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 
Abstract— On the basis of a suitable theoretical ground, we 

study and propose Antennas for the generation, in Acoustics, of 

Non-Diffracting Beams of ultrasound.  We consider for instance 

a frequency of about 40 kHz, and foresee fair results even for 

finite apertures endowed with reasonable diameters (e.g., of 1 

m), having in mind various possible applications, including 

remote sensing.  We then discuss the production in lossy media 

of ultrasonic beams resisting both diffraction and attenuation.  

Everything is afterward examined even for the cases in which  

high-power acoustic transducers are needed (for instance, for 

detection at a distance —or even explosion— of buried objects, 

like Mines). 

Index Terms—Acoustic Non-Diffracting Beams; Truncated 

Beams of Ultrasound; Remote sensing; Diffraction, 

Attenuation, Annular transducers, Bessel beam superposition, 

Beams resisting diffraction and attenuation, Acoustic Frozen 

Waves, Detection of buried objects, Explosion of Mines at a 

distance.  

 

I. INTRODUCTION 

In this paper we present work on theory and 
generation, in Acoustics, of Non-Diffracting Beams[1,2]of 
ultrasound; having in mind various possible applications, 
including remote sensing (we shall leave aside, however, the 
―Acoustic Frozen Waves", which have been already 
investigated elsewere [3,4]). 

  Acoustic Non-Diffracting Waves (ANDW) were 
first studied, generated, and applied by Lu et al., starting in 
1992, for the particular case of the so-called (ultrasonic) 
X-shaped waves (see, e.g., Refs.[5,6]).  For reviews about 
Non-Diffracting Waves (NDW), including X-shaped waves 
(as well as the mentioned Frozen Waves), one can see for 
instance Refs.[7,8], besides the initial Chapters in the already 
quoted books [1,2]. 

  The NDWs, including of course the ANDWs, 
arose interest because of their spatio-temporal localization, 
unidirectionality, soliton-like nature, and self-healing 
properties[1,2]: All of them bearing interesting 
consequences, from theoretical and experimental points of 
view, in all sectors of physics in which a role is played by a 
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wave equation. The NDWs would keep such properties all 
along an infinite distance, only in the ideal case of unlimited 
antennas, implying an infinite energy flux through any 
transverse plane. Such ideal NDWs cannot be practically 
generated, of course; and careful work was needed for 
finding out analytic expressions for realistic NDWs –for 
example  truncated—, and afterward producing them (see 
Refs.[9,10] and refs. therein). Any realistic, finite-energy 
NDW will maintain its good properties only within a certain 
depth of field: much longer, however, than the one reached 
by a  diffracting wave like the gaussian ones[1,2]. 

  Let us first consider the problem of the truncated 
pulses in general (in electromagnetism, say), before passing 
to Acoustics. 

A. Analytic Expressions for Truncated  Non-Diffracting 

Pulses 

 
Let us go on, therefore, to the problem of constructing in 

analytic form truncated Non-Diffracting Waves, in order to 
be more easily able to produce them experimentally. We 
address here the case of  pulses, since the case of beams have 
been exploited elsewhere (see, e.g., Refs.[9,10] and refs. 
therein). 
  When one truncates an ideal non-diffracting pulse (INDP), 
the resulting wave field cannot be obtained, in general, in 
analytic form. One has to resort, in such cases, to the 
diffraction theory and perform numerical evaluations of the 
diffraction integrals, such as that, well known, of 
Rayleigh-Sommerfeld.  And, indeed, one can get important 
pieces of information about a truncated non-diffracting pulse 
(TNDP) by performing numerical simulations of its 
longitudinal evolution, especially when the pulse is axially 
symmetric. 
  However, let us stress first of all the possibility of obtaining 
truncated non-diffracting pulses in analytic form even by a 
heuristic method. Subsequently, we are going to show how 
the solutions forwarded by an efficient method, expounded in 
Ref.[9] for beams, can be transformed into closed form 
expressions for truncated non-diffracting pulses[11]. 
 

