CQ  under PMC model is 

less than or equal to 4 5n , i.e., 2 ( ) 4 5
n

t CQ n  . 

Proof.  Let A  be defined in Lemma 3.11, 1 ( )
nCQ

F N A  and 

2 ( )
nCQ

F A N A  . By Lemma 3.11, 1| | 4 8F n  , 

2| | 4 4F n  , 1F  is a 2-good-neighbor cut of 
n

CQ , and 

1n
CQ F  has two components 2n

CQ F  and [ ]
n

CQ A . Thus, 

1F  and 2F  are both 2-good-neighbor faulty sets of 
n

CQ  with 

1| | 4 8F n   and 2| | 4 4F n  . Since 1 2A F F   and 

1 2( )
nCQ

N A F F  , there is no edge of 
n

CQ  between 

1 2( ) \ ( )
n

V CQ F F  and 1 2F F . By Theorem 4.1,  
n

CQ  is not 

2-good-neighbor (4 4)n -diagnosable under PMC model. 

By the definition of 2-good-neighbor diagnosability, we can 

deduce that the 2-good-neighbor diagnosability of 
n

CQ  is 

less than or equal to 4 5n , i.e., 2 ( ) 4 5
n

t CQ n  . The proof  

is complete.  
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Lemma 4.2.  Let 5n . Then the 2-good-neighbor 

diagnosability of the crossed cube 
n

CQ  under PMC model is 

more than or equal to 4 5n , i.e.,  2 ( ) 4 5
n

t CQ n  . 
Proof.  By the definition of 2-good-neighbor diagnosability, 

it is sufficient to show that 
n

CQ  is 2-good-neighbor 

(4 5)n -diagnosable. By Theorem 4.1, we need to prove that 

there is an edge uv E  with 1 2( ) \ ( )
n

u V CQ F F   and 

1 2v F F   for each distinct pair of 2-good-neighbor faulty 

subsets 1F  and 2F  of ( )
n

V CQ  with 1| | 4 5F n   and 

2| | 4 5F n  . 

   Suppose, on the contrary,  that there are two distinct 

2-good-neighbor faulty subsets 1F  and 2F  of ( )
n

V CQ  with 

1| | 4 5F n   and 2| | 4 5F n  , but there is no edge between 

1 2( ) \ ( )
n

V CQ F F  and 1 2F F . Without loss of generality, 

assume that 2 1\F F  . Suppose that 1 2( )
n

V CQ F F  . 

1 2 1 2 1 2 1 22 | ( ) | | | | | | | | | | | | |n

n
V CQ F F F F F F F F       

2(4 5) 8 10n n    , a contradiction to 5n . Therefore, 

1 2( )
n

V CQ F F  . Since there is no edge between 

1 2( ) \ ( )
n

V CQ F F  and 1 2F F , 1n
CQ F  has two parts 

1 2 )\ (
n

CQ F F  and 2 1\[ ]
n

CQ F F . Note that 1F  is a 

2-good-neighbor faulty set. Thus, every component 
i

B  of 

1 2 )\ (
n

CQ F F  such that ( ) 2
i

B   and every component 

i
C  of 2 1\[ ]

n
CQ F F  such that ( ) 2

i
C  . If 1 2\F F  , then 

1 2 1F F F . Thus, 1 2F F  is a 2-good-neighbor faulty set. 

If 1 2\F F  , similarly, every component 
i

D  of 

1 2\[ ]
n

CQ F F  such that ( ) 2
i

D  . Therefore, 1 2F F  is also 

a 2-good-neighbor faulty set. Since there is no edge between 

1 2( ) \ ( )
n

V CQ F F  and 1 2F F , 1 2F F  is a 2-good-neighbor 

cut of 
n

CQ . By Theorem 3.1, 1 2| | 4 8F F n  . Since 

2 1\( [ ]) 2
n

CQ F F  , by Lemma 3.8, 2 1 | 4\| F F  . Thus, 

2 2 1 1 2| | | | | | 4 4 8 4 4\F F F F F n n       . This is a 

contradiction to that 2| | 4 5F n  . Therefore, 
n

CQ  is 

2-good-neighbor (4 5)n -diagnosable, i.e., 

2 ( ) 4 5
n

t CQ n  . The proof  is complete. 

   Combining Lemmas 4.1 and 4.2, we have the following 
theorem. 
Theorem 4.2. Let 5n . Then the 2-good-neighbor 

diagnosability of the crossed cube 
n

CQ  under PMC model is 

4 5n , i.e., 2 ( ) 4 5
n

t CQ n  . 

V. THE 2-GOOD-NEIGHBOR DIAGNOSAILITY OF THE CROSSED 

CUBE 
n

CQ  UNDER THE MM* MODEL 

 

 
Fig. 3  Illustration of a distinguishable pair 1 2( , )F F  under the 

MM* model 

 
 

Theorem 5.1 [19]. A system ( , )G V E  is 

g -good-neighbor t -diagnosable under the MM *  model if 

and only if each distinct pair of g -good-neighbor faulty 

subsets 1F  and 2F  of V  with 1| |F t  and 2| |F t  satisfies 

one of the following conditions (see Fig.3):  

(1) There exist two vertices 1 2, ( ) \ ( )u w V G F F    and there 

exists a vertex 1 2v F F   such that , ( )uw vw E G . 

(2) There exist two vertices 1 2\,u v F F  and there exists a 

vertex 1 2( ) \ ( )w V G F F   such that , ( )uw vw E G . 

