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Abstract—The current research work presents
one-dimensional numerical simulation results of water surface
elevation along a natural river, in order to investigate an
accurate operation of three existing dams, with flat and arched
gates, for flood protection. The study reports an extensive
numerical simulation procedure of four different operations of
the dam gates, including all gates opened, all gates closed, only
flat gates opened and only arched gates opened, for flood risk
estimation through the studied river reach. The
one-dimensional  hydrodynamic = numerical simulation
procedure of water surface profile variation, under steady flow
conditions, through the natural river, was performed for
available maximum inflow discharges of 5, 25 and 100 year
flood period.

All numerical results are graphically presented and
comparisons between different gate operations provide an
accurate investigation of a safe dam handling in order to
prevent the surrounding river area against flood events. The
applied hydrodynamic numerical model, “HEC-RAS” model, is
a useful and accurate methodology for flood risk assessment in a
natural river area, with complicate geometries and different
hydraulic constructions.

Index Terms—Hydrodynamic Numerical Simulation, Flood
Risk Estimation, Gate Operation

I. INTRODUCTION

In river control engineering works an accurate and reliable
quantitative estimation of water surface variation is of
paramount importance for a safe river design and flood
protection procedure. The foundation of hydraulic
constructions along alluvial channels produce a non-uniform
flow pattern and underestimation of flow depth may led to
flood risk while overestimation provides unnecessary
construction cost. Significant advances have been made in
numerical simulation models, applied to free-surface flows in
natural rivers, as the flow pattern of the aforementioned
regions is highly complex. Several numerical simulation
methodologies have been developed with the aim of
simulation detailed information about the flood extent, flood
water depth, how the flow affects several structures and other
flood characteristics which are necessary in flood risk
management.

Free-surface variation and flood characteristics simulation
with flood risk evaluation are often determined using several
one-dimensional and two-dimensional hydrodynamic models
as Miller and Chaudhry (1989), Bousmar, Scherer and Zech
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(1998), Horritt and Bates (2002), Farsirotou, Soulis and
Dermissis (2002) and Bradford and Sanders (2002). The
application of a one-dimensional (1D) or a two-dimensional
(2D) hydraulic flood propagation model for flood hazard and
risk assessment makes a focus on how well can predict the
spatial-dynamic characteristics of floods and how the model
results can be transformed into a flood risk assessment.
Furthermore, Ahmad and Simonovic (1999) compared free
surface variation results on a natural river area using 1D and
2D hydrodynamic modeling approaches. Capart, Eldho,
Huang, Young and Zech (2003) developed a one-dimensional
finite volume algorithm for the treatment of irregular
bathymetry of open channel flow and performed a simulation
of a severe flood through a complex river system.
Comparison between 1D/1ID and 1D/2D Coupled
(Sewer/Surface) hydraulic models for urban flood simulation
from Leandro, Chen, Djordjevij and Savij (2009) shows that
flow over the terrain is better modeled by 2D models,
whereas in confined channels 1D models provide a good
approximation with less computational effort. Farsirotou,
Klonidis and Soulis (2013) performed a three-dimensional
numerical simulation of supercritical flow in an expansion
channel and Farsirotou and Kotsopoulos (2015) focus on the
effect of abrupt changes in river topography on free surface
flow variation performing experimental and one-dimensional
numerical simulation analysis and the results were
satisfactorily compared.

The main purpose of the current research work is to
numerical simulate water surface variation along a natural
river, with different hydraulic constructions, and to
investigate an accurate and safe operation of three dams in the
river reach in order to prevent flood risk in the studied area
and control the potential risk of flood. Four different
scenarios of dam gate openings are numerically simulated
and comparisons of free surface flow elevation from each
estimation are graphically presented.

A. One-dimensional water surface numerical simulation

The Hydrologic Engineering Center’s River Analysis
System, “HEC-RAS” (2010) numerical model was used in
order to perform one-dimensional water surface profile
calculations for steady flow through a natural river, Enipeas
river reach.

Water surface profiles are computed from one cross section
to the next by solving the energy equation to a body of water
enclosed by two cross sections at locations 1 and 2, presented
in Fig 1., as:
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where Y is the water depth at cross sections, Z is the elevation
of the main channel inverts, V is the average velocity, a is
velocity weighting coefficient, g is the gravitational
acceleration and h, is the energy head loss.
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Figure 1: Representation of terms in the energy equation

The energy head loss between two cross sections is
comprised of friction losses and contraction and expansion
losses as:

2 2
b - LS, C{ﬂﬂ} o

2g 2g

where L is the distance between cross section 1 and 2 along
the direction of the flow, S¢is the friction slope between two
cross sections, which is computed using Manning’s equation
as:

Q=%AR2/3S}/2 3)

where Q is the flow discharge, n is the Manning roughness
coefficient, A is the flow area, R is the hydraulic radius
(area/wetted perimeter) and C is expansion or contraction
loss coefficient.

The determination of total conveyance and the velocity
coefficient for a cross section requires that flow be
subdivided into units for which the velocity is uniform
distributed. The approach used in “HEC-RAS” model is to
subdivide flow in the overbank areas using the input cross
section n-value break points (locations where n-values
change) as the basis for subdivision, as presented in Fig.2.
Conveyance is calculated within each subdivision from the
form of Manning’s equation. The program sums up all the
incremental conveyances in the overbanks to obtain a
conveyance for the left overbank and the right overbank. The
main channel conveyance is normally computed as single
conveyance element. The total conveyance for the cross
section is obtained by summing the three subdivision
conveyances (left, main channel, and right).
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Figure 2. Conveyance subdivision method

The program assumes that a contraction is occurring

5 /!

