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Relative Controllability of Fractional
Integrodifferential Systems in Banach Spaces with
Distributed Delays in the Control

Dr Sir Paul Anaetodike Oraekie

Abstract— In this work, Fractional Integro-differential
Systems in Banach Spaces with Distributed Delays in the
Control of the form:

dnx(t)

0
S = ax@+ [ dgH (e Oute + )
“h

t
+f<t,x(t),fg(t, s,x(s))ds)
0

is presented for controllability analysis. Necessary and
Sufficient Conditions for the system to be relatively controllable
are established. The Set Functions upon which our results
hinged were extracted. Uses were made of: Unsymmetric Fubini
theorem, the Controllability Standard and the Concept of
Fractional Calculus to establish results.

Index Terms— Relative Controllability, Fractional
Integro-differential Systems,Banach Spaces,Fractional
Calculus, Unsymmetric Fubini Theorem, Positive Definite.

I. INTRODUCTION

According to Bonilla etal (2007), fractional differential
equations emerged as a new branch of mathematics.
Fractional differential equations have been used for many
mathematical models in Sciences and Engineering. The
equations are considered as an alternative model to nonlinear
differential equations. The theory of fractional differential
equations has been studied extensively by many authors
Dulbecco (1996) and Lakshimilkanthan(2008) .While the
problems of stability for fractional differential systems are

discussed in Bonnet (2000) y Nec(2007),
Balachandran(2009).
Apart from stability, another important qualitative

behavior of a dynamical system is controllability. Systematic
study of controllability started over years at the beginning of
the sixties when the theory of controllability based on the
description in the form of state space for both time-varying
and time-invariant linear control systems are carried out.
Roughly speaking, controllability generally means that, it is
possible to steer a dynamical control system from an initial
state x(0) of the system to any final state x(t) in some finite
time using the set of admissible controlsOraekie(2013) .The
concept of controllability plays a major role in both finite and
infinite dynamical systems, thatis systems represented by
ordinary differential equations and partial differential
equations respectively. So it is natural to extend this concept
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to to dynamical systems represented by fractional
differentialequations. Many partialfractional differential
equations and Integro-differential equation can be expressed
asfractional differential equations and Integro-differential
equations in Banach spacesElsayeed (1966)).

There exist many works on finite dimensional
controllability of linear systems Klamka (1993)) and infinite
dimensional systems in abstract spaces Curtain (1978) . The
controllability problems of nonlinear systems and
Integro-differential systems with delays have been carried
out by many researchers in both finite and infinite
dimensional  spaces Balachandran (1989)) and
Balachandran (2002).

Controllabilityfractional differential systems in finite
dimensional space have been studied by Chen (2006) and
Shamardan(2000).While Balachandran (2009) studied
Controllability offractionallntegro-differential systems in
Banach spaces.

In this paper, we study the relative controllability of
fractionallntegro-differential systems in Banach spaces with
distributed delays in the control the controllability standard
of dynamical control systems and the unsymmetric Fubini
theorem to establish results.

II. PRELIMINARIES

Let n be a positive integer and E
= (—o0,0)be the real line . Denote E™
= the space of
real n — tuples called the Euclidean space with norm
denoted by |.|.1f ] = [ty t1] is
any interval of E, L, is Lebesgue space of square
integrable functions from ] to E™
written as L,([ty, t1], E™). Let h
> 0 be positive real number and let C([ty, t;1], E™) be
the Banach space of continuous functions with
norm of uniform convergence defined by
Pl = supgp(s); pe C([to, t1], E™).
If x is a function from [—h,o)to E"™ ,then x, is a
function defined on the delay interval
[—h,0]given as :
x(s) = x(t —s);s € [-h,0],t € [0, ).

