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 
Abstract- Modern physics is trying to solve some problems in 

the extremely strong gravitational field by using sophisticated 

methods in particle and quantum physics. But, we also should 

solve the mentioned problems in the classical General Relativity 

Theory (GRT). As it is the well-known, GRT cannot be applied 

to the extremely strong gravitational field. The main reason for 

it is an appearance of the related singularity in that field. Here 

we show that Relativistic Alpha Field Theory (RAFT) extends 

the application of GRT to the extremely strong fields including 

of the Planck’s scale. This is the consequence of the following 
predictions of RAF theory: a) no a singularity at the 

Schwarzschild radius and b) there exist a minimal radius at r = 

(GM/2c2) that prevents singularity at r = 0, i.e. the nature 

protects itself. It has been theoretically proved that the metrics 

of RAF theory at the Schwarzschild radius, as well as at the 

minimal radius and at the Planck’s scale are regular. 
Index Terms : Relativistic alpha field theory (RAFT), No 

singularities in gravitational field, Extremely strong 

gravitational fields, Planck scale. 

 

I. INTRODUCTION 

    As it is well known, General Relativity Theory (GRT) 

1-6 cannot be applied to the extremely strong gravitational 

fields including of the Planck’s scale. The main reason for 
this is the appearance of the related singularity in a 

gravitational field. Here we have used a new theory that is 

called Relativistic Alpha Field (RAF) theory 7,8.9. It has 

been showed that RAF theory extends the capability of the 

GRT to the application to the extremely strong fields, 

including of the Planck’s scale. Namely, this is the 

consequence of the following predictions of RAF theory: a) 

no a singularity at the Schwarzschild radius and b) there exist 

a minimal radius at   r = (GM/2c
2
) that prevents singularity at 

r = 0, i.e. the nature protects itself.  

    In this paper, we started with the presentation of the 

solution of the field parameters in RAF theory. This solution 

is based on the assumption that the field parameters should 

connect geometry of the line element with potential energy of 

a particle in an alpha field. In that sense, the concept of the 

two dimensionless (unit less) field parameters α and α′ has 

been introduced. These parameters are scalar functions of the 

potential energy of a particle in an alpha field. This new 

solution of the field parameters is the key point in this theory. 

    In order to solve the field parameters α and α′, we started 

with the derivation of the relative velocity of a particle in an 

alpha field, v . This relative velocity is derived from the line 

element in an alpha field that is given by the nondiagonal 

form with the Riemannian metrics. Thus, the relative velocity 
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of a particle in an alpha field, v , is described as the function 

of the field parameters α and α’ and a particle velocityv in the 

total vacuum (without any potential field). This structure of 

the relative velocityv directly connects the line elements of 

the Special and General Relativity. Namely, in the case of the 

total vacuum (without any potential field), field parameters α 

and α’ become equal to unity and, consequently, the relative 

velocity v becomes equal to the particle velocity v in the 

total vacuum. This is a direct transition of the line element 

from the General to the Special Theory of Relativity. 

     The main point in this paper is the theoretical confirmation 

that Relativistic Alpha Field Theory (RAFT) really can 

extends the application of GRT to the extremely strong 

gravitational fields including of the Planck’s scale. In that 

sense, it has been presented that the metrics at the 

Schwarzschild radius as well as at the minimal radius are 

regular. Further, the minimal radius of the Planck’s mass is 

derived, which is equal to the half of the Planck’s length. 
Thus, the Planck’s length is a diameter of the Planck’s mass. 
The metric at the Planck’s scale is also regular. 
     This paper is organized as follows. In Sec. II, we show 

derivation of the relative velocity of a particle in an alpha 

field v as the function of the field parameters α and α′. 
Solution of the field parameters α and α′ in a general form, as 

the function of the potential energy U is presented in Sec. III. 