B. A heuristic approach 

 
First of all, let us recall that a preliminary method for 

describing the on-axis space-time evolution of truncated 
non-diffracting pulses, be they subluminal, luminal or 
superluminal, was developed in Ref.[12].  Within the 
framework of that quite simple method, the on-axis evolution 
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of a TNDP depends only on the frequency spectrum 
)(S

 
of the corresponding INDP, ΨINDP ; in contrast to the 
Rayleigh-Sommerfeld formula which depends on the explicit 
mathematical expression of ΨINDP .  Such a heuristic method, 
due to its simplicity, can yield closed-form expressions which 
describe the on-axis evolution of innumerable TNDPs. In 
Ref.[12] one can find the analytic expressions for the 
truncated versions of several well-known localized pulses: 
subluminal, luminal, or superluminal. Therein, the theoretical 
results were compared with those obtained through the 
numerical evaluations of Rayleigh-Sommerfeld integrals, 
with excellent agreement. Here, we confine ourselves just to 
present an example of such noticeable agreements, by 
Figures 1 and 2. 

 
Figure  1: (Color online) Peak intensity evolution of a 

subluminal TNDP for three choices[12] of the parameters  [(1)  

= 0.995V c  and 
15

= 1.5 10b  Hz;  (2)  = 0.998V c  and 

14= 6 10b  Hz;  (3)  = 0.9992V c  and 
14= 2.4 10b  Hz]. In 

all cases the aperture radius is = 4R mm.  Remember 

thelinear relation =Vk bz  .  The continuous lines are 

obtained from the closed-form analytic expression (eq.23 in 

Ref.[12]), while those represented by dotted lines come from the 

numerical simulation of the Rayleigh-Sommerfeld formula 

(eq.8 in [12]). Theagreement is excellent: Practically, no 

difference is perceivable. 

 

 
Figure  2: (Color online) On-axis evolution of the same 

subluminal TNDP considered in Fig.1, at three different 

instants of time [ = 0.11t ns, = 0.22t ns and = 0.33t ns].  

Figures a, b and c represent the cases (1),(2) and (3) 

respectively.  The continuous lines are the results obtained 

fromthe closed-form expression, while those represented by 

dotted lines come from the numerical simulation of the 

Rayleigh-Sommerfeld formula. Again, the agreement is 

excellent: No difference is detectable. 

 

  The mentioned approach in [12] is actually useful, because 
in general it furnishes closed-form analytic expressions 
avoiding the need of time-consuming numerical simulations; 

and also because those closed-form formulae provide an 
efficient tool for exploring several properties of the truncated 
localized pulses: as their depth of field, longitudinal pulse 
behavior, decaying rates, etc. 
  However, let us turn to a more rigorous approach. 

 

C. Again on closed-forms for Non-Diffracting Pulses, in 

the Fresnel regime, generated by finite apertures 

 
Let us fix our attention to the method developed in [9], that 

we shall call for brevity ―the MRB method"; it can be found 
summarized, now, also in [13]. By that method, the analytic 
description was obtained of some monochromatic waves: 
namely, of a few (important) beams generated by finite 
apertures. The important point is that one can generalize the 
efficient method MRB, in the paraxial approximation, for the 
case of  pulses. 
  Since we are going to use superpositions of Bessel-Gauss 
beams, let us start by recalling the form of the so-called 
Bessel-Gauss beam[14]:  
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which appears to be a Bessel beam transversally 

modulated by the Gaussian function.  Quantity 

zikqQ /2= 
, and k

 (the transverse wavenumber 
associated with the modulated Bessel beam) is a constant.  

[When k
= 0,  the Bessel-Gauss beam results in the 

well-known Gaussian beam.  The Gaussian beam, and 
Bessel-Gauss, Eq.(10), are among the few solutions to the 
Fresnel diffraction integral that can be obtained analytically].  
The situation gets much more complicated, however, when 
facing beams truncated in space by finite circular apertures: 
For instance, a Gaussian beam, or a Bessel beam, or a 

Bessel-Gauss beam, truncated via an aperture with radius R
. [In this case, the upper limit of the Fresnell integral becomes 
the aperture radius, and the analytic integration becomes very 
difficult, requiring recourse, as we were saying, to lengthy 
numerical calculations].  Afterward, let us also recall that –in 
the case of beams– we considered the solution given by the 
following superposition of Bessel-Gauss beams:  
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quantities nA
 being constants, and nQ

 being given by  

z

ik
qQ nn

2
= 

,  where the nq
 are constants that can assume 

complex values. In this superposition all beams possessed the 

same value of k
.  In our previous work, we wanted the 

solution (2) to be able to represent beams truncated by 
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circular apertures, in the case of Bessel beams, gaussian 
beams, Bessel-Gauss beams, and plane waves.  And, given 

one of such beams, truncated at 0=z  by an aperture with 

radius R , we determined the coefficients nA
 and nq

 in 
such a way that Eq.(2) represented with fidelity the resulting 
beam. More details  can be found in the papers of ours quoted 
above. 
  Let us recall, before going on, that in previous work we 
found an equation which could be used for representing, on 

