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 
Abstract—The present paper is devoted to an analytical study 

of two species syn-ecological model with a prey and a predator. 

Predator is provided with an alternative food and a partial 

cover is provided to prey to protect it from the attacks of the 

predator. All possible equilibrium points are identified and 

their local and global stability is carried out. Trajectories of 

both the populations are also carried out by using analytical 

techniques. 

  

Index Terms—Prey predator model, Syn-ecological model, 

Two species pray predator model.  

 

I. INTRODUCTION 

            Ecology deals the habits and habituates of living beings. 

Brief idea about modeling is given by Olinck,[1]. Later  

Kapur, [2], Smith,[3], Colinvaux, [4],  Freedman, [5] 

studied nteracting modelss.  The stability of ecological 

models were discussed by May, [6] , and their exact 

solutions are given by  Varma, [7]. Lakshmi Narayan. K 

et.al, [8,9] discussed different prey-predator models. 

 Here we considered a prey-predator model for study. 

The model is characterized by coupled non-linear ordinary 

differential equations of order one. Possible critical points are 

identified and discussed their stability At each stationary 

point linearized equations are formed and solved completely 

and explained with trajectories Lypunov’s function 
constructed and derived some threshold results developed. 

II. NOTATION AND PRELIMINARIES 

A. Nomenclature 

1N , 2N   : Strength of species, 

1a , 2a  : Natural growth rate of the species 

11 , 22 : Rates of mortality due to internal 

competition, 

12      :  Death rate prey by attacks of predator 

21        : Growth rate of predator due to interaction 

with the prey 

 k          : cover constant (0<k<1) 

Here 1N and 2N are zero or positive and also the model 

parameters 1a , 2a , 11 , 12 , 21 , 22 , k .  
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Governing equations are  

(i) Prey: 

1dN

dt
 = 1 1a N  2

11 1N  12 1 2(1 )k N N    (2.1) 

(ii)  Predator: 

22

2 2 22 2 21 1 2(1 )
dN

a N N k N N
dt

      (2.2)  

III. EQUILIBRIUM STATES 

We have four critical points  

I. Extinct point 
21

0; 0N N                                (3.1) 

II. 
1

0N  ;
2

2

22

a
N


                                            (3.2) 

 predator exists, prey extinct. 

III. The state 
1

1

11

a
N


 ;

2
0N                            (3.3) 

prey exists, predator extinct. 

IV. Interior state: 

1 22 2 12
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(1 )
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a a k
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 
   

 
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 
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2 11 1 21

2 2

11 22 12 21

(1 )

(1 )

a a k
N

k

 
   

 


 
                          

                                                                     (3.4) 

Which possible when k > 
1 22

2 12

1
a

a




                 (3.5) 

  

IV. STABILITY OF CRITICAL STATES 

Let N = (N1, N2)   =  N U   = 1 1 2 2( , )N u N u         (4.1) 

With U = 1 2( ,  )u u  as perturbation matrix over ,1 2( )N N N .

 dU
AU

dt
  where  

121 21 11 12 1

221 2 12 22 21

(1 )2 (1 )

(1 ) 2 (1 )

k Na N k N
A

k N a N k N

 

  

    
 

        

     (4.2)        

The secular equation is      0det A I               (4.3) 

It is stable only when the critical values negative in case they 

are real or complex with negative real parts. 
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A. Critical State I 

I. a. Stability: 

 The deviations 1u , 2u  satisfy the equations 

             1

1 1

du
a u

dt
    and       2

2 2

du
a u

dt
                            

  …………………………………………………….(4.4) 

and the secular equation is (- 1a  )(- 2a ) =0,              (4.5) 

with two positive roots results an unstable. 

The solutions are  

1
1 10 =  

a t
u u e    and  2

2 20 =  
a t

u u e                                (4.6)                                                                                            

With 10u , 20u as starting strengths of 1u and 2u . The 

solution explained in Figures 1 to 5. 

Case 1: Predator’s dominance continues throughout as shown 

in Fig.1. 

Case 2: Initially predator dominates, after some time 

situation reverses (i.e. 1 2 < a a  & 10 20> u u ). At        

  / 10 20

2 1

{ }
= * = 

( - )

ln u u
t t

a a
both are equal strength             

…………………………………………………………  (4.7) 

As displayed in (Fig.2). 