Definition2.1 (Balachandran(2009))
The Riemann
— Liouville fractional integral operator of order
>0of
function f € C, ,n = —1is defined as:

L
p(B)

Definition 2.2 (fractional derivative)

PF@) = f (t — )P~ F(s)ds
0
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Ifthe function f

€ C™ and m is positive integer, then we can define the
fractional derivative of f(t) in the Caputo sense as:

f(t—s)m nlfms)ds; m—1<n<

i _
dtn p (m -n)

m.
Ifm=1,thenm—1<n<mbecomes 0 <n
< 1.Then
d';ft'r(lt) _ 1 n)bf(t — )11 £l(s)ds
1 .
= preR) 0f(t —s)™ fi(s)ds
_ 1 1
- p(l—n)oj(t—s)"f (s)ds
L (e
p(l—n)o t—s)m
where f1(s)
_df(s)

ds

2.1. VARIATION OF CONSTANT FORMULA
Consider the following system represented by
the fractional
Integro
— dif ferential equations in Banach spaces with
distributed delays in the
control of the form:

d*f ()
dtn

1]
= Ax(t) + j doH(t,0) u(t + 9)
—h

+f t,x(t),fg(t,s,x(s))ds (1.1)
0

x(0) =xo;t €] = [to, t4].

where the state x(.) takes values in the
Banach space X,0 < n < 1, the control
function u
€ L,([ty, t1],U) ,a Banach space of admissible
control functions with
U as a Banach space. H(t, 8)is an nxm matrix function
continuous at t and of bounded variation
in®on[—h,0],h >0 foreacht € [ty, t1]; t;

> to. The integral is in the Lebesgue

— Stieltjes
sense and is denoted by the symbol dy. And the
nonlinear operators f: JxXxX — X,

g: AxX — X are continuous; A= {(t,s):0<s<t<¢ }.
t

If, Gx(t) = fg(t, s,x(s)) ds,

to
then the equation (1.1)becomes equivalent to the
following nonliear integral equation

¥
.

and f is an abstract function with values in X.

x(t) = xo + ﬁ f(t —5)" 1 Ax(s)ds

0

p( )J(t—s)” 1 JdeH(t 0) u(t

+6)|ds

e )f(t—s)” 1£(6,x(0), Gx(s))ds

And the mild solutlon of the system (1.1) is given by
t

© = T(O)%o + —— [e-srma
M=% o). s

_ ) fdgH(t,e)u(He) ds

1 t n—1
4o tf (t — )" 1T (¢
- s)f(t,x(t), Gx(s))ds (1.2)

which is similar to the concept defined in the book of
Pazy(1983).
For the limiting case,n
— 1,the above system(1.2) reprsentation becomes
t 0

x(t) = T(O)xo + f T(t—s) f dyH(t, 0) u(t + 6)ds
Zh

to
t

+ f T(t—ys) f(t,x(t), Gx(s))ds (1.3)
to
Which is the mild solution of
0

dx(t)
dt

= Ax(t) + j doH(t,0) u(t + 6)

“h
+ f(t, x(t), Gx(s))

With initial condition x(0) = x, € X.
Analogus to the conventional controllability concept.
Acareful observation of the solution
of the system(1.1)given as system(1.2)shows that the
values of the control function u(t)
for t € [—h, t;]enter the definition of complete state
thereby creating the need for an
explicit variation of constant formula.The control in
the 2nd term of the formula(1.2),
therefore, has to be separated in the intervals
[—h,0]and [0, t;].

To achieve this that 2nd term of system (1.2)has

to be transformed by applying the method

of Klamka as contained in Chukwu(1992).

