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Abstract— A graphical interpretation of the 

time-independent Schrödinger equation in the Cartesian 

coordinate system for the explicitly set wave function of the 

ground state and selected excited states of the hydrogen has 

been presented. It was shown that the equation left-sidedly 

multiplied by the function ψ allows to find its didactic 

connection with the course of the beam of light emitted by the 

hydrogen atom in the measuring system of the spectroscope 

equipped with a prism. 

 
Index Terms—Cartesian coordinates, prism, Schrödinger 

equation, straight line. 

 

I. INTRODUCTION 

The inspiration to write the present paper was the remark 
made in the book [1], which is as follows: “We are so used to 
simple proportionality that we are liable to underrate the 
far-reaching consequences of this simple law.”. Although this 
sentence refers to some phenomena occurring in the cells of 
living organisms, we will show below that it also applies to 
the time-independent Schrödinger equation (hereinafter 
abbreviated as TISE). Proportionality in the considered 
equation is limited only to special examples of the so-called 
own functions, yet these are fundamental examples. We will 
also demonstrate that the proportionality analysis allows to 
find a connection between a TISE geometric image and a 
spectroscopic experiment in which a beam of light from an 
atom that emits radiation is split into components by means 
of a prism.  

Until now, the TISE description in teaching literature has 
focused on numerical solutions of one-dimensional TISE 
[ 2 ],[ 3 ]. Calculation of adiabatic approximation of TISE 
solutions [ 4 ], application of Mathematica computer 
application  to obtain some solutions of TISE [5],[6]. WKB 
approximation in the TISE solution [7]. PIB (particle in box) 
solution [8], the influence of the configuration interaction 
(CA) method on the TISE solutions [9]. TISE solutions for 
two-atom oscillators using linear algebra methods [10]. TISE 
solutions with the use of anharmonic potentials [11]. The 
graphic side of TISE was discussed in relation to the 
connection of angular momentum of an electron and other 
quantum numbers [12]. 
 

II. THE SCHRÖDINGER EQUATION IN THE PARAMETRIC 

CARTESIAN COORDINATE SYSTEM 

The time independent Schrödinger equation is recorded in 
the commonly known formula (1): 
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The external form of (1) may suggest that it is an advanced 

analogue of the ordinary straight line equation y a x  , 

which is an equation with a angular coefficient of a straight 
line passing through the origin of the Cartesian coordinate 
system. However, in the case of (1) we can understand that all 
the values ψ should be set aside on the x-axis, while Ĥ ones 

should be set on the y-axis, as far as both the Hamiltonian and 
function ψ are given explicitly. With this assumption, we 
would deal with a parametric coordinate system, where the 
parameters would be all the independent variables of ψ and 
possible constant parameters on which the function ψ could 
depend. In such a system, the value E would act as the 
angular coefficient of a certain straight line, which should 
also pass through the origin of this system. We will check if 
this assumption for a few selected forms of (1). 

Let us consider a hydrogen atom with the 
Born-Oppenheimer approximation and with the infinitely 
heavy nucleus. In this arrangement, the Hamilton operator for 
the hydrogen atom takes the form of (2) in atomic units: 
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Let us arbitrarily assume the form of a wave function 𝜓, 

which is a Q-class function and may be intended to describe 
some state of a hydrogen atom. Let this function be 

cr
e  [13], where c is a certain non-negative constant (so 

called a vartiational constant), while r is the radius vector of 
the electron. Additionally, the proton is placed at the origin of 
the coordinate system. After these assumptions, TISE will 
transform to the following form (3): 
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Drawing a line course in a parametric coordinate system 

will be possible after carrying out the Hamiltonian operation 
on the selected function. For this purpose, the sum of the 
second derivatives of the selected function ψ have to be 
calculated, remembering that the radius vector is in the 

following form: 2 2 2
r x y z   . It is convenient to carry 

out the differentiation procedure using one of the symbolic or 
on-line calculation algorithms available on websites designed 
for such calculations. After carrying out the differentiation 
and ordering of variables, e.g. such a form of TISE is 
obtained (4): 
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It is obvious that we are now able to divide both sides of 

(4) by cr
e
 and obtain the expression (5) for energy as a 

function of two variables, c and r: 
 

1 1

2

c
E

r


     (5) 

 
It should be noted that only if c = 1, the energy value is a 

constant one and it is equal to E = -0.5. In fact, it is the energy 
of the ground state of the hydrogen atom, expressed in the 
atomic unit (hartree). For this value of c the energy of the 
system is constant and all the possible electron positions in 
the space surrounding the nucleus. 

