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 
Abstract- This study investigates and compares Optimal 

designed Experiment with classical design which is non-Optimal 

using statistical tools. The two designs were evaluated on the 

basis of six parameters; viz, Information matrix, Dispersion 

matrix, Prediction variance, A-Efficiency, D-Efficiency and 

G-efficiency. These six parameters help to determine the better 

design of the two experiment. Thus, it helps to establish efficient 

experiment suitable for better estimation of parameters of 

Linear Regression Model. The result obtained in this research 

work showed that the D-Optimal design increased the 

A-Efficiency, D-Efficiency and the G-efficiency of the Initial 

non optimal design. Furthermore the D-Optimal design 

maximized the determinant of the Information Matrix, 

Minimized the determinant of the Dispersion matrix and 

minimized the trace of the Dispersion matrix. It was therefore 

established in this research work that the D-Optimal Design 

Experiment has higher statistical efficiency than the initial 

non-optimal design. Moreso statistical analysis of the model 

parameters for both designs established the D-Optimal design 

experiment produce better models when used for estimating the 

parameters of Linear Regression models. It is therefore 

suggested that D-Optimal approach is suitable for fixing a 

poorly designed experiment. It is therefore recommended for 

use in estimating the parameters of Linear Regression Models. 

 
Index Terms— Algorithm, Optimal Design, Model, 

Optimality Criterion, Flowchart, Optimization, Efficiency, 

Experimental Design.  

 

I. INTRODUCTION 

Kiefer (1959) presented a paper to the Royal Statistical 
Society about his work on the theory of optimal design. 
During the presentation, he tried answering this major 
question “How do we find the best design?” This work 
initiated a whole new field of optimal design. According to 
Ramachandran and Chris (2009) optimal experimental 
design provide the technical tools for building 
experimental designs to attain well-defined objectives with 
efficiency and with minimum cost. The cost can be 
monetary, time, number of experimental runs, and so on. 
The theory of optimal experimental design as explained in the 
monographs of Fedorov (1972) clarified that given the total 
number of observations, the optimal design is determined by 
the design space (experimental region)  ̧the regression model 
and the optimality criterion. Searching for these optimal 
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design yields challenging optimization problems. 
Experiments are therefore carried out in order to estimate 
parameters of regression models. Optimal experimental 
designs are therefore used to maximize the precision of the 
least squares estimator, given the total number of 
observations. Optimal designs are a class of experimental 
designs that are optimal with respect to some statistical 
criterion. When estimating statistical models, optimal designs 
allow parameters to be estimated without bias and with 
minimum variance.  
According to Berger and Wong (2009), there are at least three 
ways to design an efficient experiment for better estimation 
of parameters of linear regression model. First, efficiency can 
be improved by measuring the dependent variable more 
accurately. A second way to improve efficiency is to increase 
the total sample size N, this however will lead to more costs 
for collecting the data and running the study. A third way to 
improve efficiency is to select the levels of the independent 
variable X in such a way that their information content will be 
as large as possible. i.e. | X‟X| will be maximized.  
Careful selection of the levels of the independent variable can 
be done by using algorithms to search for the optimal design 
of the experiment. Algorithms play important role in 
generating optimal designs of experiments because they help 
to reduce number of experimental runs required to estimate 
the parameters, and thereby reduce the costs of 
experimentation. Algorithms uses optimality criteria for the 
careful selection of the levels of independent variable. The 
D-Optimality criteria was used  to achieve results in this 
research work because it has a number of advantages such as 
its invariance under linear transformations of the scale of the 
independent variable, especially when different scales of the 
independent variable are implemented in different studies.   
Researchers have at sundry times developed algorithms 
through modifications to existing exchange algorithms and 
thereby generating optimal designs. For instance, Yang et al. 
(2013) used Fedorov‟s exchange algorithm, originally 
published in 1969 (see also Fedorov, 1972), to obtain 
op t imal  designs  for generalized linear models.  There are 
several versions of the exchange algorithms where the 
search begins with a single random design, and then each 
design point is considered for exchange with other points.  
The pair of points chosen for exchange is the pair which 
results in maximum gain of the optimality criterion. 
Also, Jafari et al. (2014) used the idea of building locally 
optimal designs for logistic regression models without 
random effects. Locally D-optimal design model was 
computed for logistic regression model with three 
independent variables for several specific states. 
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II. STATISTICAL MODELS AND ANALYSIS 

The optimality of a design depends on the statistical model and is 
assessed with respect to a statistical criterion, which is related to the 
variance-matrix of the estimator. Specifying an appropriate model 
and specifying a suitable criterion function both require 
understanding of statistical theory and practical knowledge with 
designing experiments. According to (Eriksson et al. 2000), a 
model helps to transform the complexity of reality into an 
equation which is easy to handle. It is therefore an important step 
in Optimal Design of Experiments. Aside from the l i nea r  model, 
w h i c h  i s  t h e  m o s t  c o m m o n ,  there are other Statistical 
models such as interactions model, quadratic model, Non-Linear 
model. e t c .  
 