the plane 0=z , truncated Gaussian, Bessel, Bessel-Gauss 
beams and truncated Plane waves; with the consequence that 

the evolution of such truncated beams was given by Eq.(2).   
The interesting question, for us, is now: Is it possible to 

derive from what precedes also analytic descriptions of 
pulses truncated  by finite apertures?: For instance, for TBP 
(truncated Bessel pulses), TBGP (truncated Bessel-Gauss 
pulses), TGP (truncated gaussian pulses), and TPP (truncated 
plane-wave pulses)? [even if we shall fix our attention only 
on truncated Bessel pulses].  We shall answer this question 
within the paraxial approximation; to this aim, consider an 

envelope 
);,,( tzyx

obeying[23] the equation of the 
paraxial waves 

 
,0=)2/1(]/)/1(/[

2  ktczi
(3) 

where the time dependence of   is essential [and cannot be eliminated as in the case of beams]. When assuming axial 
symmetry, one can write  
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where we replaced   with the variable u  (since 0 
 will mean here the pulse central frequency).  As usual, it is  

ck  ,  and  oz kkcuk //= 2


.  If we know 
),,( tz

 on the plane 0=z  of the aperture, it will be 
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in terms of one Fourier-Bessel and one Fourier transformation.  By using the corresponding inverse transformations, one 

succeeds in writing the spectral function 
),( ukS   as a function of the field existing at the aperture!; namely 
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Inserting Eq.(6) into Eq.(4), and reversing the order of the integrations over k
 and u , one gets 
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The last part in square brackets yields the Dirac delta  
 ctctz  '2  .  With some more algebra, one reaches the 

equation 
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which can be finally integrated over t , without difficulties due to the presence of the delta,  furnishing for a pulse the 

solution we were looking for: 

    ,/)]4/()'(exp[)/(,0,),,( 0
2222

0
zkJezikzkctzdtz o

zik

oo    


(9) 

where one can notice that under the integral it now appears quantity 
)( ctz 

 instead of t .  Equation (9) is the analogous of 
the one found out by our MRB method for beams. 
 The integral solution (9) tells us that the pulsed field (envelope) can be obtained by merely knowing its value in the plane 

0=z  of the aperture, as a function of time and of the spatial coordinate.  The result in Eq.(9) is interesting also because it 
extends the MRB method to pulsed fields: In the sense that one can utilize any solution found by the said method[9] for beams, 

transforming it into a solution for pulses via a mere multiplication by the function 
)])/(([exp 222

Tcctz 
. More precisely: 
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—to get a truncated beam, it is enough to have at the aperture a field of the type  
)/()(,0)( 0 RcirckJ  

;            

—to get a truncated pulse, it will be enough to have at 0=z  an analogous field of the type  

)/()/(exp)(),,0( 22
0 RcircTtkJt   

;            

where the multiplying function  
)])/(([exp 222

Tcctz 
  reduced to  

)/(exp 22
Tt

  on supposing that /2>>T .  

One can also notice that, having recourse to multiplying functions of the type  
])/([exp 2n

Tt
,  one can get a series of (for 

instance) step-shaped pulses. 
 

II. APPLICATIONS FOR ACOUSTIC (ULTRASONIC)  

NON-DIFFRACTING PULSES 

Let us finally consider ultrasonic (acoustic) pulses, for 
instance with a central frequency of 40 kHz, generated by a 

finite aperture with radius 0.5=R  m.  One may have in 
mind, for example, remote sensing, and the purpose of 
obtaining a realistic pulse which keeps its spot-size unvaried 
for, say, 20 m. We shall apply of course the results of our last 
subsection, which allow us to describe analytically several 
truncated pulses without any need, again, of lengthy 
numerical simulations. 

 
 

Figure  3:  (Color online) As an application of our last method 

to ultrasonic (acoustic) pulses, let us consider a truncated Bessel 

pulse with initial spot-radius of 15 cm, generated by a finite 

antenna with radius = 0.5R  m. Attenuation (actually strong in 

the air when its central frequency is assumed to be 40 kHz) is 

neglected here. If one has in mind, for example, remote sensing, 

he may want our realistic pulse to keep its spot size unvaried 

for, say, 20 m.  The present set of figures, representing by colors 

the actual pulse evolution, does indeed show such abehavior. 