Finally, we interchange the order of integration
using the Unsymmetric Fubuni theorem to have
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0

X(t) = T(t)xo + .[ng

1 t n—1
m!(t - S) T(t

—S)H(s,0)u(s + 0)ds

_ n—1
+ p(n)f(t STET(t

- s)f(t,x(t),Gx(s))ds (2.0)
0

t+6

= x(t) =T(t)xy + deg ﬁ f (t — )" 1 T(¢

—h to+6

—S)H(s —6,0)u(s — 0 + 0)ds

1 t n-1
‘mtj—(t —5) T(t

- s)f(t,x(t),Gx(s))ds (2.1).
Simplifying system(Z.l), we have

x(t) = T(Ox, + f (t— s)"1 T(¢

- s)f(t x(t) Gx(s))ds

0

- — q)n—1 —
+Jng p(n)ojg(t ST T(t—s)H(s

—h

—0,0)uy(s)ds

t+6

0
L _¢)n—1 —
+_£ du, p(n)bf (t—s)"'T(t—s)H(s

—0,0)u(s)ds (2.2)

Using again the Unsymmetric Fubuni Theorm on

the change of the order of integration and
incorporating H*as defined below:

. _(H(s—6,0),fors<t
H(s 6'6)_{ 0 ,fors >t
System (.2.2) becomes

x(©) =T()x, + )f(t—s)" It

- s)f(t x(t) Gx(s))ds

0

- — q)n—1 -
+Jng p(n)ojg(t s T(t—s)H(s

—6,0)uy(s)ds

¥
.

(2.3)

0
1 n—-1 _ *
+f /Tn)l(t—s) T(t = s)dg H* (s

—0,0)u(s)|ds (2.4)

Integration is still in the Lebesgue Stieltjes sense in the
variable 6 in H.

For brevity, let

a(t,s) = T(t)x,

1 t
m f(t - S)n_l T(t
— s)f(t,x(ot), Gx(s))ds (2.5)

0

B(t,s) = dea o) f(t—s)" LT(t —s)H(s

—0,0)uy(s)ds (2.6)
u(t,s)
1 0
- ml(t — ST (E = $)dyH (s
—0,0)u(s)ds 2.7)

Substituting equations (2.5), (2.6)and (2.7)in equation (2.4),
we have a precise variation
of constant formula for the system (1.1) as:

t

x(t, xp,u) = a(t,s) + B(t,s) + Ju(t,s)ds (2.8).

to

2.2. BASIC SET FUNCTIONS AND PROPERTIES
Definition 2.2.1 (Reachable set)
The reachable set of the system (1.1)denoted by
R(t, ty) is given as :
t

R(t, ty) = f—) f(t— SV IT(t — s)dgH*(s

—99)u(s)ds u€U| |<1 j

Where U = {u € L,([ty,t1], E™)}
Definition 2.2.2(Attainable set)
The attainable set of the system (1.1)denoted by A(t, t)
is given as :
A(t, ty) = {x(t,xo,u):u € U,; |u}| <1;j
=1.2,..,m},where U
={u € L([to,t1.], E™)}
Definition 2.2.3 (Target set)
The Target set for the system(1.1) denoted by G(t,t,)
is given by
Gt ty) ={x(t,x,u):t=>1
>t , for some fixed T and u € U}
Definition 2.2.4 (Controllability grammian or Map)
The controllability grammian orcontrollability
map of the system (1.1)denoted by W (t, t,)

54 www.ijntr.org



is givenas : W(t,t,) From the results of these studies the following
t equivalent
= f u(t,s)u(t,s)T ,where T denotes matrix transpose  statements emerge.

to Theorem 3.1.(Necessary conditions)

