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 
Abstract— An analytical study of two specie syn-ecological 

model with cover for prey and alternative food for predator is 

taken up. The model is governed by coupled  first order 

non-linear ordinary differential equations. Stability of possible 

equilibrium points is studied and results are compared with 

numerical illustrations. Lypunov’s function was constructed to 
discuss the global stability.  

Index Terms— Prey-Predator Model, Lypunov’s function.  

 

I. INTRODUCTION 

             Olinck,[1] gave an introduction to Mathematical modeling in 

life sciences. Kapur, [2], Smith,[3], Colinvaux, [4],  

Freedman, [5] discussed some of the prey-predator ecological 

models. May, [6] discussed stability and complexity of 

ecological models, Varma, [7] discussed about their exact 

solutions. Lakshmi Narayan.K, [8,9] discussed different 

interacting species models. 

II.  BASIC EQUATIONS 

Nomenclature: 

1N , 2N   :  strength of species, 

1a , 2a  :  natural growth rate of the species, 

11 , 22   : rates of mortality due to internal 

competition, 

12     : prey‟s death rate  due to attacks of  

predator, 

21      : growth rate of predator due to interaction 

with the prey, 

k       : cover constant  (0<k<1),  

      here 1N and 2N  are non negative and 

also the model parameters 1a , 2a , 11 , 12 , 21 ,

22 ,k . 

governing equations are 
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1dN

dt
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12 1 2(1 )k N N  .                                    (2.1) 

22
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a k N N k N N

dt
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                          (2.2) 

III. STATIONARY POINTS: 

The system under consideration have four stationary points :  

I. extinct point 
21

0; 0N N                                               

  (3.1) 

II. The state
1
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2
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(1 )a k
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              (3.2) 

 predator exists, prey extinct. 

III. The state 1 1

1
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(1 )a k
N




 ;
2
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              (3.3) 

 prey exists, predator extinct. 

IV. interior state: 
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Which possible when k > 1 1 22

2 2 12

(1 )
1
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a k





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
                    

(3.5) 
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IV. STABILITY AT STATIONARY POINTS: 

Let N = (N1, N2)   =  N U    = 1 1 2 2( , )N u N u                        

  (4.1) 

with U = 1 2( ,  )u u   as perturbation matrix over 

,1 2( )N N N . 

The basic equations (2.2), (2.4) are quasi-linearized to obtain 

the equations for the perturbed state   
dU

AU
dt

   where    

121 21 1 11 12 1

221 2 12 2 22 21

(1 )(1 ) 2 (1 )

(1 ) (1 ) 2 (1 )

k Na k N k N
A

k N a k N k N

 

  

     
 

      
       (4.2)       The secular equation for the system is    

  0det A I                  (4.3) 

Which is stable when the roots are either negative 

real or complex with negative real part. 

4. 1. Stability at stationary point I: 

The trajectories extinct state are  

1 1
1 10

(1 )
 =  

a k t
u u e


   and  

2 2
2 20

(1 )
 =  

a k t
u u e

                                                   

 (4.4)                                                                                            

here 10u , 20u  are starting values of 1u and 2u . The solution 

curves are given in Figures 1 to 5 

Case 1: predator‟s dominance throughout as shown in Fig.1   

Case 2: Initially predator dominates, after some time 

situation reverses (i.e. 1 2 < a a  & 10 20> u u ).  At       

  / 10 20

2 1

{ }
= * = 

( - )

ln u u
t t

a a
                                            

(4.5) 

both are with equal strength as displayed in (Fig.2). 

Case 3: Initially predator dominates, after some time 

situation reverses     (i.e. 1 2 > a a & 10 20< u u ). At 

  / 10 20

2 1

{ }
= * = 

( - )

ln u u
t t

a a
 both are with equal strength as 

displayed in   ( Fig.3). 

Case 4: prey‟s dominance throughout as shown in Fig.4. 

4. 2. Trajectories of perturbed species of stationary point 

I:                                                                           The trajectories 

in the 1 2-u u plane are  

2

1
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u

u
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 
 

=

1

2
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 
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(4.6) 

and these are given in Fig.5. 