 
 
Figure  4: This second set of figures shows, in terms of 3D 

plots, the evolutions of the same truncated Bessel pulse 

considered in the previous Figure.  In this case, the intensity is 

given by the height of 2| | .   From these figures one can easily 

see the pulse spot (initially with a radius of 15 cm) to keep 

rather well its size for about 20 m, just with an oscillating 

intensity due to the edge-effects of the finite antenna.  

Afterward, the pulse strongly deteriorates; and, to get better 

results by a Bessel pulse like this, one ought to use larger 

antennas. 
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Figure  5:  (Color online) In this further figure we depict the 

evolution, during propagation, of the intensity peak of the same 

truncated Bessel pulse; still keeping no account of attenuation.   

 

We shall confine ourselves, however, to just a few 
examples. Let us start with a truncated Bessel pulse with a 
spot-radius of 15 cm. For simplicity, we shall not take here 
into account the pulse attenuation, quite present for the said 
frequency in the air, even if one could take account of it 
without too much difficulty. 
  Such a Bessel pulse, a priori, can be easily generated. If we 
think in terms of a simple antenna, constituted by an array of 
annular transducers, then: (i) transducers do exist working 
with the mentioned frequency; (ii) amplitudes and phases of 
the vibrations are given as functions of the chosen pulse; (iii) 
the pulsed excitation (a modulation of the carrier wave) is the 
same for all transducers, and we choose precisely a temporal 

gaussian with 
2.5=t

ms, hundred times larger than the 

period of the 40 kHz wave (
5102.5= 

xT
 s). Incidentally, 

the choice of pulses with duration much longer than the 
carrier period is requested by the slow-envelope 
approximation, assumed by us when generalizing the MRB 
method for pulses. 
  Let us give an idea of the results by the help of suitable 
Figures. 
  The first set of figures, Fig.3, shows the pulse evolution by 
colors.  By contrast, the second set of figures, Fig.4, shows it 
in terms of 3D plots (the intensity being represented by the 

eigthof 
2||

).   From figures 4 one can clearly see the pulse 
spot (initially with a radius of 15 cm) to keep rather well its 
size for about 20 m, just with an oscillating intensity due to 
the edge-effects of the finite antenna. Afterward, the pulse 
strongly deteriorates; and, to get better results by such a 
Bessel pulse, one ought to use larger antennas. 
  By the the last figure, Fig.5, we depict the evolution of its 
intensity peak while propagating (still keeping no account of 

the attenuation). 

A. Further Cases 

 

 Second case: Truncated Bessel beam with a spot 

radius of 23 cm 
Suppose we want to get now a spot keeping its size for a 

larger distance, arriving at about thirty meters; while the 

radius of the generating antenna remains 0.5=R  m. 
  As before, the pulse evolutions is first shown by colors 
(Fig.6), and then in terms of 3D plots (Fig.7), when the 

intensity is represented by the height of 
2||

. 
  One can see that the impulse spot radius (initially of 23 cm) 
maintains its value for about 30 m, oscillating in intensity due 
to the edge effects of the finite antenna.  Afterward, the pulse 
strongly deteriorates; once more, to get better results by a 
Bessel pulse like this, one ought to use larger antennas. 

 
 

 
 
 Figure  6:  (Color online) As a second application of our 

method to ultrasonic (acoustic) pulses, let us consider now a 

truncated Bessel pulse with an initial spot-radius of 23 cm, 

generated by a finite antenna still with radius = 0.5R  m. 

Attenuation (actually strong for a 40 kHz frequency) is 

neglected again. We wanted our realistic pulse to keep its spot 

size unvaried for the larger distance of about 30 m.  The present 

set of figures, representing by colors the actual pulse evolution, 

does indeed show such a behavior. 
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Figure  7: This second set of figures shows, in terms of 

3D plots, the evolutions of the same truncated Bessel 

pulse considered in the previous Figure (its intensity 

being now the height of 
2||

). From the present figures 

one can see even better that the pulse spot (initially with a 

radius of 23 cm) keeps rather well its size for almost 30 m.  

Afterward, the pulse strongly deteriorates; and, to get 

better results by a Bessel pulse like this, one has once 

more  to use larger antennas. 

 

By the the last figure, Fig.8, we depict the evolution of its 
intensity peak while propagating (when attenuation is 
neglected). 

 
 

Figure  8:  (Color online) In this further figure we 

depict the evolution, during propagation, of the intensity 

peak of the same truncated Bessel pulse. 