Solution of the field parameters α and α′ in gravitational field 

is considered in Sec. IV. Derivation of energy-momentum 

tensor for gravitational field is pointed out in Sec. V. The 

theoretical proofs that RAF theory extends applications of 

GRT to the extremely strong gravitational field are presented 

in Sec. VI. Finally, the related conclusion and the reference 

list are presented in Sec. VII and Sec. VIII, respectively. 

II. DERIVATION OF RELATIVE VELOCITY Vα 

     RAF theory is based on the following two definitions 7: 

     Definition 1. An alpha field is a potential field that can be 

described by two dimensionless (unit less) scalar parameters 

α and α′. To this category belong, among the others, electrical 

and gravitational fields. 

     Definition 2. Field parameters α and α′ are described as 

the scalar dimensionless (unit less) functions of the potential 

energy U of a particle in an alpha field.  

In order to solve the field parameters α and α′, we started with 

the derivation of the relative velocity of a particle in an alpha 

field, v . 

Proposition 1.  If the line element in an alpha field is defined 

by the nondiagonal form with the Riemannian metrics 
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10-13:
          
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       

                                                                                     
(1) 

then the relative velocity of a particle in an alpha field, v , 

can be described as the function of the field parameters α and 

α’         

 

 c
v v .

2


  
                                                   (2) 

In the previous equation v is a particle velocity in the total 

vacuum (without any potential field), c is the speed of the 

light in a vacuum and  is a constant. 

     Proof if the Proposition 1. This proof has been presented 

in the reference 7. 

     Proposition 2. The relation in (2) satisfies the well-known 

condition 1, 2, 11-13  for the metric tensor of the line 

element (1) 

   
  1 1     det g , .                                          (3) 

     Proof if the Proposition 2. This proof has been presented 

in the reference 7. 

     Proposition 3. Let d and dt are differentials of the proper 

time and coordinate time (respectively) of the moving particle 

in an alpha field. Further, let H is a transformation factor, as 

an invariant of an alpha field, and v is a particle velocity in 

that field given by (2). For that case, the transformation factor 

H has the following form 

  

 1 2 1 2
2 2

2 2 2
1

/ /
cvvdt v

H .
d c c c

 
     

              
  

                                                                                          (4)

      Proof of the Proposition 3. This proof has been presented 

in the reference 7. 
     Furthermore, if a particle is moving in a total vacuum 

(without any potential field), then we have  = ' = 1, and the 

relation (4) is transformed into the transformation factor   

valid in the Special Relativity 
1 2

2

2
1 1

/

dt v dt
' , H ,

d dt'c

d dt' .


 

              
  

      (5) 

III. SOLUTION OF THE FIELD PARAMETERS IN AN ALPHA FIELD 

    Proposition 4. Let m0 is a rest mass of a particle, U is a 

potential energy of a particle in an alpha field, c is the speed 

of the light in a vacuum and ( i ) is an imaginary unit. In that 

case the field parameters α and α′ can be described as 

dimensionless (unit less) functions of the potential energy U 

of a particle in an alpha field. There are four solutions for both 

parameters α and α′ in an alpha field that can be presented by 

the following relations: 

  

 22 2
0 0 1

1 2 2

3 3

4 4

2 1

1 1 1

1 1

1 1

f (U ) U / m c U / m c , i f (U ) ,

i f (U ) , i f (U ) , i f (U ) ,

i f (U ) , i f (U ) ,

i f (U ) , i f (U ).

    

        

       

       
 

                                                                                         (6)         

   Proof of the Proposition 4.  This proof has been presented 

in the reference 7. 
The four solutions of the field parameter α in (6) can be 

presented in the form 

  

2

1 2 2 2
0 0

2

3 4 2 2
0 0

2
1

2
1

,

,

U U
i ,

m c m c

U U
i .

m c m c

 
      

 

 
       

 

                  (7) 

The related four solutions of the field parameter α′ in (6) can 

be presented with the following relations   

 

2

1 2 2 2
0 0

2

3 4 2 2
0 0

2
1

2
1

,

,

U U
i ,

m c m c

U U
i .

m c m c

 
     

 

 
      

 





                 (8) 

Thus, the four solutions of the field parameters α and α′ can 

be obtained by the unification of the two parameter structures 

given by (7) and (8):  

 22 2
0 0

1 2 1 2

3 4 3 4

2

1 1

1 1

  

    

      




, ,

, ,

f (U ) U / m c U / m c ,

i f (U ) , i f (U ) ,

i f (U ) , i f (U ) .