Definition 2, 2.5 (Positive Definite) Consider the system
The controllability grammian or map W is d"x(t)
said to be positive definite if W varnishes only dtn
at the origin and W(x) > 0 for allx # 0,x = Ax(t)
€ D,where D 0
={x€E": |x||<r;r>0}cE" +jd9H(t,9)u(t+9)
“h
2.3. RELATIONSHIP BETWEEN THE SET
FUNCTIONS +f| t,x(t), f g(t,s,x(s))ds 3.1
We shall first establish the relationship between 0
the attainable set and the reachable set, to x(0) =xq ;t €] = [ty,t1]
enable us see that once a property has been proved with the same conditions on the system sparameters as
for one set function, then it is applicable in the system(1.1), then the
to the other. From equation (2.4), following statements are equivalent :
A(t,t) = [n(t) + R(t, ty)], foru e U; t € [ty,t1],where,  (1).System(3.1)is relatively controllable on the interval |
n() = a(t,s) + B(t,s). = [to, t1].
This means that the attainable set is the translation (2).The controllability grammian W(t,ty)of system(3.1)
of the reachable set through is non — singular.
the originn (3).System(3.1) is proper on the interval | = [ty , t1].
€ E™.Using the attainable set, therefore, it is easy
to show that the set PROOF:
functions possess the properties of convexity, ((1) = (2).)
closedness, and compactness. Not alone, Recall: The controllability grammian W(t , ty) of the
the set functions are con tenuous on [0, c0)to the system(3.1) is non — singular, is
metric space of compact subsets of E" equivalent to saying that W(t,ty) is positive definite,
CHUKWU (1988)andGyori(1982)gave impetus for  which in turn is equivalent to saying
adaptations of the proofs of that the controllability index of the system(3.1)is equal
these properties for system(1.1). to zero almost everywhere on the
Definition 2.3.1 (Relative controllability) interval [to t], melymg that C = 0.
The system(1.1)is relatively controllable on the
interval [tg, t] if ie.cT f l_ f(t —"IT(t — $)dgH* (s — 6,6)
A(t, tg) N G(t, ty) # P, t >ty € [to, t4]
Definition 2.3.1 (Properness) —0ae,»C=0:C€E"

The system(1.1) is proper in E" on the interval [ty, t;]

which is properness of the system(3.1) since the integral
if spanR(t,ty) = E™ prop f y 3.1 g
t

is non — negative.

1 : This ,therefore, showsed that (1) is equivalent to (2),or (1)
i.e.if, cT j o) J(t — )" IT(t — s)dyH (s = (2).
to ~h To show that (2) and(3) are equivalent.
By the definition of properness of the system(3.1),
-6,0)[=0a.e,>C=0;Ce€E™. wehave(Z)givenas:
0
Definition 2.3.1 (Complete state) f f(t — )M IT(t - s)dgH*(s —0,0)
We denote the complete state of system(1.1) (n)
at time t by =0a,e,=>C=0;CEE",
z(t) = {x(0), u}. foreachs € [to ,t1], then
Then , the initial complete state of systm(1.1) at ¢
time to is given by J cT j (t — )" IT(t — $)dyH* (s — 6,0) |u(s)ds
Z(to) = {xO Jut()} p(n)

to

. MAIN RESULTS =T f L f (t — $)"LT(t — s)dyH* (s
p(n) A

The issue of relative controllability of Neutral
Volterra Integro — dif ferential

Equations have been settled in Balachandran (1992), —0,0)|u(s)ds =0 , foru € L, (3.2)
Balachandran (1989),
Balachandran(1997). It follows from this last equation (3.2) that C is orthogonal

-
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to the reachable set
t

0
R(t, ty) = fﬁl(t — )" IT(t — s)dgH*(s

—6,0)u(s)ds : u € U; |u]| <1;j

If we assume the relative controllability of
the system(3.1) now, R(t, ty) = E™, sothat
C
= 0, showing that (3) implies (2).0r (1) is equivalent
to(2) and(2)is equivalent to
(3) and vis — a — vis (3) to (2) to (1).
Conversely, assume that system(3.1) is not
controllable, sothat the
reachable R(t,ty) # E™ fort
>ty .Then,there exists C #0,C
€ E™ ,such that
CTR(t, ty) = 0.