 

Third case: Truncated Plane Wave Pulse 

 
 The first set of figures, Fig.9, shows the pulse evolution by 

colors; the second set, Fig.10, shows it by 3D plots (the pulse 

intensity being the height of 
2|| psi

). 
  In this case one clearly recognizes the interesting fact that 
the initial spot-radius, of 0.5 m, changes during propagation  
diminishing during the first 30 meters till 0.3 m.  After such a 
distance, however, the pulse starts to open: and its spot-size 
increases. 
 
 

 
Figure  9:  (Color online) As a third application of our method to ultrasonic (acoustic) pulses, let us now consider a 

Truncated Plane Wave Pulse, with initial spot-radius of 0.5 m.  It is interesting that the spot size does  diminish during 

propagation, till a distance of 30 m. Only afterward, it start increasing, and the pulse opens.  The present set of figures 

shown such a behavior by colors. 
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Figure  10: This second set of figures shows, in terms of 

3D plots, the evolutions of the Truncated Plane Wave 

Pulse considered in the previous Figure.From the present 

figures one can see even better that the pulse spot 

(initially with a radius of 0.5 m)  reduces its size for almost 

30 m, reaching the value of 0.3 m.  Only afterward the 

pulse opens (its spot-size increasing).  

 
By the the last figure, Fig.11, we depict the evolution of its 
intensity peak while propagating (when attenuation is 
neglected). 

 
Figure  11:  (Color online) In this further figure we 

depict the evolution, during propagation, of the intensity 

peak of the same Plane Wave truncated pulse. 

 

Fourth case: Pulse of Plane Wave Truncated and 

Focalized (at 20=z  m). 

The first set of figures, Fig.12, shows the pulse evolution by 
colors; the second set, Fig.13, shows it by 3D plots (the pulse 

intensity being the height of 
2|| psi

). 
  In this case one can clearly see that a focalization takes place 

at 20=z  m.  This quite interesting result has been obtained 
by having recourse to a Plane Wave truncated (and pulsed) at 
the aperture, and  modulated by a phase function similar to 

the transfer function of a convergent lens with a20 m focal 

distance. The pulse leaves the antenna with a spot of 50 cm, 
which shrinks down (while the intensity increases), till 
reaching the distance of 20 m where the spot gets its 
minimum radius, of about 20 cm, and an intensity 20 times 
larger than the one at the aperture. 

 
Figure  12:  (Color online) As a third application of our method to ultrasonic (acoustic) pulses, let us now consider a 

Focalized Plane Wave (Truncated) Pulse, with initial spot-radius of 0.5 m.  In this case a focalization takes place at 

20=z  m. Such quite interesting result has been obtained by having recourse to a Plane Wave truncated (and pulsed) 

at the aperture, and modulated by a phase function similar to the transfer function of a convergent lens with a 20 m 

focal distance.  The present set of figures show such a behavior by colors. 
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          Figure  13: This second set of figures, in terms of 

3D plots, shows the evolutions of the Focalized Plane 

Wave (Truncated) Pulse considered in the previous 

Figure. One can easily see that a focalization takes place 

at 20=z  m. This interesting result has been obtained 

—as we said– by having recourse to a Plane Wave 

truncated (and pulsed) at the aperture, and modulated by 

a phase function similar to the transfer function of a 

convergent lens with a 20 m focal distance.  The pulse 

leaves the antenna with a spot of 50 cm, which shrinks 

down (while the intensity increases), till reaching the 

distance of 20 m where the spot gets its minimum radius, 

of about 20 cm, and an intensity 20 times larger than the 

one at the aperture.  
 By the the last figure, Fig.14, we depict the evolution of its 

intensity peak while propagating (when attenuation is 
neglected). 

 
Figure  14:  (Color online) In this further figure we 

depict the evolution, during propagation, of the peak of 

the same Focalized Plane Wave (Truncated) Pulse. 

 

In the next Section we are going to propose acoustic 
(ultrasound) antennas suitable for detection (or explosion) of 
buried objects, like mines 

III. TOWARDS THE PROPOSAL OF ACOUSTIC ANTENNAS FOR 

DETECTION (OR   EXPLOSION) OF UNDER-GROUND BURIED 

OBJECTS, LIKE MINES. 