However, our aim is to present (4) in the Cartesian 
coordinate system. This can be done by selecting one of the 
available websites with online procedures to draw diagrams 
of parametric equations and apply (4) directly for the selected 
value c with the parameter r. Instead of this, we used Visual 
Basic programming language [14] (see Appendix, Procedure 
1) for this purpose. Fig. 1 shows the eq. (4) curves plotted for 
three arbitrarily chosen values of c (0.2, 1.0 and 1.8) with  r 

used as a parameter within range from 0.01 to 15: 
 

 
Fig. 1. MS Excel chart showing eq. (5) plots for three 
different values of the coefficient c. 
 
In reality, a straight line is formed in the system only for 
values 𝑐 = 1. For other values, certain curves are formed. 
This always happens when the function ψ it is not an 
eigenfunction of the Hamiltonian (obviously when 1c   in 
this case). 

We will consider one more example of the function ψ, 
which becomes negative for some values of the radius vector 
r and additionally some values of this function depend on the 
angles in the spherical coordinate system. Let this be a 
function (6): 
 

2 sin( )cos( ) cr
cr e      (6) 

 
which is an eigenfunction corresponding to the unnormalized 
orbital 2px only when c = 0.5. The Hamiltonian operation on 
this function gives  (7): 
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2
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Using (7), the full version of the time-independent 

Schödinger equation takes the form of (8): 
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As (8) is dependent not only on r and c but additionally on 

the angles and , this fact should be taken into account 
when constructing a program for drawing a straight line. This 
means the need to introduce additional two loops to change 
the characteristic angles across their function domain (see 
appendix).   

The function 2px  has negative values for a certain array r, 
θ and ϕ. This fact is manifested by the appearance of the 
straight line arm in the second quadrant of the parametric 
coordinate system (Fig. 2, Appendix, Procedure 2): 
 

 
Figure 2. An Excel chart showing eq. (8) for c = 0.5. 
 

Such simple figures can be made for each eigenfunction of 
the selected quantum state of the hydrogen atom. For training 
purposes, the results of the Hamiltonian operation on 
functions 2s, 2py, 2pz and all functions (unnormalized 
orbitals) of the M shell are given in the appendix. They can be 
used for the exercise of examining for which values c a 

straight line is formed in the coordinate system ( ˆ, H  ) . 

It should be noted that in a three-dimensional Cartesian 

coordinate system, e.g. ( ˆ, ,r H  ), the presented straight 

lines are only projections of spatial curves on the plane 
ˆ, H  . These curves have asymptotes on the axis r for 

r    regardless of the parameter value c.  
 

III. CONNECTION OF THE PARAMETRIC COORDINATE 

SYSTEM WITH THE REAL SPECTROSCOPIC EXPERIMENT 

The element relevant for didactics of quantum chemistry 
appears only when TISE is left-sidedly multiplied by the 
function ψ (9): 

2
Ĥ E    (9) 

We will use this last form to create a Cartesian coordinates 

with the axes defined as ( 2 ˆ, H   ). It turns out that this 
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procedure causes that straight line points are located only in 
the 4th quadrant of the coordinate system for both positive 
and negative values for an eigenfunction of the adopted 
Hamiltonian (Fig. 3, Appendix, Procedure 3): 

 

 
Figure 3. The course of a straight line in a coordinate 

system ( 2 ˆ, H   ) for ψ = 2px. 

 
This property causes that we can identify the behaviour of 

such a straight line with the geometrical system of a prism 
used e.g. in a UV/Vis spectrophotometer in which takes place 
the diffraction of radiation emitted, e.g. by the hydrogen 
atom. Let us suppose we throw a collimated light beam 
corresponding, e.g. to the Balmer series boundary, whose 
energy is equal to -3.40 eV (410 nm or -0.12495 hartree). Let 
us additionally suppose that this beam falls on the prism at 
the angle 𝛽 selected by us in such a way that the tangent of 
the deflection angle 𝛼 is numerically equal to the energy in 
the selected physical unit. This situation is presented in Fig. 
4: 

 

 
Fig. 4. A prism with a beam of light course emitted by a H 

source in the coordinate system ( 2 ˆ, H   ). 

