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 
Abstract—A numerical study of nonlinear dynamics for 

electric power system with the Static Var Compensator (SVC) 

control is presented in this paper. In the previous design (Liaw 

et al, 2009), we have proposed A sliding mode control (SMC) 

based output tracking scheme for regulating the load voltage of 

the electric power system. In this paper, we will extend the 

previous design to consider the effect of the load variation. The 

relationship between the time constant of SVC controller and 

the changing rate of load variation is obtained by using 

numerical study, which will then guarantee the success of the 

voltage tracking design with respect to the variation of both 

reactive power and real power. 

 

 
Index Terms—power system, stability, control, load 

 

I. INTRODUCTION 

The study of voltage collapse in the electric power  systems  

has recently  attracted  lots of attention (e.g., [1]-[4]), which is 

mainly due to the fact of facing the growing load demands in 

power systems but with little addition of the power generation 

and transmission facilities. It is known that the power systems 

will be operated near the stability limits and make the 

magnitude of load voltage falls sharply to a very low level as 

the load demands become too heavy to be offered. Such a 

phenomenon is referred as the so-called “voltage collapse.” A 
practical power system is a large electric network containing 

components such as generators, loads, transmission lines and 

voltage controllers. In 1988, Dobson and Chiang introduced a 

simple dynamical model for electric power systems, which 

consist of a generator, a nonlinear load and an infinite bus [1]. 

Based on that model, several results have been published 

regarding the nonlinear phenomena of electric power systems 

(e.g., [1]-[2]). Among those results, the occurrence of  

voltage  collapse  had  been  believed  to be  attributed  to  the  

existence  of  saddle-node  bifurcation of  electric  power  

systems  [2] and/or the existence of  Hopf bifurcation which 

is  prior to  the  appearance of saddle-node bifurcation [3]. In 

addition, it is known that the voltage regulation issue can be 

solved by the setting of the tap changing ratio (e.g., [4]-[5]) or 

the extra adding capacitive load in practical electric power 

systems. However, both schemes are only available for 

discrete tuning. The Static Var Compensator (SVC) has 

recently been considered as a control actuator for improving 
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system stability (e.g., [6]-[7]). Instead of directly controlling 

the system behavior at the bifurcation point as proposed in 

[6], in [7] we have proposed a load voltage regulation design 

via the tuning of the SVC. Such a design is based on the 

sliding mode control scheme, which might also eliminate 

and/or delay the occurrence of bifurcation phenomena and 

system instabilities. In this paper, we continue the study of [7] 

by considering the PQ-load is a time-variant input. Numerical 

simulation will be carried on to study the effectiveness of the 

previous proposed design in delaying the occurrence of the 

system instabilities even with time-variant power load. 

The organization of the paper is given as follows. First, the 

mathematical model of electric power system and the output 

tracking control scheme proposed in [7] are both recalled in 

Section 2. It is followed by numerical study of the dynamical 

behavior of electric power system with respect to the 

variation of power load and system design parameters. 

Finally, Section 4 gives the conclusions.  

II. PRELIMINARIES 

In this section, we will first recall the mathematical model 

proposed by Dobson and Chiang [1] for electric power 

systems. It is followed by the recall of the load voltage 

tracking design [7] for the power system via the tuning of the 

SVC controller. 

A. Power System Model 

In the following, we recall the mathematical model 

proposed by Dobson and Chiang [1] for electric power 

systems as given by 
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where 
m

 , m
 ,  and V denote the generator phase angle, 

generator angular speed, load voltage phase angle and load 

voltage, respectively. In addition, the nonlinear PQ load are 

given as 
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For details, the definitions of each system parameter and 

derivations of the model equations above can be referred to 

[1]. 

B. SVC-controlled system via SMC approach 

In the recent years, the SVC‟s have been considered as a 
control scheme for voltage regulation in the electric power 

systems. The configuration of the SVC provides an additional 

reactive power when it is connected in parallel with the PQ 

load. That is, the overall effective reactive load 
1Q  will 

become the summation of the original demanded reactive 

load 0

1Q  and the added reactive load 1

added
Q  from the SVC‟s. 

The mathematical model of the SVC‟s has been proposed 

(e.g., [6]) as given by 

 1
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T
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with 
min maxB B B  . Here, B denotes the susceptance of the 

SVC, 
SVC

K  is the gain for the SVC, 
SVC

T  denotes the time 

constant and u denotes the control input. In addition, the 

added reactive load by the SVC‟s is given as 2

1
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Q BV . 
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4x V . Then we can rewrite system 

(1)-(4) with SVC control as follows: 
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where the extra demanded reactive load has become 
1Q   

2

5 4x x  with 
1Q  denotes the original demanded reactive load 

and 2

5 4x x  is for the added reactive load created by the SVC‟s. 
In the design of [7], (t)

d
V  denotes the desired load voltage 

for system (5)-(9). The result for the load voltage tracking 

control of system (5)-(9) is recalled from [7] as given in the 

next theorem. 