 
One of our main aims in this work is the proposal  of 

antennas, producing Acoustic Localized Waves (better called 
ANDW = Acoustic Non-Diffracting Waves), for the 
detection of buried objects, like MINES, or for causing their 
explosion from a distance of at least 10 meters.   
Let us recall, before all, that the Localized Waves are 
non-diffracting, and propagate in a single direction without 
deformation, with energy concentrated within a spot.  Such 
good properties are  kept for infinite times and lenghts, as we 
know, only by ideal beams; in the case of realistic beams, 
produced by finite antennas, those properties are maintained 
for a certain (finite, even if long) depth of field.  Let us recall 
also the following:   (i) the majority of the ANDWs 
considered in the literature are the ―X-shaped‖ supersonic 
ones, initially produced in 1992 [6] in analogy to what had 
been theoretically predicted[15], and soon concretely utilized 
for an ultrasound scanner which directly furnishes 3D, 
high-resolution images of the human body[16], in particular 
of moving organs like the heart. (In the electromagnetic case, 
the X-shaped waves resulted to be endowed with 
superluminal peak-velocities, in hundreds of theoretical, 
mathematical, numerical-simulation, and experimental 
works[1,2] );  (ii)   Also investigated were Non-Diffracting 
Waves [NDW] with subluminal, in the electromagnetic case, 
and subsonic, in the acoustic case, peak-velocities;  (iii)  
Particularly interesting they resulted to be the subluminal 
NDWs with zero peak-velocity: that is, with a static envelope 
(within which only the carrier wave propagates).  They have 
been called Frozen Waves [FW], corresponding to 
electromagnetic, or acoustic, fields ―at rest‖[17].  The FWs 
can be created within the desired (even quite small) space 
region, with the chosen shape and intensity[18,19].  They are 
generated by superposing Bessel beams with the same 
frequency, which therefore can be prefixed too. 

A. Proposal of antennas creating AcousticFrozen 

Waves[AFW] 

Let us propose now the generation of Acoustic Frozen 

Waves, without forgetting that the air is an absorbing 
medium, especially for ultrasound waves.In the case of FWs 
we constructed a new theoretical method for their production, 
which allows to create the desided ―static‖ field even in a 
lossy medium;  in other words, it [20,21] allows producing 

beams resisting both the effects of diffraction and 

attenuation.  For the reader‘s convenience, it will be 
summarized in the Appendix  

Let us start by depicting how a single Bessel beam [Bb] 
behaves in an absorbing medium. For instance, let us 
consider an acoustic Bb of 100kHz, with an initial spot of 
1.5cm.  For such a frequency, the Bb is subject in air to an 
attenuation coefficient of 2dB per meter, and will 
thereforepossessa field depth of 2 meters only.The following 
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two  figures, Figs.15, show such an effect for an isolated 
Bessel beam; the square magnitude|Ψ|2 of its field intensity is 
shown in figure (a), as a function, besides of the transverse 

co-ordinate ρ, of the co-ordinate z along the propagation axis: 
Both co-ordinates being expressed in meters.Figure (b) 
depicts its orthogonal projection 

 
 

(15 a) (15 b) 
 

Figs.15:  The case of an isolated acoustic Bessel beam (100 kHz; spotof 1.5 cm), subject in air to strong attenuation (2 

dB/m), so that its field depth is expected to be 2 m.   Figure a): 3D behaviour of the field-intensity square-magnitude  

|Ψ|2, as a function of (ρ and) z.  Figure b): orthogonal projection.   
 
First Example: 

Let us choose a carrier frequency of 100kHz, in which case the attenuation in air is 2dB/m. For a normal beam (plane wave, 
or gaussian beam) the depth of field would be of 2.2m.  We know that by suitable superposition of equal-frequency Bessel 
beams[20,2] we can obtain FWs resisting attenuation (besides diffraction). 

The beam we want to obtain is a FW with a field depth of 11meters,the acoustic field being moreover concentrated, at that 
distance,so to build a spot of 3 cm.  Our methodology[20,2] then suggests to be convenient an aperture of  0.9 m.Let us require 
the intensity longitudinal pattern of the FW equals a constant value over a rectangular region: we shall say it to be of a ―double 
step‖type[20] in the interval  0<z<11m.  More precisely, Ψ(z)=1  for  0< z <11 m, and  zero  elsewhere.When having recourse 
to a superposition of a small number of Bb‘s, the results are ofthe type presented in Figs.16. 

 
 

(16 a)         (16b) 
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                   (16 c)                                                                                           (16d) 
 
Figs.16:  (a)  Intensity behaviour of the FW in the case of the First Example (a ―double step‖ shape, with a small 

number of Bessel beams in the superposition); (b) Orthogonal projection;(c) Orthogonal projection by a logarithmic 

scale plot (i.e., in dB);  d) Real part of the field at the aperture (z=0). As requested, the field depth results to be 11 m, 

with a spot radius of 0.3 m. 

