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Abstract -In this article will be presented the problem of 

real-time localization for humanoid robots. For this purpose 

we using a single camera as the only sensor.  In order to obtain 

fully autonomous robots an accurate localization of the robot 

in the world is much more than desirable. Moreover, if we can 

obtain an accurate localization in real-time, than we can use 

the remaining computational resources to perform other 

important humanoid robotic tasks such as planning [1], 3D 

object modeling [2] or visual perception [3]. 

 

Index Terms–Accurate localization in real-time, 

computational resources, humanoid robots, map of the 

environment, small laser range sensors. 

I. INTRODUCTION 

 An accurate and fast localization of the robot will be a 

great benefit for many humanoid robotics applications. In 

order to obtain a robust localization, there are different 

alternatives of which we can choose: one of them is to 

estimate simultaneously the localization of the robot and the 

map of the environment, yielding the well-known 

Simultaneous Localization and Mapping (SLAM) problem 

in the robotics community [4]. Another possible option is to 

dedicate more computational resources in the reconstruction 

of a persistent map, and using then this map for long-term 

localization or navigation purposes. 

 In order to do this, we can take advantage of the prior 

map of the robot’s environment learning different 
parameters ranging from visibility prediction [5]. 

In the particular case of humanoid robots, it is very 

important that the sensors to be light-weight and small. 

Humanoids should be stable under all possible motions, and 

heavy sensors can compromise this stability. Furthermore, 

not all sensors are suitable for humanoid robots. For 

example not all laser scanners can be mounted on humanoid 

platforms, especially the heavy ones such as for example the 

SICK LMS-221. Only small laser range sensors (e.g. 

Hokuyo URG-04LX) are suitable for humanoid robotics 

applications [6]. 

The main problem of these small laser range sensors is 

the limited distance range (up to 4 m for the Hokuyo URG-

04LX). For all of these reasons, cameras are an appealing 

sensor for humanoid robots: they are light-weight and 

cheaper than laser scanners and stereo cameras can also 
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provide higher distance ranges (depending 77 78 Visual 

SLAM and Vision-Based Localization for Humanoid 

Robots on the stereo rig baseline). More than this, most of 

the advanced commercial humanoids platforms are already 

equipped with vision systems. Anyway, there have been 

only limited attempts at vision-based localization for 

humanoid robots. 

 The purpose of this article is to show that is possible to 

obtain a real-time robust localization of a humanoid robot, 

with an accuracy of the order of cm just using a single 

camera and a single CPU. To do this, prior to localization 

we have to compute an accurate 3D map of the environment 

using the stereo visual SLAM algorithm described in 

Chapter 2. To build an accurate 3D map we use stereo 

vision mainly for two reasons: to be able to measure in a 

direct way the scale of each detected point and to obtain 

dense depth information, which is a well-studied problem 

for stereo vision [7]. In this way we can solve the main 

drawback of monocular SLAM approaches, i.e. recovering 

the scale of a map due to observability problems in 

recovering 3D information from 2D projections. 

 When we have the 3D map of the environment, we can 

perform the monocular vision-based localization using the 

3D map as a prior. For the localization experiments the 

dense depth map generation process have to be avoided, 

which can be a high time consuming operation in certain 

occasions;then we can perform a robust and efficient real-

time localization just using a single camera. 

 In order to satisfy all of these demands, firstly has to be 

built a 3D map of the environment using stereo visual 

SLAM techniques based on Bundle Adjustment (BA).  