  (9)         

Further, it is easy to prove that all i i  pairs from (9) are 

creating an invariant'  

2

2
0

1 1 2 3 4i i

U
, i , , . .

m c

 
       

 
= '          (10) 

For calculation some of the quantities in an alpha field we 

often need to know the difference of the field parameters 

(α-α′):

1 1 2 2

3 3 4 4

1 1 3 3 2 2 4 4

2 2

2 2

i f (U ) , i f (U ),

i f (U ), i f (U ),

( ) ( ), ( ) ( ).

      

      

         

(11) 

The obtained relations in (9), (10) and (11) are valid generally 

and for their calculation we only need to know potential 

energy U of the particle in the related potential field. 

     Remarks 1. From the equations (9), (10) and (11) we can 

see that there are three very important properties of the 
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solutions of the field parameters α and α′: a) parameters α and 

α′ are dimensionless (unitless) field parameters, b) there are 

four solutions of the field parameters α and α′ that reminds us 

to the Dirac’s theory 14  and c) the quantity αα′ is an 

invariant related to the four solutions of the field parameters α 

and α′. 

IV. SOLUTION OF THE FIELD PARAMETERS IN 

GRAVITATIONAL FIELD 

   If a particle with the rest mass m0 is in a gravitational field, 

then the potential energy of the particle in that field Ug is 

described by the well-known relation 1-6 

  

0
0 0 0g g g

m GM
U m V m A .

r
  =                           (12) 

Here Vg = Ag0 is a scalar potential of the gravitational field, G 

is the gravitational constant, M is a gravitational mass and r is 

a gravitational radius. The four solutions of the field 

parameters α and α′ for the particle in a gravitational field can 

be obtained by the substitution of the potential energy Ug 

from (12) into the general relations in (9):  

 

 

 

2
2 2

1 1 2 1 2 1

3 3 4 3 4 3

2
2 2 2

2

1 1

1 1

0 2

g

g

i f (U ) GM / r c GM / r c ,

, , , ,

, , , ,

GM r c , GM / r c , i f (U ) GM / r c .

      

             

               

     

  

                                                                                        (13) 

The first three lines in equations (13) describe a strong 

gravitational field. If the quadratic term 
2 2 0( GM / rc )   

then the field parameters (13) describe a weak gravitational 

field as we have in our solar system.  

The differences of the field parameters (α-α′) for a particle in 
a gravitational field have the forms: 

  

2

1 1 3 3 1 12 2

2

2 2 4 4 2 22 2

2
2

2
2

GM GM
, ( ) ,

r c r c

GM GM
, ( ) .

r c r c

 
            

 

 
           

 

  

                                                                                        (14) 

   Remarks 2. In the references 8,9,15 it has been shown that 

field parameters (13) and (14) satisfy the Einstein’s field 
equations with a cosmological constant  = 0. In the case of a 

strong static gravitational field 16-20, the quadratic term 
2 2

( GM / r c ) in (13) and (14) generates the related 

energy-momentum tensor Tη for the static field. For that 

case, we do not need to add by hand the related 

energy-momentum tensor Tη on the right side of the 

Einstein’s field equations.  
   The second interpretation could be that the quadratic term 

2 2
( GM / r c ) generates the cosmological parameter   as a 

function of a gravitational radius 21 for Tη = 0. It has been 

shown 22 that this solution of   is valid for both Planck’s 
and cosmological scales. In the case of a weak static 

gravitational field, like in our solar system, the field 

parameters (13) satisfy the Einstein’s field equations in a 
vacuum (Tη = 0,  = 0). The general metrics of the 

relativistic alpha field theory 10 has been applied to the 

derivation of dynamic model of nanorobot motion in 

multipotential field 23. 