4. 3. Stability of the stationary point II:  

The trajectories for the prey washed out state are 

 
2

 1 10

 t
 = u u e


and 

  
2 2

2 10 2 21 20 10 2 21
1

1

   1 t t
= (1 ) { (1 )

-a
u u a k e u u a k e

  


      

   (4.7)                     

here    
1 22 2 22 12

1
[ (1 )]a a k                                              

(4.8) 

The solution curves are given in figures 6 & 7 

Case 1: prey‟s dominance throughout as shown in  Fig.6. 

Case 2: Initially predator dominates, after some time 

situation reverses (i.e. u10< u20), the predator continues to out 

number the prey till the time-instant  

 
20 22 2 2 10 2 21

 
10 22 2 2 2 21
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              (4.9) 

after that the prey out number the predator. This is given in 

Fig.7 

Case B: If 
1 22

2 12

k<1
a

a




  stationary point is stable. 
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Case B1: Prey‟s dominance continues throughout (i.e.

10 20> u u ) but both converge asymptotically to the 

stationary point
1 2

( , )N N  given by (3.2).  Hence the 

stationary point is stable. This is given in Fig.8 

CaseB2: Initially predator dominates, after some time 

situation reverses (i.e. 10 20< u u ), the predator  out numbers 

the prey till the time instant  

 
20 22 2 2 10 2 21

 
10 22 2 2 2 212 2
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                                      (4.10)  

then situation reverses and prey grows unbounded while the 

predator asymptotically approaches to the stationary value 

2
N given in (3.2). Hence the state is unstable. This is given 

in Fig.9 

Case C: If 
1 22

2 12

k=1
a

a




  stationary point is “neutrally 

stable”. 

The trajectories are  1 10 =u  u  and   
1 21

2 10
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 +
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2 12
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u u

a




 
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 

 2  - ta
e            (4.11) 

Case C1: If the prey dominates initially (i.e. 10 20> u u ) and it 

continues through out its growth. In course of time 2u → 

1 21

2 10

2 12

*
a

u u
a




  as is given in Fig.10. 

Case C2: If the predator dominates  initially (i.e. 10 20< u u ), 

the predator continues to out number the prey and till the time 

instant  

 = * =t t
2

1
ln

a
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
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(4.12) 

then which the prey out number the predator. This is given in 

Fig.11 

4.4. Trajectories at stationary point II: 

The trajectories in the 1 2u u  plane are given by 

1 2( 1)q u = 1
1

q
cu   1 1p u                     

(4.13) 

here  
1
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2 21

1 22 2 12

(1 )

(1 )

a k

a a k


 


 

; 
1

q =   

2 22

1 22 2 12

-

(1 )

a

a a k


  

 ; c    constant and 

 k  1 22

2 12

1
a

a




 .               (4.14) 

The solution curves are given in Fig.12.  

4. 5. Stability at stationary point III:  

The trajectories for predator washed state are 

1

2

1
=
γ

u

 
1

20 1 12 10 20 1 12
2

 -
- (1- ) +{ γ - (1- )  a tc t
u a k e u u a k e  

  
 

and  2 20= dt
u u e            (4.15) 

here   
1 21

2

11

(1 )a k
d a





   and 

2
γ  2 11a  

1 11 21[ (1 )]a k                  (4.16) 

The solution curves are given in Figures 13 & 14 

Case 1: If  the predator dominates  initially (i.e. 10 20< u u ), 

then the predator species to be going away from the 

stationary point while the prey-species would become extinct 

at the instant (t*) of time given by the positive root of the 

equation 
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10 22
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ua tdt
e e
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
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 


              

(4.17) 

Then the state is unstable. This is given in Fig.13 

Case 2: The prey dominances (i.e. 10 20> u u .), continues till 

          = * =t t  

1 1

1
ln

c a

10 11 1 1 20 1 12

10 11 1 1 1 12

( )+ (1 )

[ ( )]+ (1 )

u c a u a k

u c a a k
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 

  
   

           (4.18) 

then the situation reverses. The prey-species would become 

extinct at the instant (t*) of time given by the positive root of 

the equation (4.17). Then  the state is unstable. This is given 

in Fig.14 

4.6.Trajectories at stationary point  III: 

The trajectories in the 1 2-u u plane are given by 

             
1

2
( 1)p u = 2

2

p
cu   

2
2

q u                                     

(4.19) 

here 
2
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
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2
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a a k


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
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          (4.20) 

and c is a constant.   The solution curves are given in Fig. 15. 