Itfollows that for all admissible controls u € L, that
t

_ T L _ n—1 _ *
0=2¢C f o) _Jh-(t S)"TIT(t — s)dgH (s
—0,0)|u(s)ds ,foruel,
t L 0
_ T~ _ n—1 _ *
= fC o) l(t ST (t —s)dgH (s

—0,0)|u(s)ds
Hence,
t 1 0
T _— —_ )n—1 _ Ko
flp(n)_‘[(t ST (t —s)dgH* (s — 6,0) | u(s)ds

=0,a.e; s€[ty,t;] ,C #0.
By definition of properness it implies that
the system(3.1) is not proper ,since ¢ # 0.
Hence the system(3.1)is relatively controllable.

Theorem 3.2. (Sufficientconditions)
Consider the system
d™x(t)
datn
= Ax(t)
0

+ fdgH(t,G)u(t+9)
—h

+f t,x(t),fg(t,s,x(s))ds (3.2)
0

x(0) =xo ;t €] =[ty,t1].

with the same conditions on the systems™ parameters
as in the system(1.1), then the

system(3.2) is relatively controllable on the interval |
= [to,t1] if and only if zero is

¥
.

in the interior of the reachable set.

PROOF
The reachable set R(t,ty)is closed and convex subset of
E™ .Therefore,a point

Y1
€ E™ on the boundary implies that there is a support plane

mof R(t,ty) through vy;.
iie. C'y—y)<o0,
foreachy € R(t,ty), where C
# 0 is an outward normal to the the support plane .

If u, is the corresponding control to y; , we have
t

1
o[ [ =m0 ucoas

t

0
T L _ n-1
<c J.p(n)_-[(t ST (e

to

—S)dgH*(s
—0,0)|u(s)ds (3.2)
Foreachu
€ U and since U is a unit sphere ,the inequality( 3.2)

becomes

_ n—1 _ *
flp(n) (t—s)"'T(t —s)dgH*(s
—0,0)|u(s)ds
t L 0
T~ _ n—1
_tf c lp(n)l(t STTIT(t

—s)dgH* (s —0,0)|.1]ds

0

f [— f(t—s)" IT(t —s)dgH*(s — 0,0)

1
sgn CT —j t—s)" 1Tt —s)d,H*(s — 6,0)] (3.3).
g lp(n)_h( VIT(t — s)dgH'( )| (3.3)
Comparing (3.2) with (3.3), we have
0

1
u (t) =sgnCl |—= [ (t — )" IT(t — s)dgH* (s
p(n) _{

—9,0)|(3.4).

More so,as y, is on the boundary since we always have 0
€ R(t, ty).

If zero were not in the interior of the reachable set

R(t, ty), then it is on the boundary.

Hence , from the preceding argument, it implies that

— T L _ o\n—-1 _ * —
O—JC [p(n)l(t S)"IT(t —s)dgH (s — 0,0)

Sothat ,
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(t —s)"IT(t —s)dgH* (s — 6,6)
<n>f !
= 0 a.e.,since the integral is not zero.
This, by the definition of properness implies that
the system(3.2)is not proper
since C # 0. However,if 0 € InteriorR(t,ty) for t

>ty;t>0,
0
cr ()f(t—s)n IT(t = $)dgH' (s — 6,0)| = 0 ae
=>C=0

Which is the properness of the system and by
the equivalence in theorem(3.1), the relative
controllability of the system(3.1) on the interval ]
= [ty ,t1] is established.

IV. CONCLUSION

The explicit variation of constant formula for the system
(1.1) visa-a-via system (3.1) was established using the
Unsymmetric Fubini theorem. The set functions upon which
our studies hinged were extracted from the Mild Solution.

We established the necessary condition for the system
(1.1) to be relatively controllable. This is stated and proved in
theorem (3.1). While the sufficient condition for the system
(1.1) to be relatively controllable is stated and proved in
theorem (3.2).That is, we established that- a Fractional
Integrodifferential Systems in a Banach Space with
Distributed Delays in the Control, is relatively controllable
on the interval | = [ty ,t;] if and only if zero is in the
interior of the reachable set of the system (1.1).
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