A. Linear Models 

In a linear model, each factor appears as a linear term. In this 
case, a linear term means  a combination of a coefficient 
βi and a factor x i . A linear model with p number of factors 
has the following equation: 

  y=β0+β1x1+…+βpxp+ε                                        (1) 
Where  β1 , β2 , . . . , βp represents the regression coefficients 
and ε is the random  part of the model which is assumed  to 
be normally  distributed with mean 0 and variance  σ2. Wu 
& Hamada ( 2000). The p factors x  , x2 , . . . , xp influence 
the response y.  
yi = β0  + β1 xi1 + · · · + βg xig + ε i ,  i = 1, . . .N    (2) 
where  yi  stands  for the  ith  response  with  the  factors  xi1 
, xi2 , . . . , xip .   The corresponding matrix notat ion is  
given as:  
Y = X β + ε                                        (3) 
Where the N × (p + 1) model matrix X contains all factors 
for the responses and Y and € are N × 1 vectors.   The 
regression coefficients β are the unknown parameter  
in the model (Wu & Hamada 2000). 

B. Interaction Models 

Interaction models are used to achieve the same 
experimental objectives as their linear counterpart. They are 
however more complex than their linear counterparts. They 
contain the same terms like the linear model but have 
additional interaction terms. An interaction term is the 
combination of two factors xi and xj with a conjoint 
coefficient βij. The fol lowing equat ion gives  an 
example of an interaction model with three factors. 
y = β0 + β1 x1+ β2 x2 + β3 x3 + β12 x1 x2 + 

       β13 x1 x3 +β23 x2 x3 + ε                                      (4) 

C. Quadratic Models 

Quadratic model extends t h e  interaction model with 
additional quadratic terms for each factor.  A quadratic 
term is the square of a factor x i with its coefficient βii  

.      Quadratic models  are  the  most  complex  of the three  
basic model types  and  are  used  for optimization 
processes.  A quadratic model with three factors is 
illustrated with the following equation.  
y = β0 + β1 x1+ β2 x2 + β3 x3 + β11 x1

2  + β22 x2
2  + β33 

x3
2  + β12 x1 x2 + β13 x1 x3 + β23 x2 x3 + ε                (5) 

D.  Non Linear Models 

In Non Linear Models observational data are modeled by a 
function which is a nonlinear combination of the model 
parameters and depends on one or more independent 

variables. The data are fitted by a method of successive 
approximations. 
The data consist of error-free independent variables 
(explanatory variables), x, and their associated observed 
dependent variables (response variables), y. Each y is 
modeled as a random variable with a mean given by a 
nonlinear function f(x,β). Thus a function is nonlinear if it 
cannot be expressed as a linear combination of the two s. 
Non-linear regression model is given by: 
Y = f(X, β) + ε                                            (6) 
Where X is a vector of p predictors, β is a vector of k 
parameters, f(.) is some known regression function, and ε is 
an error term whose distribution may or not be 
normal.  

III. CRITERIA USED FOR SELECTION OF OPTIMAL 

DESIGN OF EXPERIMENTS 

There are different criteria used for optimal d e s i gn . 
They are D-Optimality Criterion, A-Optimality 
Criterion, V-Optimality Criterion and G-Optimality 
Criterion. 

A. D-Optimality Criterion (Determinant) 

The D-Optimality is the most common criterion 
w h i c h  seeks to maximize |  |, t h e determinant of 
the information matrix   of the design. Maximizing 
the determinant of the information matrix ( ) is 
equivalent to minimizing the determinant of the 
dispersion matrix ( )-1. 
 
| X*IX*| = -1 |                                         (7)                                                                 

where X* is optimal design matrix and  εn is called matrix of 
candidate points having n rows. 

B. A-Optimality Criterion (Trace) 

Another Criterion for an optimal design is called the 
A-criterion. The design matrix is considered as 
A-Optimal when the trace of the dispersion matrix 
(X‟X)-1 is minimum. In this case, the trace of the square 
matrix is the sum of the elements on the main diagonal. 
Minimizing the trace of the matrix is similar to 
minimizing the average variance of the estimated 
coefficients. A-Optimal designs are rarely used because 
it is more computationally difficult to update during the 
selection process.     
 
