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Rational Design of Antifungal 1,2,4-triazole
derivatives by 2D-QSAR Study

Rajesh D. Hunashal , Mahesh B. Palkar

Abstract- 2D-QSAR studies were performed on a set of 35
analogs of 1,2,4-triazole using V-Life Molecular Design Suite
(MDS 3.5) QSAR plus module by using Multiple Linear
Regression (MLR) and Partial Least Square (PLS) regression
methods against fungal strain Aspergillus niger (ATCC 6275).
MLR and PLS have shown a very promising antifungal activity
prediction results against A.niger. QSAR models were (MLR
and PLS) generated by a training set of 25 molecules with
correlation coefficient (r?) of 0.7632, 0.7666, and F test of
16.1183, 22.9938 respectively. In the selected descriptors,
alignment independent descriptors such as T_N_CL_5,
T_N_O_4, T_C_0_1, T _O0_0_3 and G_C_O_1 were the most
important descriptors in predicting antifungal activity.

Index Terms— Antifungal activity; 1,2,4-Triazole; 2D QSAR;
Multiple Linear Regression (MLR); Partial Least Square (PLS)
Regression;.

I. INTRODUCTION

During the past two decades, the fungal infection
complication have been recognised as a major cause of
morbidity and mortality in immunocompromised patients
including those suffering from tuberculosis, infected with
HIV-1, organ-transplant patients, diabetic patients and those
undergoing cancer chemotherapy. Increased incidence of
fungal infections also follows the frequent use of antibacterial
and cytotoxic drugs [1]. Some antifungal drugs are either
highly toxic (e.g., amphotericin B, AMB) or increasingly
ineffective due to appearance of resistant strains, limited
spectrum of activity, tissue distribution, central nervous
system (CNS) penetration, or high cost [2].

In fact, azole resistance is a major concern in long-course
treatment of AIDS patients. The causes of resistance are
generally associated with mutations in lanosterol
140-demethylase that reduce azole binding and decreased
intracellular drug accumulation due to increased expression
of efflux pump genes. Moreover, long-term treatments may
also cause hepatotoxicity, as azole derivatives can also
interact to P450 enzymes from mammalian cytochromes [3].
Prompted by these observations, we incorporate azole
nucleus with various heterocyclic moiety.

In view of above fact mortality from fungal infections is still
unacceptably high. Thus the development of new and
effective antifungal agents against life-threatening systemic
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mycoses is an urgent need. Thus in order to improve
antifungal potency and selectivity, efforts has been made to
our reported synthesized new classes of antifungal agents or
modify the structures of so far effective azole molecule [4-6].
Indeed, several two or three -dimensional quantitative
structure-activity relationship studies (2D or 3D QSAR) have
been reported for different datasets of azole derivatives
[7-12]. The purpose of using QSAR-Descriptors is to
calculate the properties of molecules that serve as numerical
descriptions or characterizations of molecules in other
calculations such as diversity analysis or combinatorial
library design. Using such an approach one could predict the
activities of newly designed compounds before a decision is
being made whether these compounds should be really
synthesized and tested. One could not, however, confirm that
the compounds we synthesised would always possess good
inhibitory activity to fungal organism, even as experimental
assessments of inhibitory activity of these compounds are
time-consuming and expensive. Consequently, it is of interest
to develop a prediction method for biological activities before
the synthesis.

The aim of this work was to develop a predictive QSAR
model [13,14], which will applicable to diverse sets of
molecules and would aid in search for the novel fungal
inhibitors from a diverse chemical space.

II. COMPUTATIONAL METHODS

Chemical Data

A series of 35 molecules belonging to 1,24-triazole
derivatives as Aspergillus niger (ATCC 6275), inhibitors
were taken from the literature and used [4-6]. The 2D-QSAR
models were generated using a training set of 25 molecules.
The observed and predicted biological activities of the
training and test set molecules are presented in Table 1.
Predictive power of the resulting models was evaluated by a
test set of 10 molecules with uniformly distributed biological
activities. The observed selection of test set molecules was
made by considering the fact that test set molecules
represents a range of biological activity similar to the training
set.

Data Set

All computational work was performed on Apple workstation
(8-core processor) using Vlife MDS QSAR plus software
developed by Vlife Sciences Technologies Pvt Ltd, Pune,
India, on windows XP operating system . All the compounds
were drawn in Chem DBS using fragment database and then
subjected to energy minimization using batch energy
minimization method. Conformational search were carried
out by systemic conformational search method.

Biological Activities

The negative logarithm of the measured PMICs, (uM) against
Aspergillus niger, as PMICsy [PMICsy = —log (PMICsy X
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10'6)] was used as dependent variable, thus correlating the
data linear to the free energy change. Since some compounds
exhibited insignificant/no inhibition, such compounds were
excluded from the present study. The zone of inhibition and
minimum inhibitory concentration (MIC) values were
obtained by agar-dilution method against Aspergillus niger
using Muller-Hinton agar (MHA) medium [15-17]. The
PMICs, values of reference compounds were checked to
ensure that no difference occurred between different groups.
The pMICs, values of the molecules under study spanned a
wide range from 2 to 7.