Being inspired by the recent works in nonlinear SLAM, we 

will use a stereo visual SLAM algorithm combining local 

BA and global BA to obtain an accurate 3D maps with 

respect to a global coordinate frame. These maps can be 

used later for monocular vision based localization or 

navigation. In this way, 3D points and camera poses are 

refined simultaneously through the sequence by means of 

local BA, and when is detected a loop closure, the residual 

error in the reconstruction can be corrected by means of 

global BA adding the loop closure constraints.Once 

obtained, the 3D map of the environment canbe used for 

different robotics applications such as localization, planning 

or navigation. Vision-based localization in a large map of 

3D points is a challenging problem. One of the most 

computationally expensive steps in vision-based localization 

is the data association between alarge map of 3D points and 

2D features perceived by the camera. Then, matching 

candidates are usually validated by geometric constraints 
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using a RANdomSAmple Consensus(RANSAC) framework 

[8]. Therefore, we have to find a smart strategy to sample 

the large database of 3D points and perform an efficient data 

association between the 3D map points and perceived 2D 

features by the camera. Given a prior map of 3D points and 

perceived 2D features in the image, our problem to solve is 

the estimation of the camera pose (with known intrinsic 

parameters) with respect to a world coordinate frame. 

Basically, this problem is known in the literature as the 

Perspective-n-Point (PnP) problem [9]-[11]. 

 For solving efficiently the PnP problem, will be used the 

visibility prediction algorithm described in [5].Visibility 

prediction exploits all the geometric relationships between 

camera poses and 3D map points in the prior 3D 

reconstruction. Then, during vision-based localization 

experiments the data association and robot localization will 

be speeded-up tremendously by predicting only the most 

highly visible 3D points given a prior on the camera pose. In 

this way, the PnP problem can be solved in a more efficient 

and faster way, reducing considerably the number of outliers 

in the set of 3D-2D matching correspondences. 

II. MONOCULAR VISION-BASED LOCALIZATION 

Once obtained the 3D map of the environment (by using 

the stereo visual SLAM algorithm), the following step is to 

use that map for common humanoid robot tasks such as 

navigation or planning, while providing at the same time an 

accurate localization of the robot with respect to a global 

coordinate frame. To do this, the obtaining of a real-time 

and robust vision-based localization is mandatory. Given a 

prior map of 3D points and perceived 2D features in the 

image, the problem to be solved is the estimation of the 

camera pose with respect to the world coordinate frame. 

Basically, the problem we have to solve now is known as 

the Perspective-n-Point (PnP) problem. 

 The PnP problem estimating the pose of a calibrated 

camera based on 2D measurements and known 3D scene, is 

a thoroughly studied problem in computer vision [9], [10]. 

This is generally a challenging problem, even with a perfect 

set of known 3D-2D correspondences. Although there are 

some globally optimal solutions [11] that employ Second 

Order Cone Programs (SOCP), the main drawback of the 

current globally optimal solutions to the PnP problem is the 

computational burden of these methods. This makes difficult 

to integrate these algorithms for real-time applications such 

as the ones we are interested with humanoid robots. 

 The main contribution of our work for solving the PnP 

problem efficiently, is the use of the output of the visibility 

prediction algorithm (given a prior on the camera pose) to 

predict only the most highly visible 3D points, reducing 

considerably the number of outliers in the set of 

correspondences. In this way, we can make the data 

association between 3D map pointsand 2D features easier, 

thus speeding up the pose estimation problem. In figure 

3.1is described an overall overview of our vision-based 

localization approach with visibility prediction.  

 

 
Figure 1: The input for the visibility prediction algorithm is 

the latest camera pose θt−1, the number of KNNs (K) and a 

probability threshold Pt. Only the highly visible 3D map 

points are re-projected onto the image plane of the left 

camera, and a set of putative matches between 2D detected 

features and map elements is formed. Then, the PnP 

problem is solved yielding the localization of the robot with 

respect to a world coordinate frame θtat time t.Best viewed 

in color. 

 

To clarify, the overall vision-based localization algorithm 

works through the following steps: 

 

1. While the robot is moving, the camera acquires a new 

image from which a set of image features Zt= {zt,1. . . zt,n} 

are detected by a feature detector of choice. A feature 

descriptor is computed then for each of the detected 

features. Notice, that even any kind of feature detector and 

descriptor may be used, it is necessary that both detector and 

descriptor are the same and have the same settings as in the 

map computation process described in Chapter 2. 

2. By using the visibility prediction algorithm, a promising 

subset of highly visible 3D map points is chosen then and 

re-projected onto the image plane based on the estimated 

previous camera pose θt−1 and known camera parameters. 