4. 7. Stability at the interior stationary state: 

The trajectories for co-existence state   are 

1u = 
2 110 1 22 20 12

1 2

( )- (1 )u N u N k  
 
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                        (4.21) 
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e
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                               (4.22) 

Case 1: If  the predator dominates initially (i.e. 10 20< u u ), 

and predator continues to out number the prey, it is evident 

that both the species converging asymptotic to the stationay 

point. Then this state is stable.  This is given in Fig. 16.  

Case 2: If the prey dominates in natural growth rate but its 

initial strength is less than that of predator (i.e. 10 20> u u ), 

the prey out number the predator initially and this continues 

till the time  = * =t t  

2 1

1

 
 ln 

 
3 5 10 3 1 20

 
2 6 10 4 1 20

( ) ( )

( ) ( )

b a u a b u

b a u a b u

 
 
 
  

  
  

         (4.23) 

here 
3 1 11 1

a N   ; 
4 2 11 1

a N   ;

 
25 1 22a N   ;  

 
26 2 22a N    

11 12 (1 )b k N  ;

 
22 21(1 )b k N  .               (4.24)  

then which the predator out number the prey. As t 

both 1 2&u u  approaches to the stationary point. Then the 

state is stable. This is given in Fig. 17 

If 
2 2

1 2 1 211 22 12 21( ) 4 (1 )N N k N N      ,    

            (4.25) 

the roots are complex with negative real part. Hence the 

stationary point is stable. The solution curves are given in 

Fig.18       

4.7. Trajectories for normal steady state: 
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The trajectories in the 1 2-u u plane are given by 

1
3

1 2 11 2
2

1
3

1 2 2

( - )
( )( )

( )

( - )1
[ ]

( )
p

p av
u u va v v

u d
av

u v u

 



                

            (4.26) 

here, 2 22
3

p N  ; 1v  and 2v  are roots of quadratic 

equation 
2

4+ + =0av bv c         (4.27)  

221= (1 )a N k  ;  
111 22 2

=b N N  ;     

14 12= (1 )c N k              (4.28)  

and d  is a constant. 

V.  LIAPUNOV‟S  FUNCTION FOR GLOBAL STABILITY 

The linearized basic equations for co-existence state are: 

1

1 211 1 12 2(1 )
du

N u k N u
dt

         

 (5.1)  
2

2 221 1 22 2(1 )
du

k N u N u
dt

         

  (5.2) 

The secular equation is: 

2

1 2 1 211 22 12 21( )( ) (1 ) 0N N k N N         
     

2 0p q             (5.3) 

here 
1 211 22 0p N N           (5.4) 

 
2

1 211 22 12 21{ (1 ) } 0q k N N                                            

 (5.6)  

Therefore the conditions for Liapunovs function are satisfied. 

Now define 
2

1 2 2 1 2 2

1
( , ) ( 2 )

2
E u u au bu u cu                        

              (5.7) 

here 

2 2 2

2 1 221 22 2 11 22 12 21( (1 ) ) ( ) { (1 ) }k N N k N N
a

D

         


  (5.8)  

2 1 211 21 12 221
(1 ) (1 )k N N k N N

b
D

    


                         (5.9) 

 

2 2 2

1 1 211 12 11 22 12 211
( ) ( (1 ) ) { (1 ) }N k N k N N

c and
D

         


        (5.10)   

2

1 1 211 22 2 11 22 12 21{ }{ (1 ) }D pq N N k N N        
             (5.11) 

From equations (6.6)&(6.7) it is clear that 0D   

and 0a  .  Also 

2 2( )D ac b 
 

2 2 2

2 2 1 221 22 2 11 22 12 21( (1 ) ) ( ) { (1 ) }
{

k N N k N N
D

D

         

  

       

2 2 2
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D

         

           

2 2 2 2 2 2
2 2 2 2 2 2 2

1 2 1 2 1 211 21 12 22 11 12 21 22

2

(1 ) (1 ) 2 (1 )
0}

k N N k N N k N N

D

           


                                                                              

(5.12) 

                     
2 2( ) 0D ac b                     (5.13)  

Since 
2 0D    

2 0ac b                      (5.14)   

The function E(x, y) is positive definite.  