Rase

whenever the velocity head downstream is greater than the
velocity head upstream. When the change in river cross
section is small and the flow is subcritical, the contraction
and expansion coefficient are equal to 0.1 and 0.3,
respectively. In more abrupt change, such as these occurring
at bridges, the used values are 0.3 and 0.5, respectively.

In the one-dimensional water surface profiles simulation
program, only a single water surface and therefore a single
mean energy are computed at each cross section. For a given
water surface elevation, the mean energy is obtained by
computing a flow weighted energy from three subsections of
a cross section (left overbank, main channel and a right
overbank). Figure 3 shows how the mean energy would be
obtained for a cross section with a main channel and only a
right overbank area.
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Figure 3. Mean energy numerical simulation

B. Research area

Enipeas river is a tributary of Pinios river in Thessaly
region in Greece. The total length of the River Enipeas
reaches 85 km with a catchment area of 1.140,55 km?
consisting of 25 sub-basins. The part of the river studied in
this project starts from the kilometric position 48+250 to the
kilometer position 32+740 and is presented in Fig. 4. The
study area is located in a water catchment area of 32km’.
Along the studied river reach there are three dams. The dams
are constructed in locations named “Mega Evudrio”,
“Purgakia” and “Ypereia” (Fig. 4) for irrigation purposes, as
well as for enrichment of the underground aquifer and during
flood events are operating with gates and without
overtopping. “Mega Evudrio” dam has two arched and five
flat gates. “Purgakia” dam has two arched and two flat gates
and “Ypereia” dam has two arched and four flat gates. The
flat gates are designed to be either completely open or
completely closed.
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Figure 4: Research area (scale 1:50.000)

The lifting of the gates should be quick and easy to avoid
the risk of their stay in flood periods. The height and width of
the gate openings are related to technical and economic data
for achieving a practical and optimum solution. Such
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constructions cause serious disturbances in water surface
elevation, during flood events, and this is why this study
attempts to numerical simulate their operation in order to
provide a useful tool for an adequate and validate flood risk
assessment.

C. Hydrodynamic conditions

The one-dimensional hydrodynamic numerical simulation
of water surface profile variation, under steady flow
conditions, through the natural river, Enipeas river reach, was
performed for the maximum inflow discharges of 5, 25 and
100 year flood period obtained from YDRETME (1990).
Moreover, the one-dimensional analysis, under mixed flow
regime conditions, requires both upstream and downstream
boundary conditions. For wupstream and downstream
boundary conditions, the normal depth was used, which is the
river bottom slope at the inlet and outlet of Enipeas river
reach, respectively. All the necessary hydraulic conditions are
given in Table 1.

Table 1. Hydraulic conditions

a/a | Flood | Water inflow Upstream | Downstream
period discharge normal normal
(year) (m*/s) depth depth
1 5 632 0.23 0.12
25 905 0.23 0.12
3 100 1100 0.23 0.12

For the numerical simulation procedure the Manning
roughness coefficient, n, was estimated equal to 0.04 for the
left and right overbank areas and equal to 0.03 for the main
channel of the Enipeas river reach, for all cross sections.

In the one-dimensional hydrodynamic numerical
simulation procedure four different operations of the gates are
investigated and numerically simulated, including all gates
opened, all gates closed, only flat gates opened and only
arched gates opened, for the flood risk evaluation through the
studied river reach.

II. NUMERICAL SIMULATION RESULTS

Numerical simulation results of free-surface variation, at
six different cross sections, along the natural river Enipeas
are given in Fig. 5, for the maximum inflow discharges of 5,
25 and 100 year flood period and for all gates opened. The
selected cross sections are the cross sections of the three dams
and of the three bridges at the region of each dam, as the main
purpose of the current research work is to investigate the
optimum operation of the gates for protection against floods.
Numerical simulation results of water surface variation, at the
same cross sections, along the natural river Enipeas and for
the same maximum inflow discharges, for all gates closed, for
flat gates opened and for arched gates opened are presented in
Figs. 6, 7 and 8, respectively.
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Figure 5: Water surface variation for the operation of all
gates opened and for the maximum inflow discharges of 5,
25 and 100 year flood period, at different cross sections
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gates closed and for the maximum inflow discharges of 5,
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From all the above numerical simulation results it is
obviously that the worst operation is when all gates are
closed, and only in the region of “Purgakia” dam there is no
flood risk for the maximum inflow discharge. When all the
gates are opened a flood risk evaluation exists in the region of
“Mega Evudrio” dam, even with the minimum inflow
discharge. When only the flat gates are opened there also
exists a flood risk estimation in the same region, for the
maximum inflow discharge. In this region an appropriate
elevation of existing embakments can prevent flood events.
Furthermore, with only the arched gates opened the total
operation causes higher water surface elevations, along the
river reach, comparing with the operation when the flat gates
are opened.

III. CONCLUSION

The results of one-dimensional water surface profile
calculations, for steady flow through a natural river, Enipeas
river reach and for the maximum inflow discharges of 5, 25
and 100 year flood period are graphically presented. The
studied river reach area is a flood prone area and from the
engineering view point, an accurate quantitative estimation of
water surface variation is necessary for the prevention of
severe environmental problems and for a safe river design.
Along the studied river reach there are three dams constructed
in locations named ‘“Mega Evudrio”, “Purgakia” and
“Ypereia” for irrigation and enrichment of the underground
aquifer purposes and during flood events are operating with
flat and arched gates, without overtopping. Dam
constructions cause serious disturbances in water surface
elevation, during flood events, and a safe and optimum
operation of the dam gates is numerically investigated. The
applied hydrodynamic numerical model is a useful, reliable
and accurate methodology in order to provide an adequate
and validate flood risk assessment in a natural river area with

complicated  geometries and  different  hydraulic
constructions.
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