 
Second Example: 
Let us consider a case analogous to the previous one (the longitudinal intensity shape being again of the ―double step‖ type, in 
the interval  0< z <11 m), but aiming this time at obtaining the maximum precision allowed by the method,  which implies in 
the present case a maximum number of 101 Bb‘s in the superposition[20].   Still, the frequency be 100 kHz, and the attenuation 
coefficient in air of 2 dB/m.  Let us recall the depth of field of a normal beam (plane wave or gaussian beam) to be of 2.2 m. 
Our aim, once more, is getting a field depth of 11 m,  with a spot diameter at that distance of  3 cm.  We need an aperture of 0.9 
m.The results, by the new superposition, are the ones in Figs.17. 

 
 
             (17a)                                                                                                             (17b) 
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(17 c)                                                                                               (17d) 

 
Figs.17:  (a)  Intensity behaviour of the FW in the case of the Second Example (still a ―double step‖ shape, but with 

the maximum allowed number of Bb’s in the superposition);  (b) Orthogonal projection;  (c) Orthogonal projection by 
a logarithmic scale plot (i.e., in dB);  d)  Real part of the field at the aperture (z=0).  As requested, the field depth results 

to be 11 m, with a spot radius of 0.3 m, but this time with the maximum precision allowed by the method. 

 
Third Example: 

 

Assume we wish now to get a FW with a depth of field of 20 meters.  The needed aperture radius becomes now of 1.4 m.  
The longitudinal intensity shape be again a ―double step‖,  but in the interval 0< z <20 m.  Obtaining a field depth of 20 m 
brings us close to the limits of validity of our method, but we can still reach good results.  The intensity of the lateral 
converging beamswill increase, in order to reconstruct the resulting beam till a larger distance (20 m).  The results appear in 
Figs.18. 

 
 
               (18a)                                                                                                       (18b) 
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(18 c)(18 d) 
 

Figs.18:  These Figures illustrate the 3rd Example, referring  this time to a FW with a depth of field of 20 meters.  

The needed aperture radius then becomes of 1.4 m.  The longitudinal intensity shape is again a ―double step‖,  but in 
the interval 0< z <20 m.  Requesting a field depth of 20 m brings us close to the limits of validity of our method, but we 

still reach good results.  Figure (a):   Intensity behaviour of the FW in the case of the Third Example;   (b):  Orthogonal 

projection;  (c) Orthogonal projection by a logarithmic scale plot (i.e., in dB);  d)  Real part of the field at the aperture 

(z=0).  As requested, the field depth results to be 20 m. 

 

More material (equipped with suitable further Figures) will appear elsewhere. 

IV. SOME CONSIDERATIONS ABOUT 

ULTRASONICTRANSDUCERS FOR GENERATING 

NON-DIFFRACTING BEAMS OR PULSES. 

 
In this Section we are going to pay some preliminary 

attention to the construction of antennas for the generation of 
non-diffracting (or even ordinary) ultrasound beams, or 
pulses. 
      More specifically, we shall  fix our attention --as 
before— to ultrasound beams resisting the effects of both 
diffraction and attenuation. 
 

A.  Introductory remarks 

 
Before going on, let us recall that the use of 

non-diffracting ultrasound beams, or pulses,  is already a 
reality in the realm of medical imaging.  Well known are the 
applications of acoustic X-shapes waves for high resolution 
ultrasound scanning, by Jian-yu Lu.  Our own research group 
has been proposing the adoption of the methods of the 
ultrasound Frozen Waves for modeling non-diffracting 
beams in lossy media:  in order toapproach diverse 
applications, from imaging to remote sensing, and to curing 
tumours by killing the cancer cells via heating produced by 
extremely localized ultrasonic beams.  

 
      For instance in [1] and [2], we suggested arrays of 

annular concentric transducers to create very-high resolution 
ultrasonic FWs (cf. Figs.19-21).  Figure 19 is an example of 
acoustic annular aperture, with radius 24.5 mm, and 41 rings 
(d = 0.5 mm; Δd=0.1 mm): specifically, it shows the section  

 
of an annular transducer array for constructing 1.5 MHz  
frozen waves.   Using such an array, we shall attempt 
producing, in amplitude and phase, the  field of the chosen 
FW at the antenna location, that is, in the plane z = 0. 