V. ENERGY-MOMENTUM TENSOR FOR GRAVITATIONAL 

FIELD 

   The basic problem of this section is to determine the 

energy-momentum tensors for gravitational field in the 

Einstein’s four-dimensional space-time (4D). In that sense, 

we started with the general line element ds
2 given by the 

relation (1). Following the well-known procedure 1-6, this 

line element can be transformed into the spherical polar 

coordinates in the nondiagonal form  

 2 2 2 2

2 2 2 2 2

ds c dt c dt dr dr

r d r sin d .

       

    
            (15)  

The line element (15) belongs to the well-known form of the 

Riemanns type line element 10-13 

  
   

   

2 2
2 0 0 1 1

00 01 11

2 2
2 3

22 33

2ds g dx g dx dx g dx

g dx g dx .

  

 
         (16) 

Comparing the equations (15) and (16) we obtain the 

coordinates and components of the covariant metric tensor, 

valid for the line element (15): 

0 1 2 3

00 01 10

2 2 2
11 22 33

2

1

dx cdt, dx dr, dx d , dx d ,

( )
g , g g ,

g , g r , g r sin .

     
  

   

   

        (17)  

Starting with the line element (15) we employ, for the 

convenient, the following substitutions: 

  2, / .                                          (18) 

In that case the nondiagonal line element (15) is transformed 

into the new relation 

2 2 2 2

2 2 2 2 2

2ds c dt cdt dr dr

r d r sin d .

     

    
                           (19) 

Using the coordinate system (17), the related covariant metric 

tensor gμη of the line element (19) is presented by the matrix 

form  

2

2 2

0 0

1 0 0

0 0 0

0 0 0

g .
r

r sin



  
       
 
  

                (20) 

This tensor is symmetric and has six non-zero elements as we 

expected that should be. The contravariant metric tensor gμη
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of the nondiagonal line element (19), is derived by inversion 

of the covariant one (20) 

2 2

2 2

2

2 2

1 0 0

0 0

0 0 1 0

0 0 0 1

/ ( ) / ( )

/ ( ) / ( )
g .

/ r

/ r sin



        
 
             
 
 

 
                                                                                        (21) 

The determinants of the tensors (20) and (21) are given by the 

relations: 

  

 

 

4 2 2

4 2 2

1

det g r sin ,

det g .
r sin





        

 
           
 

                     (22) 

   Proposition 5. If the gravitational static field is described 

by the line element (19), then the solution of the Einstein field 

equations gives the energy momentum tensor T of that field 

in the following form 

 

   
00 01 10 11 22 33

2

2 2 2

4
1

8




     


T T ,T ,T ,T ,T ,T

GM
, , , ,r ,r sin .

Gr

        (23)   

Here G and M are the gravitational constant and the 

gravitational mass, respectively. 

   Proof of the proposition 5. In order to prove of the 

proposition 5, we can start with the second type of the 

Christoffel symbols of the metric tensors (20) and (21). These 

symbols can be calculated by employing the well-known 

relation 1-6 

0 1 2 3
2

, , ,

g
g g g , , , , , , , .



                   

                                                                                        (24)                              

 Thus, employing (19), (20), (21) and (24), we obtain the 

second type Christoffel symbols of the spherically symmetric 

non-rotating body: 

 
 

0 0 0 0
00 01 10 11

0 0 2 1
22 33 00

1 1 1 1
01 10 11 22

1 2 2 2 2 3 3
33 12 21 33 13 31

2 2

2 2 2

2 2

1 1
2

/ D , / D, / D,

r / D, ( r sin ) / D , / D,

/ D , / D, r / D,

( r sin ) / D, , sin cos , ,
r r

                  

               

              

                 







 3 3 2
23 32 2ctg , D , , , , .

t r t r

                   
   



                                                                                        (25)  

For a static field, the Christoffel symbols 
0
00 and 

1
00  are 

reduced to the simplest form: 

   
0 1
00 002 22 2

, , , .
r r

             
      

   

                                                                                         (26)  

In a static field, the other Christoffel symbols in (25) are 

remaining unchanged.  