Case 3: Initially predator dominates, after some time 

situation reverses (i.e. 1 2 > a a & 10 20< u u ), At 

  / 10 20

2 1

{ }
= * = 

( - )

ln u u
t t

a a
 both are with equal strength as 

shown in ( Fig.3).                                                             (4.8) 

Case 4: Prey’s dominance continues throughout as shown in  
Fig.4. 

 

I. b. Trajectories of Perturbed Species: 

The trajectories in the 1 2-u u plane are  

2

1

10

a
u

u

 
 
 

=
1

2

20

a
u

u

 
 
 

                                   (4.9) 

and these are shown  in Fig.5. 

 

B. Critical State II 

II. a. Stability : 
2

21

22

0;
a

N N


   

The perturbed equations for the critical state II are          

     
1 12 2

1 1 1

22

(1 )du k a
a u u

dt







      and  

2 21 2

2 2 1

22

(1 )du k a
a u u

dt





                            (4.10) 

The secular equation is 2( + )a  

12 2

1

22

(1 )
{ -[ - ]}

k a
a







= 0                                     (4.11) 

One root of the equation (4.11) is 1 2( )a    is negative. 

Case A: 

 If  
1 22

2 12

k >1
a

a




 , the another root of equation (4.11), 

12 2
2 1

22

(1 )
-

k a
a







  is positive.  

Hence it results an unstable. 

The equation (4.10) gives 

 
2

 1 10

 t
 = u u e


and 

  
2 2

2 10 2 21 20 10 2 21
1

1

   1 t t
= (1 ) { (1 )

-a
u u a k e u u a k e

  


      

                                                                                       (4.12)                     

Here    
1 22 2 22 12

1
[ (1 )]a a k                   (4.13) 

The solution curves are shown in Fig.6 & 7 

Case A1: Pray dominance continues to out number the 

predator  (i.e. 10 20u u ), the prey continues out numbering 

the predator as shown in Fig.6. 

Case A2: Predator dominates over the prey initially (i.e. u10< 

u20), the predator continues to out number the prey till the 

time-instant  

 

 
 

20 22 2 2 10 2 21

 
10 22 2 2 2 21

( ) (1 )
= * = 

[ ( ) (1 )]

u a u a k
t t ln

u a a k

  
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 
 
 
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  
  

          (4.14) 

Then the prey out number the predator. This is shown in Fig.7 

 

Case B:  

If  
1 22

2 12

k<1
a

a




 , the another root of the equation (4.11) 

12 2

2 1

22

(1 )
-

k a
a







  is negative and 

hence the critical state is stable. The trajectories in this case 

are the same as in (4.12). 

Case B1: Pray dominance continues to out-number the 

predator (i.e. 10 20> u u ). However both converge 

asymptotically to the critical point
1 2

( , )N N  given by (3.2).  

Hence the critical point is stable. This is shown in Fig.8 

Case B2: If the predator dominates over the prey initially 

(i.e. 10 20< u u ), the predator continues to out-number the 

prey and till the time instant  

 
20 22 2 2 10 2 21

 
10 22 2 2 2 212 2

1 ( ) (1 )
= * =

[ ( ) (1 )]( )

u a u a k
t t ln

u a a ka

  
  

 
 
 
  

  
  

  

                                                                                 (4.15) 

after which the prey out-number the predator and grows 

unbounded while the predator asymptotically approaches to 

the equilibrium value 
2

N given in (3.2). Hence the state is 

unstable. This is shown in Fig.9 

 

Case C:  

If 
1 22

2 12

k=1
a

a




 , another root of the equation (4.11) is 

2 0  . Hence the critical state is “neutrally stable”. 
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The trajectories are  1 10 =u  u  and   

1 21

2 10

2 12

a
u u

a




 +
1 21

20 10

2 12

a
u u

a




 
 

 

 2  - ta
e            (4.16) 

Case C1: If the prey dominates over the predator initially 

(i.e. 10 20> u u ) and it continues throughout its growth. In 

course of time 2u → 1 21

2 10

2 12

*
a

u u
a




  as is clear from 

equation (4.16). This is shown in Fig.10. 