Theorem 1: The load voltage V denoted as 
4x  of system 

(5)-(9) will approach the desired voltage (t)
d

V  via sliding 

mode control   if / 0
SVC SVC

K T   and 2

4( / ) 0
p q pv

k Tk k x    . 
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given as that in (10) below with (t)
d d
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Based on the design of the Theorem 1 above, numerical 

simulations have been given in [7] to demonstrate the success 

of the proposed design for the static setting of the extra 

reactive load. 

III. MAIN RESULTS 

Instead of letting the extra reactive load be a fixed value, in 

the following we will not only consider the extra PQ-load is a 

time-variant function but also study the effect of the control 

parameters of the SVC actuator on system performance.  

A.  Open-Loop Dynamics with Different Static Load 

First, we present the numerical results for the uncontrolled 

system (1)-(4) with respect to the variation of PQ-load. Here, 

we adopt the value of system parameters as given in TABLE I 

for system (1)-(4) from [7]. Bifurcation diagrams of the load 

voltage (denoted as 
4x ) with respect to the different setting of 

extra PQ-load are obtained by using code AUTO [8] as 

depicted in Fig. 1, where the solid-line denotes the stable 

system equilibria and the dashed-dot-line is for the unstable 

ones. Figure 1 shows that there are both Hopf bifurcation and 

saddle-node bifurcation for 1 0.1513,P  respectively, as 

denoted by “HB” and “SNB”. However, there is only a 

saddle-node bifurcation for 1 0.1514P  . The values of 1Q  at 

HB and SNB for each value of 
1P  are also listed in TABLE II. 

The symbol „-‟ in TABLE II denotes that the HB does not 

exist. When 
1P  is increasing from 0 to 0.2, the values of 

1Q  

at SNB are found to be increasing. However, the values of 1Q  

at SNB are decreasing for 1 0.2.P   Time responses of load 

voltage  4x with respect to different values of 1P and 1Q  are 

shown in Figs. 2-4. It is observed from Figs. 2-3 that the load 
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voltage 
4x will approach to a stable and steady value at 

1 2.5Q  and 
1 2.7Q  for 

1 1.P   However, the load 

voltage
4x will be collapsed at for 

1
Q =2.9802183287 with 

1 1P  as depicted in Fig. 4(d). Those time responses agree 

with the bifurcation diagram as shown in Fig.1. 

 

TABLE I. Data for system parameters 

0.4
p

K   p.u. 0.3
pv

K  p.u. 0.003
q

K    p.u. 

2.8
qv

K   p.u. 
2

2.1
qv

K  p.u. 8.5T  p.u. 

0
0.6P  p.u. 

0
1.3Q  p.u. 0.01464M   

0
3.33Y  p.u. 

0
0  deg. 

0
1.0E  p.u. 

3.5C  p.u 5.0
m

Y  p.u. 0
m
   deg. 

1.05
m

E  p.u. 1.0
m

P  p.u. 0.05
m

d  p.u. 

 

TABLE II. Location of bifurcation points  

1P  
1Q  at HB 

1Q  at SNB 

0 2.9802183287 3.0257810507 

0.1 3.023875938 3.0300035165 

0.1513 3.030702709 3.0307060238 

0.1514 - 3.0307064235 

0.2 - 3.030453767 

0.5 - 3.0090175864 

1.0 - 2.8945266365 

1.5 - 2.6708492979 

2.0 - 2.314373463 

2.5 - 1.7841152012 

3.0 - 1.0209601514 

3.2 - 0.63602092587 

3.45 - 0.082890487695 

 

B. Effects of Control parameters 

Next, we consider the effect of the SVC controller on the 

system performance. In [7], we chose (t) 1
d d

y V  as the 

desired target for voltage regulation. Here, we continue the 

study of [7] with the same objective. As shown in Fig. 5, the 

tracking performance of power system are observed to be the 

same disregard the values of the time constant 
SVC

T and the 

control gain 
SVC

K of the SVC control given in (9). In fact, 

after carefully checking the dynamical behavior of the SVC 

control as given in Eq. (9) can be rewritten as 

5 5

1
( ) sgn( )

SVC

SVC

x K u x s
T

       . 

That means the control performance will depend on the 

choice of control gain   only, which has no relationship with 

the value of 
SVC

T  or .
SVC

K  In the following numerical study, 

we choose 10
SVC

T  and 10.
SVC

K  Time responses of load 

voltage tracking for 
1 2.9802183287Q  and 

1 3Q   with 

2,  10   and 100 are shown in Figs. 6-7, respectively. It is 

clear to see that the tracking performance becomes better as 

the value of   increases. The tracking performance with 

respect to the different setting value of  is also shown in Fig. 

8. 