Trace (X*‟X*)-1   =   -1 )      (8) 

Trace ( X*‟X*)-1   =                                     (9) 

C. V-Optimality Criterion (Average Prediction Variance) 

3.3 V-Optimality Criterion (Average Prediction 

Variance) 

 As de Aguiar et al (1995) describe the variance function or 
leverage is a measurement of the uncertainty in the 
predicted response‟. This variance of prediction for a single 
candidate   can be calculated with equation (10). Where  

 equals a vector that describes a single experiment and  
  represents the transpose of this vector. With the 

selection of a V-Optimal design, the chosen candidates 
have the lowest average variance of prediction. 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_theory
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Response_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Linear_combination
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d ( ) =  i * ( X*‟X*)-1  *   i                 (10) 
 

  =       

                    (11) 

with the selection of a V-Optimal design, the chosen 
candidate have the lowest average variance of prediction as 
shown in equation (11) above. 

D. G-Optimality Criterion (Maximum Prediction 
Variance) 

The G-Optimal design deals with the variance of prediction 
of the candidate points. The selected optimal design matrix 
chosen to minimize the highest variance of prediction in 
the design. This is represented with the following equation. 
max ( i * ( X*)-1 *  i = min(max ( i * ( X*)-1 *  i ))   (12)                            
                         

(max (d (  i ) =  i * ( X*)-1 *  i )                 (13) 

IV. PARAMETERS FOR EVALUATING EXPERIMENTAL DESIGNS 

Any two designs can be evaluated on the basis of six 
parameters; viz, Information matrix, Dispersion matrix, 
Prediction variance, A-Efficiency, D-Efficiency and 
G-efficiency. These six parameters help to determine the 
better design of the two experiment. 

 

A. Information and Dispersion Matrix 

To use the later described criteria for the selection of the 
best design, we need to define two other types of matrices.   
The first one is the so-called information matrix ( ). 
This matrix i s  the multiplication of the transpose of the 
design matrix   and  itself. The d i spers ion  
m a t r i x  ( )-1 i s  the i n v e r s e  matrix  of this 
c a l cu l a t i o n  (de Aguiar et al .  1995).   

B. Design Matrixx 

The design matrix X  is n × p matrix that depends on  a 
model with p  coefficients. The number of rows n can be 
chosen by the experimenter and represents the number of 
experiments in the design.  With a given model and a 
candidate matrix, the construction of the design matrix 
i s  easy.  Each column contains a  combination of the 
factors from the candidate set, depending on the terms in 
the model.   

The matrix can  also be called model matrix, but in most 
cases the model matrix means a N × p matrix which 
contains the model-dependent rows for all candidates (de 
Aguiar et al. 1995). Subsets  of ξN  increases and the 
selection  of the  design  matrix  has  to  be done  depending  
on a special  criterion.   „The best combination of these 
points is called optimal and       the corresponding des ign  
matrix is called optimal des ign  matrix‟ X  *(de Aguiar et 
al. 1995).   

C. Optimal Design Matrix 

The optimal des ign  matrix X * contains t he  n 
experiments which maximizes the determinant of the  
informat ion  mat r ix  ( ) or minimizes the determinant 
of the dispersion matrix ( )-1 or in other words, the n 

runs „span the largest volume possible in the experimental 
region‟ (Eriksson et al. 2000).  
|X *′X *| =                       (14) 

Or 
|X *′X *| =                   (15) 

V. DESIGN EFFICIENCY 

Efficiencies are measures of design goodness. Common 
measures of the efficiency of an (ND x P) orthogonally coded 
design matrix X are based on the information matrix . 
The variance-covariance matrix of the vector of parameter 
estimates β in a least squares analysis is proportional to 
( ). The variance of  β̂i is proportional to the xii element of 
( )-1. An efficient design will have a “small” variance 
matrix, and the eigenvalues of ( )-1 provide measures of 
its “size”. 

A. A-Efficiency 

A-efficiency is a function of the arithmetic mean of the 
variances, i.e it is based on the average of the variances of the 
parameter estimates. And it is given is given by Trace 
(( )-1)/p. (The trace is the sum of the diagonal elements of 
( )-1, which is the sum of the variances and is also the sum 
of the eigenvalues, and it is given by the following equation. 
 
A-Efficiency = 100 x         (16) 

Where P stands for the number of factor effects in the design 
(columns in X), ND is the number of requested runs and trace 
( )-1 stands for the trace of the dispersion matrix. 