Case C2: If the predator dominates over the prey initially 

(i.e. 10 20< u u ), the predator continues to out-number the 

prey and till the time instant  

 = * =t t
2

1
ln

a
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a a u
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                     (4.17) 

after which the prey out-number the predator. This is shown 

in Fig.11 

 

II. b. Trajectories of Perturbed Species: 

The trajectories in the 1 2u u  plane are given by 

1 2( 1)q u = 1
1

q
cu   1 1p u                       (4.18) 

here  
1

p = 2 21

1 22 2 12

(1 )

(1 )

a k

a a k


 


 

; 
1

q =   

2 22

1 22 2 12

-

(1 )

a

a a k


  

 ; c   arbitrary constant and 

k  1 22

2 12

1
a

a




 .                              (4.19) 

The solution curves are shown in Fig.12.  

 

C. Critical state III:  

III. a. Stability : 
1

1

11

a
N


 ;

2 0N   

The perturbed equations for the critical state III are 

1 1 12 2

1 1

11

(1 )du a k u
a u

dt





    and        

2 1 21
22

11

(1 )du a k
a u

dt




 
  
 

           (4.20) 

and the  secular equation is       1( + )a  

1 21

2

11

(1 )
{ -[ ]}

a k
a







 = 0          (4.21) 

One root of the equation (4.21) ( 1 1a   ) is negative and 

the another root  

2 = 
1 21

2

11

(1 )a k
a





   is positive.   Hence the critical 

state is unstable. 

The trajectories in the (u1, u2) plane is given by the following 

equations: 

1

2

1
=
γ

u

 
1

20 1 12 10 20 1 12
2

 -
- (1- ) +{ γ - (1- )  a tc t
u a k e u u a k e  

  
 

and  2 20= dt
u u e            (4.22) 

here   
1 21

2

11

(1 )a k
d a





   and 

2
γ  2 11a   1 11 21[ (1 )]a k                        (4.23) 

The solution curves are shown in Figures 13 & 14 

Case 1: If the predator dominates initially (i.e. 10 20< u u ), 

then the predator species to be going away from the critical 

point while the prey-species would become extinct at the 

instant (t*) of time given by the positive root of the equation 

10 22

20 1 12 (1 )

ua tdt
e e

u a k




 


             (4.24) 

As such the state is unstable. This is shown in Fig.13 

Case 2: If the prey dominates initially (i.e. 10 20> u u .), the 

prey continues to out-number the predator till the time 

instant, 

          = * =t t  

1 1

1
ln

c a
10 11 1 1 20 1 12

10 11 1 1 1 12

( )+ (1 )

[ ( )]+ (1 )

u c a u a k

u c a a k

 
 

  
   

    (4.25) 

after which the predator out-number the prey. And also the 

predator species is noted to be going away from the critical 

point while the prey-species would become extinct at the 

instant (t*) of time given by the positive root of the equation 

(4.24). As such the state is unstable. This is shown in Fig.14 

 

III.b.Trajectories: 

The trajectories in the 1 2-u u plane are given by 

1
2

( 1)p u = 2
2

p
cu   

2
2

q u                           (4.26) 

here  

2
p = 1 11

2 11 1 21

-

(1 )

a

a a k


  

; 
2

q = 1 12

2 11 1 21

- (1 )

(1 )

a k

a a k


 


 

 

                                                                                 (4.27) 

and c is an arbitrary constant.   The solution curves are shown 

in Figure 15. 

 

D. Critical state IV i.e. the normal steady state: 

 

IV. a. Stability : 

 

The perturbed equations for the critical state IV are              

1

111 1 12 21
(1 )

du
N u k N u

dt
      and  

2
222 2 21 12

(1 )
du

N u k u N
dt

                     (4.28) 

The secular equation is 
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2 + 
1 211 22( )N N     

2

11 22 12 21[ (1 ) ]k      
1 2N N  0             (4.29) 

The roots of this equation are negative. The co-existent 

critical state is stable. 