   As it is well known, the determinant of the metric tensor of 

the line element (19) should satisfy the following condition 

1-6, 11-13 

 4 2 2 1det g r sin .                           (27) 

Including the normalization of the radius, r = 1, and the angle 

θ = 90° in (27) we obtain the important relations between the 

parameters ν and λ: 

  
2 2

2

1 1

2 2

, ,

' ', '' ' '' .

      

         
                        (28) 

If we take into account the relations (28), then the Christoffel 

symbols in (25) and (26) become the only functions of the 

parameter . 

   For calculation of the related components of the 

Riemannian tensor R

 and Ricci tensor R  of the line 

element (19) we can employ the following relations 1-6:  

  
0 1 2 3

, ,R ,

R R R , , , , , , , , .

      
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
  

       

       
             (29)    

Applying the Christoffel symbols (25) to the relations (29) we 

obtain the related Ricci tensor for the static field of the line 

element (19), with the following components: 
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        (30) 

The other components of the Ricci tensor are equal to zero. 

The related Ricci scalar for the static field is determined by 

the equation 

   2
2

2

0 1 2 3

2 2
2 2

R g R , , , , , ,

' '
R ' '' .

r r r


   

                 

        (31) 

   In order to calculate the energy-momentum tensor Tη for 

the static field, one should employ Ricci tensor (30), Ricci 

scalar (31) and the Einstein’s field equations 1-6 without a 

cosmological constant ( = 0) 
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G
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c
  


        (32) 

Here G is the Newton’s gravitational constant, c is the speed 

of the light in a vacuum and Tη is the energy-momentum 

tensor. Thus, employing the Einstein’s field equations (32) 

we obtain the following relations for calculation of the 

components of the energy-momentum tensor Tμη: 
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                                                                                        (33) 

For calculation of the components of the energy-momentum 

tensor, Tμη, by the relations (33) we should know the 

parameter   and its derivations '  and ''  for the related 

static field. Parameter   is defined by (18) as the function of 

the field parameters α and α′ 

   2 2 1/ / , .                       (34) 

Applying of the solution of the field parameters α and α′ in a 

gravitational field (13,14) to the relation (34) we obtain the 

two solutions of the parameter   in a gravitational static 

field 
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2  
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                                        (35) 

Now, one can calculate of the all components needed for 

determination of the energy-momentum tensor Tμη in a static 

gravitational field: 
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                                                                                        (36) 

Applying the relations (36) to the equations (31) and (33) we 

obtain the components of the energy-momentum tensor and 

Ricci scalar valid for the static gravitational field: 
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           (37) 

From the previous relations we can see that the Ricci scalar is 

equal to zero. Finally, included parameter k into the relations 

(37), we obtain the components of the energy-momentum 

tensor in the static gravitational field 

 
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       (38) 

Because the relation (38) is equal to the relation (23), the 

proof of the proposition 5 is finished. 

 

VI. PROOFS THAT RAF THEORY EXTENDS APPLICATIONS OF 

GRT TO EXSTREMELY STRONG GRAVITATIONAL FIELD 

   As it is the well known gravitational fields become strong 

and extremely strong at the Schwarzschild and smaller 

radiuses.  In order to extend the application of GRT to the 

extremely strong gravitational fields we have to have the 

related theory with regular line element in that region. Just 

RAF theory offers regular line element in that region by the 

following predictions: a) no a singularity at the 

Schwarzschild radius and b) there exists a minimal radius at 

the position   
22minr r GM / c  that prevents singularity at  r 

= 0, i.e. the nature protects itself. Thus, RAF theory has a 

regular line element in the region minr r   .  