 
In such a system, we can assign the edge a of the prism 

with the role of the axis ψ2, which adopts the maximum value 
(i.e. for ψ2=0) at the point of contact with the perpendicular 
edge b and at the same time where the light beam leaves the 

prism. On the other hand, the vertical edge Ĥ   is routed 

perpendicular to the axis ψ2. The origin of the coordinate 
system is placed at the point where the collimated light beam 
falls into the prism. It can be seen from the Fig. 3 that such a 

connection concerns the course of the beam of light only 
inside the prism. The angular coefficient of such a line still 
corresponds to the energy of the selected quantum state of the 
hydrogen atom. It can be seen that the selection of any trial 
function which is not the own function of the chosen 
Hamiltonian (e.g. by changing the value c) causes the system 
to obtain a curve that has an asymptote for the maximum 
value ψ^2. It can be said that the trial functions, which are not 
eigenfunctions, give such a course of the beam of light inside 
the prism that it does not come out in the expected place. This 
means that trial functions that are not self-functions are 
nonphysical in the sense that they in a prism, they behave in a 
rather unusual way for a light beam, and that obtaining solid 
values (independent of the radius vector and angles) of 
quantum energy values requires additional mathematical 
operations, e.g. the averaging process involving the 
integration of (8) in the entire electron position variability 
area. 

It should be noted that more than one radius from excited 
hydrogen atom states can be placed in Figure 4. To make this 
possible, the functions ψ should be normalised in such a way 
that their maximum values are  the same (the normalisation 
procedure was carried out in the case of Figure 3 – see 
supplement). This is not a normalisation characteristic for 
orbitals. There it is required that the integral of the square of 
the wave function is equal to one. Here, it is enough for the 
maximum value of all selected functions to be e.g. 1. 
 

APPENDIX 

Main symbols: 
a – coefficient at the Laplacian in atomic units 
b – coefficient at the potential in atomic units 
c – variational variable 
r – electron radius vector 
psi – ψ, wave function variable 

Hpsi – Ĥ , function as the result of the Hamiltonian action 

on the function ψ. 
 

All the procedures are written in MS Visual Basic for 
Excel. 

 
Procedure 1.  
‘Calculation of ˆ, H   value pairs for 1s orbital in 

‘atomic units 
 

Sub stright1s() 

j = 1 

For c = 0.2 To 1.8 Step 0.8 

 For r = 0.01 To 15 Step 0.01 

   psi = Exp(-c * r) 

   Hpsi = (-1 / 2 * c * c + (c - 1) / r) * psi 

   Cells(j, 1) = psi 

   Cells(j, 2) = Hpsi 

   j = j + 1 

 Next r 

Next c 

End Sub 

 

 

 

Procedure 2.  
‘Calculation of 𝜓,𝐻 𝜓 value pairs for ‘unnormalized 
2px orbital in atomic units 
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Sub stright2px() 

a = 0.5: b = 1: j = 1: c = 0.5 

Pi = 3.1415 

For r = 0.01 To 10 Step 0.1 

 For phi = 0 To Pi Step 0.4 

  For theta = 0 To 2 * Pi Step 0.4 

    s1 = Exp(-c * r) 

    psi = 2 * c * r * Sin(theta) * Cos(phi) * s1 

‘The two lines below should be written in one row in 
‘the VB for Excel 

Hpsi = -2*c *(a*c*(c*r-4)+b)*Sin(theta)* 

Cos(phi)*s1 

    Cells(j, 1) = psi 

    Cells(j, 2) = Hpsi 

    j = j + 1 

  Next theta 

 Next phi 

Next r 

End Sub 

 
Procedure 3. 
 

‘Plotting of a straight line for normalized 2px 
‘orbital in a prism system 
 

Sub prism2px() 

j = 1: c = 0.5 

Pi = 3.1415 

N = 1 / (2 * Exp(-1)) 'normalization constant 

For r = 0.1 To 5 Step 0.2 

  For phi = 0.1 To Pi Step 0.2 

    For theta = 0.1 To 2 * Pi Step 0.2 

      s1 = Exp(-c * r) 

      psi = N*r*Sin(theta)*Cos(phi)*s1 

      Hpsi = -2*N*c*(c/2*(c*r-4)+1)* 

      Sin(theta)*Cos(phi)*s1 

      Cells(j, 1) = psi * psi 

      Cells(j, 2) = psi * Hpsi 

      j = j + 1 

    Next theta 

  Next phi 

Next r 

End Sub 
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