The trajectories are 

1u = 
2 110 1 22 20 12

1 2

( )- (1 )u N u N k  
 

  
  

 1
 t

e


 

 2 110 2 22 20 12

2 1

( )- (1 )u N u N k  
 

  
  

 
2
 t

e


 

                                                     (4.30) 

2 =u 1 220 1 11 10 21

1 2

( )- (1 )u N u N k  
 

  
  

1
 t

e


   

1 220 2 11 10 21

2 1

( )- (1 )u N u N k  
 

  
  

 
 

2
 t

e


 

                                                    (4.31) 

 

Case 1: Predator dominates initially (i.e. 10 20< u u ), and 

continues to out-number the prey, it is evident that both the 

species converging asymptotic to the equilibrium point. 

Hence this state is stable.  This is illustrated in Fig. 16.  

Case 2: Prey dominates in natural growth rate but its initial 

strength is less than that of predator (i.e. 10 20> u u ), the prey 

out number the predator initially and continues till the time 

 = * =t t  

2 1

1

 
 ln 

 
3 5 10 3 1 20

 
2 6 10 4 1 20

( ) ( )

( ) ( )

b a u a b u

b a u a b u

 
 
 
  

  
  

                       

…………………………………………………………(4.32

) 

Here  

3 1 11 1
a N   ;  

4 2 11 1
a N   ;  

25 1 22a N   ;  

26 2 22a N   ;  

11 12 (1 )b k N  ;  

22 21(1 )b k N  .                         (4.33) 

  

after which the predator out-number the prey. As t  both 

1 2&u u  approaches to the critical point. Hence the state is 

stable. This is shown in Fig. 17 

When 2 2

1 2 1 211 22 12 21( ) 4 (1 )N N k N N      ,   (4.34) 

the roots are complex with negative real part. Hence the 

critical state is stable. The solution curves are shown in 

Fig.18  

      

IV.b.Trajectories of Perturbed Species: 

The trajectories in the 1 2-u u plane are given by 

1
3

1 2 11 2
2

1
3

1 2 2

( - )
( )( )

( )

( - )1
[ ]

( )
p

p av
u u va v v

u d
av

u v u

 



               (4.35) 

here, 2 22
3

p N  ; 1v  and 2v  are roots of an equation 

2

4+ + =0av bv c                         (4.36)

  

221= (1 )a N k  ;  

111 22 2
=b N N  ;      

14 12= (1 )c N k                           (4.37)

 and d  is an arbitrary constant. 

V. THRESHOLD RESULTS 

Employing the principle of competitive exclusion (Gause 

[10]), the following threshold results are established. 

a.  If, 

1 2

12 22(1 )

a a

k 



 and 2 1

21 11(1 )

a a

k 



     

…………………………………………………………..(5.1

) 

Only prey species survives as shown in Fig. 20 

b.         If, 

 1 2

12 22(1 )

a a

k 



 and 2 1

21 11(1 )

a a

k 



   

  ……………………………………………………. 
(5.2) 

Only predator species survives as shown in Fig. 21 

c. When, 

1 2

12 22(1 )

a a

k 



 and 2 1

21 11(1 )

a a

k 



   

  …………………………………………………….(5.3) 

  

VI. LYAPUNOV’S FUNCTION FOR GLOBAL STABILITY 

The Perturbed Equations for the model are: 

1

1 211 1 12 2(1 )
du

N u k N u
dt

        (6.1) 

 2
2 221 1 22 2(1 )

du
k N u N u

dt
          (6.2) 

The secular equation is: 
2 0p q               (6.3) 

here 
1 211 22 0p N N             (6.4) 

 2

1 211 22 12 21{ (1 ) } 0q k N N              (6.5)  

 

Therefore the conditions are satisfied. 

Now, define 

 2

1 2 2 1 2 2

1
( , ) ( 2 )

2
E u u au bu u cu                  (6.6) 

Here 

 
2 2 2

2 1 221 22 2 11 22 12 21( (1 ) ) ( ) { (1 ) }k N N k N N
a

D

         
  (6.7)  
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2 1 211 21 12 221
(1 ) (1 )k N N k N N

b
D

    
   (6.8) 

 
2 2 2

1 1 211 12 11 22 12 211
( ) ( (1 ) ) { (1 ) }N k N k N N

c and
D

         


…………………………………………………………..(6.9

)
2

1 1 211 22 2 11 22 12 21{ }{ (1 ) }D pq N N k N N          

              

…………………………………………………………(6.10

) 

From equations (6.4) & (6.5) it is clear that 0D   and 

0a  .  Also 

                     
2 2( ) 0D ac b                   (6.11)  

Since 
2 0D    

2 0ac b                 (6.12)   

The function E(x, y) is positive definite.   