3. Afterwards, a set of putative matches Ct are formed 

where the i-th putative match Ct,iis a pair {zt,k,xj} which 

comprises of a detected feature zkand a map element xj. A 

putative match is created when the Euclidean distance 

between the appearance descriptors of a detected feature and 

a re-projected map element is lower than a certain threshold. 

4. The pose estimation problem is finally solved by 

minimizing the following cost error function, given the set 

of putative matches Ct: 

 

arg𝑚𝑖𝑛𝑅,𝑇  ||𝑧𝑖 − 𝐾 𝑅 ∗ 𝑥𝑖 + 𝑡 ||2𝑚
𝑖=1 (1) 

 

where zi= (uL, vL) is the 2D image location of a feature in 

the left camera, xi represents the coordinates of a 3D point 

in the global coordinate frame, K is the left camera 

calibration matrix, and R and t are respectively the rotation 

and the translation of the left camera with respect to the 

global coordinate frame. The PnP problem is formulated asa 

non-linear least squares procedure using the LM algorithm 

implementation describedin [12]. The set of putative 
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matches may contain outliers, therefore RANSACis used in 

order to obtain a robust model free of outliers. 
 

III. INITIALIZATION AND RE-LOCALIZATION 
 

 During the initialization, the robot can be located in any 

particular area of the map. In order to do this we need to 

find a prior camera pose to initialize the vision-based 

localization algorithm. For this purpose, we have to compute 

the appearance descriptors of the detected 2D features in the 

new image and match this set of descriptors against the set 

of descriptors from the list of stored key frames from the 

prior 3D reconstruction. In the matching process between 

the two frames, it is performed a RANSAC procedure 

forcing epipolar geometry constraints. The camera pose is 

recovered from the stored key frame that obtains the highest 

inliers ratio score. If this inliers ratio is lower than a certain 

threshold, then the localization algorithm do not have to be 

initialized until the robot moves into a known area, yielding 

a high inliers ratio. At this point, we are confident about the 

camera pose prior and initialize the localization process with 

the camera pose parameters of the stored key frame with the 

highest score. 

 At this point it may happen eventually that the robot gets 

lost due to bad localization estimates or that the new camera 

pose is rejected due to a small number of inliers in the PnP 

problem. In those cases, must to be performed a fast re-

localization by checking the set of appearance descriptors of 

the robot’s new image against only the stored set of 
descriptors of the key frames that are located in a certain 

distance area of confidence around the last accepted camera 

pose estimate. 

IV. RESULTS AND DISCUSSIONS 

 Hereinafter will be described one of the experiments 

conducted on the HRP-2 humanoidrobot. We created for it 

two different datasets of common humanoid robotics 

laboratory environments. Here will be presented the first 

dataset which is called Tsukuba, and it was done at the Joint 

RoboticsLaboratory, CNRS-AIST, Tsukuba, Japan. This 

dataset comprises of different sequencesfor the evaluation of 

the monocular vision-based localization algorithm under the 

assumptionthat a prior 3D map is known. In particular, in 

this dataset we have different robottrajectories (square, 

straight) and challenging situations for the localization such 

as robotkidnapping, people moving in front of the robot and 

changes in lighting conditions. Forthis dataset, we 

performed experiments with an image resolution of 320×240 

and a framerate of 15 frames per second. The main 

motivation of using that image resolution is thatin this 

dataset we focused more on achieving real-time localization 

results while at thesame time obtaining robust pose 

estimates. 

 In the Tsukuba dataset, the experiments were performed 

considering an image resolution of 320×240 and a frame 

rate of 15 frames per second. For the visibility prediction 

algorithm we consider the following input parameters of the 

algorithm: K = 10 and Pt >0.20. We chose a threshold value 

of 2 pixels in the RANSAC process, for determining when a 

putative match is predicted as an inlier or outlier in the PnP 

problem.  