B. D-Efficiency 

D-efficiency is a function of the geometric mean of the 
eigenvalues, which is given by | ( )-1  . The determinant 
| )-1| is the product of the eigenvalues of ( )-1), and the 
pth root of the determinant is given by the following equation. 
D-Efficiency = 100 x           (17) 

Where P stands for the number of factor effects in the design 
(columns in X), ND is the number of requested runs and   | 
( )-1 | stands for the determinant of the dispersion matrix. 

C. G-Efficiency 

G-   G-efficiency is based the largest variance of prediction over 
the candidate set. G-efficiency is mostly applied to choose 
between several similar designs which were created with 
another criterion, like D-Optimality. It is defined as follows 
G-Efficiency = 100 x                                (18) 

Where p is the number of model terms or coefficients, n is the 
number of design runs and dmax (X) is the largest variance of 
prediction in the model matrix X.  

VI. NUMERICAL ILLUSTRATION 

The f     The following is a numerical demonstration of the concept of 
Optimal Design of Experiments Consider, for example, the 
constrained mixture experiment for estimating the impact of 
three factors on the electric resistivity (Y) of a modified 
acrylonitrile powder described in Atkinson and Donev (1992) 
and explained by Goos and Leemans (2004). The components 
of the mixture under investigation are:  
 
 

http://www.amstat.org/publications/jse/v12n3/goos.html#Atkinson1992
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Table 1: Starting Design of the Components of the Mixture  

 
x1 :  copper sulphate (CuSO4), 
x2:   sodium thiosulphate (Na2S2O3), 
x3:    glyoxal (CHO)2 

            The electric resistivity of the powder did not depend on the 
total amount of the mixture but only on the relative 
proportions of the three components. Each component is       
therefore restricted to lie between 0 and 100%, i.e. 0   xi  1. 
In addition, the proportions in a mixture experiment have to 
add up to 100%, so that 

x1 + x2 + x3 = 1                                     (19) 

It was also required that 

 

 

 

 

 Now, assume that the model is given by the first order 
Scheffè polynomial 

                                                                                    (20)                                                                                                           

 and that nine observations are available for estimating this 
model. For the first order Scheffè model, the design matrix 
and the extended design matrix are identical: 

                                                                                                                                                                                                           

 
 

 
 

The Starting Design Matrix X is given as follows:    

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Information matrix of the starting design is given  

 as follows: 

 

             1.6625        1.3125       0.6750 

XIX=   1.3125         1.5075       0.6750 

             0.6750        0.6300       0.5950 

 

The Determinant of the information matrix of the starting 

Design is 0.2358.    i.e.  | XIX| = 0.2358 

The Dispersion matrix of the starting design is given as 

follows 

                 2.1207       - 1.5084       -0.8087 

(XIX)-1=   -1.5084        2.2628      - 0.6846 

                 -0.8087       -0.6846       3.3230 

 

The Determinant of the Dispersion matrix of the starting 
Design is 2409    i.e.  | (XIX)-1| = 4.2409 
The Trace of the Dispersion matrix of the starting Design is  

7.7065    i.e.  TRACE (XIX)-1 = 7.7065 
 

 

 

   

                           

 

 
 

0.2  x1  0.8, 

0.2  x2  0.8, 

0.0  x3  0.6. 

S/n 
x1 x2 x3 

1 0.20 0.40 0.40 

2 0.20 0.60 0.20 

3 0.30 0.35 0.35 

4 0.40 0.20 0.40 

5 0.40 0.60 0.00 

6 0.45 0.45 0.10 

7 0.50 0.25 0.25 

8 0.60 0.20 0.20 

9 0.60 0.40 0.00 

0.20                                          

0 

      0.40                                   

0.40 

0.40 

0.40 0.20 0.60 0.20 

0.30 0.35 0.35 

0.40 0.20 0.40 

0.40 0.60 0.00 

0.45 0.45 0.10 

0.50 0.25 0.25 

0.60 0.20 0.20 

0.60 0.40 0.00 



                                                                        International Journal of New Technology and Research (IJNTR) 

                                                                                  ISSN:2454-4116,  Volume-4, Issue-5, May  2018  Pages 31-36 

 

                                                                                35                                                                           www.ijntr.org 

 

 
       Table 2: D-Optimal Design obtained by  

        

Computer algorithm 

 
 
 
 
 
 
 
 

              
      X* = 
 
 
 
 
 
 
              
            Optimal Design Matrix X* is shown above 
            The information matrix of the starting design is given 

as follows 
 

       
                         2.1600       1.0800       0.3600 

     X*IX*  =     1.0800        2.1600      0.3600 

                         0.3600       0.3600       1.0800 

 