Then 

  
1 2

1 2

du duE E

u dt u dt

 


 
 =      

1 11 2 11 1 12 2

21 2 21 1 22 22

( )[ (1 ) ]

( )[ (1 ) ]

au bu N u k N u

bu cu k N u N u

 

 

    

  
  

=      
2 2

2 1 1 221 11 1 12 22 2

211 12 22 21 1 21

( (1 ) ) ( (1 ) )

{[ (1 )] [ (1 ) }

b k N a N u b k N c N u

b a k N b c k N u u

   

   

    

    
                                                                                      (6.13)  

On substituting the values of a, b and c from equations (6. 7),  

(6.8) & (6.9) and after simplification, we get 

 

      2 21 2

1 2

1 2

( )
du duE E

u u
u dt u dt

 
   

 
,        (6.14)  

which is clearly negative definite. So E(x, y) is a Lyapunov 

function for the linear system. 

Next we prove that E ( 1u , 2u ) is also a Lyapunov function 

for the non-linear system. 

 

If, 1F  and 2F are defined by  

,1 1 2( )F N N = 1 1 11 1 12 2{ (1 ) }N a N k N            

    ……………………………………...(6.15) 

            ,2 1 2( )F N N = 2 1 22 2 21 1{ (1 ) }N a N k N                

    ……………………………………………...(6.16) 

We have to show that 
1 2

1 2

E E
F F

u u

 


 
 is negative definite. 

On putting  
11 1N N u   and 

22 2N N u   in (2.1) & 

(2.2) equations, we notice after simplification, that 

          ,1 1 2( )F u u     =  
1du

dt
 =     

1 111 1 12 2(1 )N u k N u     ,1 21 ( )u uf                (6.17) 

and    ,2 1 2( )F u u      = 
2du

dt
 =     

2 222 2 21 1(1 )N u k N u     ,2 1 2( )u uf             (6.18) 

Here     

,1 21 ( )u uf    =  
2

11 1 12 1 2(1 )u k u u     

and      

,2 1 2( )u uf  = 
2

22 2 21 1 2(1 )u k u u                             

                                                                             (6.19)  

 

We have 
1 2

1

E
au bu

u


 


 and 

1 2

2

E
bu cu

u


 


    (6.20) 

Now from equations (6.17) and (6.18) 

 

1 2

1 2

E E
F F

u u

 


 
=   

2 2

1 2( )u u  ,1 2 1 21
( ) ( )au bu u uf 

,1 2 2 1 2( ) ( )bu cu u uf                                                (6.21)

  

By introducing polar co-ordinates we get 

1 2

1 2

E E
F F

u u

 


 
=

2
, ,1 2 2 1 21

[( cos sin ) ( cos sin ) ]( ) ( )r r a b u u b c u uf f                                   

…………………………………………………………(6.22

) 

Denote largest of the numbers , ,a b c  by M  

Our assumptions ,1 21( )
6

r
u uf

M
  and 

,2 1 2( )
6

r
u uf

M
                                                 (6.23)

         

for all sufficiently small  r 0 , so  

1 2

1 2

E E
F F

u u

 


 

2 2
2 4

0
6 3

Kr r
r

M
              (6.24)       

Thus E ( 1u , 2u ) is a positive definite function with 

1 2

1 2

E E
F F

u u

 


 
 is negative definite. 

The critical point is asymptotically “stable”. 

VII. FIGURES 

Trajectories 
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VIII. CONCLUSION 

Here we discussed a two species syn-ecological model 

with a prey and a predator. Predator is provided with an 

alternative food and a partial cover is provided to prey to 

protect it from the attacks of the predator. All possible 

equilibrium points are identified and their local and global 

stability is carried out. Trajectories of both the populations 

are also carried out by using analytical techniques.  
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