     In order to prove predictions a) and b) we start with the 

solution of the parameters  and  in a static gravitational 

field given by (28) and (35) and valid for the line element 

(19): 



RAF Theory Extends the Applications of GRT to the Extremely Strong Gravitational Fields 

 

                                                                                61                                                                 www.ijntr.org 

 

 

2 2

2 2

2

2 2 2

2

2

2

2
1 1

2

2
1 1 1

2 1 3

4 4

1 0
2

0 1 0

 
        

 

   
              

   

      

       

        







sch sch sch

min min im

GM GM
, ,

r c r c

GM GM GM
,

r c r c r c

GM
r , , ,

c

GM
r , , , r r ,

c

GM
r , , , r , , ,

c


 

(39) 

   The related line elements are given by the relations: 
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 (40)                

Following the relations (39) and (40) we can see that at the 

Schwarzschild radius, schr , parameters  and  are regular. 

This proves the prediction a) no a singularity at the 

Schwarzschild radius. Further, from the same relations, we 

also can see that at the minimal radius 
22minr r GM / c   

parameters  and  are also regular and for 

minr r parameter   becomes imaginary number im   . 

This proves the prediction b) there exists a minimal radius 

at
22minr r GM / c  that prevents singularity at 0r . It 

seems that the existence of the minimal radius tells us that the 

nature protect itself from the singularity. Thus, we can say 

that the metrics of the line element (19) is regular for a 

gravitational field in the region minr r   . On that way, 

the proof of the propositions a) and b) is finished. At the same 

time, it has been proved that RAF theory extends the 

applications of GRT to the extremely strong gravitational 

fields.  

     Now we can assume that the Planck’s mass pM 26  is 

the spherically symmetric non-rotating body. For that case 

one can calculate the minimal radius of the Planck’s mass, 

rpm: 
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By the relations in (41) we found out that the minimal radius 

of the Planck’s mass pM is equal to half of the Planck’s 

length 27. This means that Planck’s length is the diameter 
of the Planck’s mass.  At the minimal radius of the Planck’s 

mass, rpm= Lp/2, parameters  and  and the related line 

element have the following forms:  
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From the relations in (42), we can see that at the minimal 

radius rpm= Lp/2 of the Planck’s mass parameters  and  , as 

well as the line element are also regular. This proves 

prediction a) no a singularity at the minimal radius of the 

Planck’s mass. If the radius is less than the minimal radius 

rpm= Lp/2, then parameter   for the Planck’s mass becomes 

imaginary number im   . This proves the prediction b) 

there exists a minimal radius of the Planck’s mass rpm= Lp/2 

that prevents singularity at r = 0.  It means that the existence 

of the minimal radius tells us that the nature protect itself 

from the singularity. Thus, we can say that the metrics of the 

line element in (19) is also regular for a gravitational field at 

the Planck’s scale. On that way, the proofs of the propositions 

a) and b) at the Planck’s scale are finished. At the same time, 

it has been proved that RAF theory extends the applications 

of GRT to the extremely strong gravitational fields at the 

Planck’s scale.  

VII. CONCLUSION 

   In this paper, we show that Relativistic Alpha Field Theory 

(RAFT) extends the application of GRT to the extremely 

strong gravitational fields including of the Planck’s scale. It 
has been presented that the metrics at the Schwarzschild 

radius as well as at the minimal radius are regular. Further, 

the minimal radius of the Planck’s mass is derived, which is 
equal to the half of the Planck’s length. Thus, the Planck’s 
length is a diameter of the Planck’s mass. The metric at the 

Planck’s scale is also regular. The presented results are the 

consequence of the very important predictions of RAF 

theory: a) no a singularity at the Schwarzschild radius and b) 

there exists a minimal radius at 
22minr r GM / c  that 

prevents singularity at 0r , i.e. the nature protects itself. If 

the predictions of RAF theory are correct, then it could give 

the new light to the regions like black holes, quantum theory, 

high energy physics, Big Bang theory and cosmology. 
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