Square 2 m Size Sequence.In this sequence, the robot 

performed a 2 m size square in a typical humanoid robotics 

laboratory. This sequence was designed for capturing 

different camera viewpoints both intranslation and 

orientation. Firstly, we built a 3D map of the environment 

by using the stereo visual SLAM algorithm described in 

Chapter 2 in a similar sequence and performedvisibility 

learning. The resulting 3D map comprises of 935 points and 

75 key frames. At the start of the sequence, we placed the 

robot at the origin of the map, and then by using the pattern 

generator, the robot performed a square of 2 m size. We 

measured manually the final position of the robot, and this 

position was (X = 0.14, Y = 0.00,Z= −0.02) in meters. Due 

to the existing drift between the planned trajectory and the 

real one, the robot was not able to close the loop itself. 

Then, we validate our vision-based localization algorithm 

with visibility prediction under a similar square sequence. 

 Fig.3.1 depicts the initial and final position of the robot, 

and the performed trajectory. 

 Table 3.1 shows the obtained localization results using 

visibility prediction forthis square sequence. According to 

the results we can see that the localization accuracyis very 

good, about the order of cm. The differences with respect to 

the real trajectoryfor the final position are very small 9 cm, 

in the X coordinate and about 7 cm in the Zcoordinate. 

While the robot was walking the pattern generator fixed the 

Y coordinatealways to the same value. Therefore, in the PnP 

problem we add this constraint to speedup the process, 

although our algorithm can deal with 6DoF. 

 

Table 3.1: Square 2 m size monocular vision-based 

localization results (Tsukuba dataset). 

 

Camera Pose 

Element 

Start 

Position 

Final 

Position 

X (m) 0.0000 0.2320 

Y (m) 0.0000 0.0000 

Z (m) 0.0000 -0.0092 

q0 1.0000 0.9905 

qx 0.0000 0.0034 

qy 0.0000 0.1375 

qz 0.0000 0.0050 

 

 

 
 

(a) 
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 (b) 

Fig.2 : Square 2 m size localization results Tsukuba dataset. 

(a) and (b) depict the initialand final position of the robot 

and the performed trajectory in the sequence. In these two 

imagesthe robot trajectory is depicted in black, the visible 

3D points are depicted in blue and the rest of 3D points in 

green.Best viewed in color. 

V. CONCLUSION 

 In this paper we have presented a vision-based 

localization algorithm that works in real-time (even faster 

than 30 Hz) and provides localization accuracy about the 

order of cm. Firstly was built a 3D map of the environment 

by using stereo visual SLAM techniques, and perform 

visibility learning over the prior 3D reconstruction. For a 

faster visionbased localization we use then visibility 

prediction techniques for solving the PnP problem and 

obtaining the location of the robot with respect to a global 

coordinate frame. The accuracy of our localization 

algorithm was measured by comparing the estimated 

trajectory of the robot with respect to ground truth data 

obtained by a highly accurate motion capture system. In 

addition, we are interested in improving the capabilities of 

our vision-based localization algorithm towards the goal of 

life-long localization and mapping. We are also interested in 

combining visibility prediction with the Bayesian Surprise 

and landmark detection framework [13]. We can make a 

model in a probabilistic way when the robot discovers a new 

surprising area and then adding this area into the whole 

reconstruction. Indeed, we also think that Bayesian surprise 

can be also useful for detecting a new object in the prior 3D 

reconstruction, and once the robot detects this new object, 

the robot can start a 3D reconstruction of the object using 

the localization information as a prior. 

 We have mainly put our focus in real-time vision-based 

localization. We think that the accuracy in localization can 

be increased if we fuse the information from our vision-

based localization with the odometry information of the 

robot. The image resolution and length of the descriptors 

can be increased also, but the price to pay is higher 

computational demands, that may prevent the algorithm 

from real-timeperformance. In any way, the main limitation 

is the higher computational demands of these kind of 

invariant feature detectors. In the next future, we are 

interested in using our approach in related vision-based 

humanoid robotics problems such as control [14], 

autonomous 3D objectmodeling [2] or footstep planning [1]. 

We like to think that our real-time vision based localization 

can improve considerably some previous humanoidrobotics 

applications where vision-based localization was not 

exploited in all its capabilities. 
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