C. Effects of Control parameters 

Now, we consider the PQ-load is a time-variant function by 

letting 
1 2.9802183287 0.7sin(2 / )

Q
Q t T  near the Hopf 

bifurcation point as depicted in Fig. 9 for 10,  100
Q

T  and 

1000. Time responses of load voltage tracking for 

1 2.9802183287Q  and 
1 3Q   with 10,  100

Q
T  and 1000, 

2   and 100, and 
1 0,  0.1,P   0.2 are shown in Figs. 

10-27. It is observed from those simulations that the tracking 

control might be fail when the period 
Q

T  is small with small 

value of  disregard the values of 
1P or

1Q . Instead, the 

tracking design can be workable for small 
Q

T  only if the 

value of   is big enough. 

IV. CONCLUSION 

A numerical study of control performance for SVC-based 

load voltage tracking is presented in the paper. It is found that 

the tracking performance of the proposed scheme in [7] 

depends on the control parameter of the reaching condition in 

sliding mode design. In addition, the proposed tracking 

design might be fail when the period 
Q

T  of load variation is 

too small if the control parameter  is not big enough. Those 

results might provide a guide in the practical application. 
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Fig. 1  Bifurcation diagram 

4x  with respect to 
1

P  and 
1

Q  

 
Fig. 2  Open loop time response of state 

4x for 
1

Q =2.5. 

 
Fig. 3  Open loop time response of state 

4x for 
1

Q =2.7. 

 
Fig. 4  Open loop time response of state 

4x for 
1

Q =2.9802183287: 

(a) 
1

P =0, (b) 
1

P =0.1, (c) 
1

P =0.2, and (d) 
1

P =1. 

 

 
Fig. 5 Time response of state 

4x applied control at t =5 with 1  :  

(a) 
SVCT =0.1 and 

SVCK =0.1.  (b) 
SVCT =10 and 

SVCK =10. 

 

 
Fig. 6 Time response of state

4x  for 
1

Q =2.9802183287 

with  =2, 10 and 100. 

 
Fig. 7 Time response of state 

4x for 
1Q =3 with  

 =2, 10 and 100. 

 

 
Fig. 8 The tracking performance for  =0.01 to 1000 

 
Fig. 9 Reactive load 

1Q  for different QT :(a) QT =10,  

(b) QT =100, and (c) QT =1000. 
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Fig. 10 The tracking performance for 

QT =10 with  = 2  

and 100 for 
1Q =2.9802183287 and 

1P =0. 

 
Fig. 11  The tracking performance for 

QT =100 with  = 2 and 

100 for 
1Q =2.9802183287 and 

1P =0. 

 

 
Fig. 12 The tracking performance for 

QT =1000 with  = 2 and 

100 for 
1Q =2.9802183287 and 

1P =0. 

 

 
Fig. 13 The tracking performance for 

QT =10 with  = 2 and 

100 for 
1Q =2.9802183287 and 

1P =0.1. 

 
Fig. 14  The tracking performance for QT =100 with  = 2 and 

100 for 
1Q =2.9802183287 and 

1P =0.1. 

 
Fig. 15  The tracking performance for 

QT =1000 with  = 2 and 

100 for 
1Q =2.9802183287 and 

1P =0.1. 

 
Fig. 16  The tracking performance for 

QT =10 with  = 2 and 

100 for 
1Q =2.9802183287 and 

1P =0.2. 

 
Fig. 17  The tracking performance for 

QT =100 with  = 2 and 

100 for
1Q =2.9802183287 and 

1P =0.2. 

 
Fig. 18  The tracking performance for 

QT =1000 with  = 2 and 

100 for
1Q =2.9802183287 and 

1P =0.2. 

 
Fig. 19  The tracking performance for QT =10 with  = 2 and 

100 for
1Q =3 and 

1P =0. 
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Fig. 20  The tracking performance for 

QT =100 with  = 2 and 

100 for 
1Q =3 and 

1P =0. 

 
Fig. 21  The tracking performance for 

QT =1000 with  = 2 and 

100 for 
1Q =3 and 

1P =0. 

 
Fig. 22  The tracking performance for 

QT =10 with  = 2 and 

100 for 
1Q =3 and 

1P =0.1. 

 
Fig. 23  The tracking performance for 

QT =100 with  = 2 and 

100 for 
1Q =3 and 

1P =0.1. 

 
Fig. 24  The tracking performance for QT =1000 with  = 2, and 

100 at 
1Q =3 and 

1P =0.1. 

 

 

 
Fig. 25  The tracking performance for 

QT =10 with  = 2 and 

100 for 
1Q =3 and 

1P =0.2. 

 
Fig. 26  The tracking performance for 

QT =100 with  = 2 and 

100 for 
1Q =3 and 

1P =0.2. 

 
Fig. 27  The tracking performance for 

QT =1000 with  = 2 and 

100 for 
1Q =3 and 

1P =0.2. 

 