Then   
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1 2

1 2

du duE E

u dt u dt

 


 
 =      

1 11 2 11 1 12 2

21 2 21 1 22 22

( )[ (1 ) ]

( )[ (1 ) ]

au bu N u k N u

bu cu k N u N u

 

 

    

  
  

         =   

2 2

2 1 1 221 11 1 12 22 2

211 12 22 21 1 21

( (1 ) ) ( (1 ) )

{[ (1 )] [ (1 ) }

b k N a N u b k N c N u

b a k N b c k N u u

   

   

    

    
 (5.15) 

On substituting the values of a, b and c from equations (5.8), 

(5.9) & (5.10) and after much algebraic simplification, we get 

      
2 21 2

1 2

1 2

( )
du duE E

u u
u dt u dt

 
   

 
,               

      (5.16) 

 which is clearly negative definite. So E(x, y) is a Lyapunov 

function for the linear system. 

Next we prove that E ( 1u , 2u ) is also a Lyapunov function 

for the non linear system. 

If, 1F  and 2F are defined by  

,1 1 2( )F N N = 1 1 11 1 12 2{ (1 ) }N a N k N            

    (5.17) 

            ,2 1 2( )F N N = 2 1 22 2 21 1{ (1 ) }N a N k N                

    (5.18) 

We have to show that 1 2

1 2

E E
F F

u u

 


 
 is negative definite. 

On putting  
11 1N N u   and 

22 2N N u   in (5.17) 

& (5.18) equations, we notice after much simplification, that 

          ,1 1 2( )F u u     =  
1du

dt
 =      

1 111 1 12 2(1 )N u k N u     ,1 21 ( )u uf                    

(5.19) 

and    ,2 1 2( )F u u =
2du

dt
=    

2 222 2 21 1(1 )N u k N u     ,2 1 2( )u uf                       

(5.20)  

here    ,1 21 ( )u uf    =  
2

11 1 12 1 2(1 )u k u u     

and        ,2 1 2( )u uf  = 
2

22 2 21 1 2(1 )u k u u                            

             (5.21)  

We have  1 2

1

E
au bu

u


 


 and 1 2

2

E
bu cu

u


 


     

            (5.22) 

Now 1 2

1 2

E E
F F

u u

 


 
=     

2 2

1 2( )u u 

,1 2 1 21
( ) ( )au bu u uf  ,1 2 2 1 2( ) ( )bu cu u uf   (5.23)  

By introducing polar co-ordinates we get 

1 2

1 2

E E
F F

u u

 


 
=

2
, ,1 2 2 1 21

[( cos sin ) ( cos sin ) ]( ) ( )r r a b u u b c u uf f          

(5.24) 

Denote largest of the numbers , ,a b c  by M  

Our assumptions ,1 21( )
6

r
u uf

M
  and 

,2 1 2( )
6

r
u uf

M
                     (5.25)         

for all sufficiently small  r 0 , so  1 2

1 2

E E
F F

u u

 


 

2 2
2 4

0
6 3

Kr r
r

M
              (5.26)       

Thus E ( 1u , 2u ) is a positive definite function with the 

property that 1 2

1 2

E E
F F

u u

 


 
 is  

negative definite. 
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The stationary point is asymptotically “stable”. 

VI. TRAJECTORIES 

  

 

 

 

 

 
 

 

 

VII. CONCLUSION: 

A two species Prey-Predator model is studied  with cover for 

prey and alternative food for predator. All the four 

equilibrium points are identified. It is noted that interior 

equilibrium point is asymptotically stable. Fully extinct state 

is unstable and other two are conditionally stable Existence of 

Lypunov‟s function  shows that the system is globally 

asymptotically stable. 
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