(3) There exist two vertices 2 1\,u v F F  and there exists a 

vertex 1 2( ) \ ( )w V G F F   such that , ( )uw vw E G . 

Lemma 5.1. Let 4n . Then the 2-good-neighbor 

diagnosability of the crossed cube 
n

CQ  under MM* model is 

less than or equal to 4 5n , i.e.,  2 ( ) 4 5
n

t CQ n  . 

Proof.  Let A  be defined in Lemma 3.11, 1 ( )
nCQ

F N A , and 

2 ( )
nCQ

F A N A  . By Lemma 3.11, 1| | 4 8F n  , 

2| | 4 4F n  , 1F  is a 2-good-neighbor cut of 
n

CQ , and 

1n
CQ F  has two components 2n

CQ F  and [ ]
n

CQ A . Thus, 

1F  and 2F  are both 2-good-neighbor faulty sets of 
n

CQ  with 

1| | 4 8F n   and 2| | 4 4F n  . Since 1 2A F F   and 

1 2( )
nCQ

N A F F  , there is no edge of 
n

CQ  between 

1 2( ) \ ( )
n

V CQ F F  and 1 2F F . By Theorem 5.1,  
n

CQ  is not 

2-good-neighbor (4 4)n -diagnosable under MM* model. 

By the definition of 2-good-neighbor diagnosability, we can 

deduce that the 2-good-neighbor diagnosability of 
n

CQ  is 

less than 4 4n , i.e., 2 ( ) 4 5
n

t CQ n  . The proof  is 

complete. 
Lemma 5.2. Let 5n . Then the 2-good-neighbor 

diagnosability of the crossed cube 
n

CQ  under MM* model is 

more than or equal to 4 5n , i.e.,  2 ( ) 4 5
n

t CQ n  . 

Proof. By the definition of 2-good-neighbor diagnosability, 

it is sufficient to show that 
n

CQ  is 2-good-neighbor 

(4 5)n -diagnosable. On the contrary, there are two distinct 

2-good-neighbors faulty subsets 1F  and 2F  of 
n

CQ  with 

1| | 4 5F n   and 2| | 4 5F n  , but the vertex set pair 

1 2( , )F F  is not satisfied with any one condition in Theorem 

5.1. Without loss of generality, assume that 2 1\F F  . 

Similarly to the discussion on 1 2( )
n

V CQ F F   in Lemma 

4.2, we can deduce 1 2( )
n

V CQ F F  . 

Claim 1.  1 2( )
n

CQ F F   has no isolated vertex. 

   We suppose, on the contrary, that 1 2( )
n

CQ F F   has at 

least one isolated vertex w . Since 1F  is a 2-good-neighbor 

faulty set, there are two vertices  ,u v  in 2 1\F F  such that w  

is adjacent to u  and v . Thus, 1 2( , )F F  is satisfied with 

condition (3). This contradicts with our hypothesis. 

Similarly to the discussion on 2F  is a 2-good-neighbor faulty 

set. Therefore, 1 2( )
n

CQ F F   has no isolated vertex. 

The proof of Claim 1 is complete. 
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   Let 1 2( ) \ ( )
n

u V CQ F F  . By Claim 1, u  has at least one 

neighbor in 1 2( )
n

CQ F F  . Since 1 2( , )F F  is not satisfied 

with any one condition in Theorem 5.1, u  has no neighbor in 

1 2F F . By the arbitrariness of u , there is no edge between 

1 2( ) \ ( )
n

V CQ F F  and 1 2F F . Since 1F  and 2F  are two 

2-good-neighbor faulty set, every component 
i

H  of 

1 2( )
n

CQ F F   has ( ) 2
i

H  , every component 
i

B  of 

2 1\([ ])
n

CQ F F  has ( ) 2
i

B  , and every component 
i

C  of 

1 2\([ ])
n

CQ F F  has ( ) 2
i

C   when 1 2\F F  . Thus, 

1 2F F  is also a 2-good-neighbor faulty set. Since 

2 1\( [ ]) 2
n

CQ F F  , by Lemma 3.8, 2 1 | 4\| F F  . Since 

there is no edge between 1 2( )
n

CQ F F   and 1 2F F , we 

have 1 2F F  is a 2-good-neighbor cut of 
n

CQ . By Theorem 

3.1, we have 1 2| | 4 8F F n  . Therefore, 

2 2 1 1 2| | | | | | 4 (4 8) 4 4\F F F F F n n       , which 

contradicts 2| | 4 5F n  . Therefore, 
n

CQ  is 

2-good-neighbor (4 5)n -diagnosable, i.e., 

2 ( ) 4 5
n

t CQ n  . The proof  is complete. 

   Combining Lemmas 5.1  and 5.2, we can get the following 
theorem. 
Theorem 5.2. Let 5n . Then the 2-good-neighbors 

diagnosability of the crossed cube 
n

CQ  under MM* model is 

4 5n , i.e., 2 ( ) 4 5
n

t CQ n  . 

 
IV. CONCLUSION 

 

   We prove that the 2-good-neighbor connectivity of 
n

CQ  is 

4 8n  for 4n . Moreover, 
n

CQ  is tightly (4 8)n  super 

2-good-neighbor connected for 6n . Then we determine 

that the 2-good-neighbor diagnosability of 
n

CQ  is 4 5n  

under the PMC model and MM* model for 5n . On the 
basis of this study, the researchers can continue to study the 
g -good-neighbors connectivity and diagnosability. 
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