            The Dispersion matrix of the optimal design is given 

as follows 

 

                        2.1207       - 1.5084       -0.8087 

(X*IX*)-1 =    -1.5084        2.2628       - 0.6846 

                       -0.8087       -0.6846        3.3230 

 

Table 3: Comparison of matrix information 

 

    Table 4: Comparison of Efficiencies of Design 

 
 

VII.  RESULTS AND COMPARATIVE STUDY 

The determinant of the information matrix of the starting 
design as shown in table 3 is 0.2358 while the determinant of 
the information matrix of the D-Optimal design as shown in 
the same table is 3.4992. This reveals that the D-Optimal 
Design actually maximized the determinant of the 
information matrix. Meanwhile, the determinant of the 
dispersion matrix of the starting design as shown in table 3 is 
4.2409 while the determinant of dispersion matrix of the 
D-Optimal design as shown in the same table is 0.2858.  This 
reveals that the D-Optimal Design actually minimized the 
determinant of the dispersion matrix. The trace of the 
dispersion matrix of the starting design shown in table 3 is 
7.7065 while the trace of the dispersion matrix of the 
D-Optimal design as shown in the same table is 2.2593. This 
reveals that the D-Optimal Design minimized the trace of the 

 

S/n 

 

Parameter 

 

Starting 

Design 

Matrix 

(X) 

 

Optimal 

Design 

Matrix (X*) 

1 No of Rows of  Model 

Matrix 

9 9 

2 Determinant of 

Information Matrix 

0.2358 3.4992 

3 No of Columns of the 

Dispersion Matrix 

3 3 

4 Determinant of the 

Dispersion Matrix 

4.2409 0.2858 

5 Trace of the 

Dispersion Matrix 

7.7065 2.2593 

6 Maximum Variance of 

Prediction 

0.5514 0.3556 

S/n 
x1 x2 x3 

1 0.20 0.20 0.60 

2 0.20 0.20 0.60 

3 0.20 0.20 0.60 

4 0.20 0.80 0.00 

5 0.20 0.80 0.00 

6 0.20 0.80 0.00 

7 0.80 0.20 0.00 

8 0.80 0.20 0.00 

9 0.80 0.20 0.00 

     0.20 0.20 0.60 

0.20 0.20 0.60 

0.20 0.80 0.00 

0.20 0.80 0.00 

0.20 0.80 0.00 

0.80 0.20 0.05 

0.80 0.20 0.00 

0.80 0.20 0.00 

 

S/n 

 

Parameter 

 

Starting Design 

Matrix (X) 

 

Optimal 

Design Matrix 

(X*) 

1 A-Efficiency 4.3253 14.7538 

2 D--Efficiency 6.8644 16.8683 

3 G-Efficiency 60.4521 93.7382 
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dispersion matrix. Moreso, the maximum variance of 
prediction of the starting design as shown in table 3 is 0.5514 
while the maximum variance of prediction of the D-Optimal 
design is 0.3556. This reveals that the D-Optimal Design 
matrix minimized   the highest variance of prediction of the 
design Table 4 shows that the D-Optimal design increased the 
A-Efficiency of the initial design from 4.3253 to 14.7538, it 
also increased the D-Efficiency of the initial design from 
6.8644 to 16.8683. The D-Optimal Design equally increased 
the G-Efficiency of the initial Design from 60.4521 to 
93.7382.  
Thus, in view of the above, the D-Optimal Design is the 
improved design with higher statistical efficiency and it is 
therefore the most efficient design for the objective of the 
study. It is therefore suitable for better estimation of the 
parameters of the linear regression model under study. 

VIII. CONCLUSION AND RECOMMENDATION 

The D-Optimal Design generated by Computer Algorithm is 
the best design for the problem under      study, it is therefore 
recommended for use for the following reasons. 

  i.     It gives more efficient solutions at minimum cost so as 
to    ensure accuracy of the estimates of the      model 
parameters. 

 ii.  It helps Experimental design practitioners to reduce 
sample size and thereby reduce the cost of       
experimentation. 

 iii.   It allows the computation of more efficient solutions  
        for challenging practical problems. 
 iv    It maximized the resulting knowledge i.e it ensure that    

the selected experiment is  
        Maximally informative. 

  v.     It helps search for the combination of factors which will 
give the best yield and lowest impurities    at lowest 
possible cost, using lowest possible raw materials with 
minimum experimental runs.     

    vi      The D-Optimal design is suitable for better estimation 
of the model parameters. 

vii  The D-Optimal Design is suitable for accuracy of the 
estimators of the model parameters in terms of the 
variance of the estimators.          
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