Molecular Descriptors

Various 2D descriptors (a total of 208) like element counts,
molecular weight, molecular refractivity, log P, topological
index, Baumann alignment independent topological
descriptors efc., were calculated using V1ifeMDS software.
The preprocessing of the independent variables (i.e.,
descriptors) was done by removing invariable (constant
column) and cross-correlated descriptors (with = 0.7632)
which resulted in total 156 and 162 descriptors for MLR and
PLS respectively to be used for QSAR analysis.

Selection of Training and Test Set

The dataset of 35 molecules was divided into training and test
set by Sphere Exclusion (SE) method for MLR, PCR and PLS
model with pMICs, activity field as dependent variable and
various 2D descriptors calculated for the molecules as
independent variables.

II. RESULT AND DISCUSSION

Training set of 28 and 11 of test set of 1,2,4-triazole having
different substitution, were employed. Following statistical
measure was used to correlate biological activity and
molecular descriptors; n, number of molecules; k, number of
descriptors in a model; df ,degree of freedom; r ,coefficient
of determination,; q2 , cross validated 1% pred_r2 , 1* for
external test set; pred_rzse , coefficient of correlation of
predicted data set;

Multiple Linear Regression (MLR) Analysis

After 2D QSAR study by Multiple Linear Regression method
using forward-backward stepwise variable selection method,
the final QSAR equation was developed having 4 variables as
follows.

pMIC = -2.1379 (T_N_CI1_5)-0.08772 (T_N_O_4)-0.4580
(T_C_O_1)+1.9135(T_0_0_3)

Model 1 (MLR) has a correlation coefficient (r*) of 0.7632,
significant cross validated correlation coefficient (q) of
0.4434, F test of 16.1183, 1 se of 0.4733, g’ se of 0.7256 and
degree of freedom (df) 20. The randomization test suggests
that the developed model have a probability of less than 1%
that the model is generated by chance. The equation of MLR
model explains 76% (1r2 = 0.76) of the total variants in the
training set as well as it has internal (qz) and external
(pred_r?) predictive ability of 44% and 20% respectively. The
observed and predicted pMICs, along with residual values are
shown in Table 1. Statistical data is shown in Table 2. The
plot of observed vs. Predicted activity is shown in Figure 1.
The descriptors which contribute for the pharmacological
action are shown in Figure 2.

Partial Least Squares (PLS) Analysis

PLS Analysis is having following QSAR equation with 4
variables.

v
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pMIC = -2.1835 (T_N_CI1_5)-0.8437 (T_N_O_4)-0.3385
(G_C_0O_1)+1.7695 (T_O_0O_3)

Model 2 (PLS) The PLS Analysis gave correlation coefficient
(t*) of 0.7666, significant cross validated correlation
coefficient (q2) of 0.4332, F test of 22.9938 and degree of
freedom 21. The randomization test suggests that the
developed model have a probability of less than 1% that the
model is generated by chance. Statistical data is shown in
Table 2. The plot of observed vs. predicted activity is shown
in Figure 3.The descriptors which contribute for the
pharmacological action are shown in Figure 4.

Table 1: Structure, Experimental and Predicted Activity of
1,2,4-Triazoles Used in Training and Test Set Using MLR.
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Fig.1 Graph of Actual vs. Predicted activities for training and
test set molecules from the Multiple Linear Regression
model. (A) Training set (Red dots) (B) Test Set (Blue dots).
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Fig. 2: Plot of percentage contribution of each descriptor in
developed MLR model explaining variation in the activity.
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Fig. 3: Graph of Actual vs. Predicted activities for training
and test set molecules by Partial Least Square model. (A)
Training set (Red dots) (B) Test Set (Blue dots).
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Fig. 4: Plot of percentage contribution of each descriptor in
developed PLS model explaining variation in the activity.
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IV. CONCLUSION

In conclusion, the model developed to predict the
structural features of 1,2,4-triazole derivatives to display
antifungal activity against Aspergillus niger, reveals useful
information about the structural features requirement for the
molecule. In this QSAR analysis, Partial Least Squares (PLS)
method is giving very significant results. The results revealed
that the alignment independent (AI) descriptors have greatly
contributed for the variation in the biological activity of
compounds. The results obtained from QSAR study consider
not only wide range of structures, but also various
physico-chemical interactions involved in enzyme inhibitor
complex. The present study is more versatile than the earlier
reported methods. The QSAR results obtained are in
agreement with the observed SAR of 1,24-triazole
derivatives studied. Hence the model proposed in this work is
useful and can be employed to design novel 1,2,4-triazole
derivatives as promising anti-fungal agents.
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