 
Fig. 19 – Example of an acoustic annular aperture having 

a radius of 24.5 mm and 41 rings (with width Δd=0.1 mm, 
and inter-ring distance d = 0.5 mm).  The figure shows the 

section of the annular transducer array chosen for 

producing FWs  of 1.5 MHz. 

 

      Before that, let us show (by Fig.20 and Fig.21) a sample 
of the excitation pattern (amplitude and phase, respectively) 
corresponding to the array in Fig.19: With R = 24.5 mm,  Nr 
= 41, and f = 1.5 MHz.  The average radii  (in meters) of the 
emitting rings (transducers)  appear on the horizontal axis. 
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                  Fig. 20 – Amplitude pattern excited by the 

acoustic array in the previous Figure (radius of the array 

R = 24.5 mm; with 41emitting rings, and ultrasonic 

frequency f = 1.5 MHz). The values, in meters, on the 

horizontal axis represent the radii of the various emitting 

rings (transducers). 

 

 
Fig. 21 – Pattern of the acoustic wave phase excited by 

the array in the previous Figure (that is, radius of the 

array R = 24.5 mm; with 41emitting rings, and ultrasonic 

frequencyf= 1.5 MHz). The values, in meters, on the 

horizontal axis still represent the radii of the various 

emitting rings. 

 

      One should discretize the continuous field distribution 
at the aperture, as suggested and performed by us in [9], and 
in ref.[13], downloadable e.g. from  
http://arxiv.org/abs/1408.3635 , so that the annular 
transducers locations can be determined by such a 
discretization (see figures 7 and 12 therein). 

      Anyway, a possible set-up for the generation of FWs,  
when having recourse to an array of  annular transducers,  
may be the one sketched in Fig.22. 

 

 
 
Fig. 22 – A possible experimental set-up for the creation of FWs, when having recourse to an array of annular 

transducers. 

 
       As a mere example,  let us first forget about 

attenuation, and examine how a theoretical FW can be 
generated using an annular transducer antenna.  One obtains 
the FW corresponding to the adopted array, by numerical 
simulation of the field emanated by it[3]. In the following 
Figures the values of z are in meters, while those of ρ are in 
mm.  

Let us operate with f = 2.5 MHz, and L = 30 mm.  The 
theoretical FW, to be experimentally constructed, is chosen 
to consist of two rectangular regions with different 
intensities; and to be expressible as the superposition of  
2N+1 = 25 Bessel beams.  One thus obtains an highly 
concentrated  ultrasonic beam, with a spot smaller that1 mm 
(near to the diffraction limit): as it is shown in our theoretical 
Fig.23. 

http://arxiv.org/abs/1408.3635
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                  Fig. 23 – The theoretical FW we choose, for 

subsequent experimental creation, consists in two 

rectangular regions with different intensities; and is 

expressed as a  superposition of  2N+1 = 25 Bessel beams 

(we operate with f = 2.5 MHz, and L = 30 mm, neglecting 

attenuation: Cf. [3]).  As depicted in this figure, one thus 

obtains a highly concentrated  ultrasonic beam, with a 

spot smaller that1 mm (near to the diffraction limit). 

 
Figure 24 shows the result of the corresponding 

experiment, or rather in our case simulated experiment, for 
the generation of the chosen supersonic FW in Fig.23 (still 
disregarding attenuation).  The annular aperture (with radius 
R = 35 mm) is located on the left side of Fig.24, at z = 0. The 
parameters of the simulation are Nr = 101 rings, again with f = 
2.5 MHz, and L = 30 mm. The simulated experiment results 
to be rather satisfactory. All this does indicate that the 

 

 
 
 
 
Fig. 24 --  Result of the supersonic simulated experiment 

aimed at constructing the FW appearing above in Fig.23. 

The annular aperture (with radius R = 35 mm) is located 

on the left side, at z = 0.   Axis ρ represents the transverse 
cylindrical co-ordinate, while z is the longitudinal one. 

The parameters of the simulation are: Nr = 101 rings, 

again with f = 2.5 MHz, and L = 30 mm.  The simulated 

experiment results to be rather satisfactory. 

 

experimental generation of  non-diffracting beams, and 
more specifically, of FWs is a real possibility also in the 
ultrasonic region. 

 

B. Ultrasonic non-diffracting beams or pulses 

Let us eventually come to the main issue of this Section 4, 
which regards the creationof non-diffracting ultrasonic 
beams, or pulses, having in mind particularly the detection 
from a distance ofterrestrial mines, or even their explosion. 

      Two problems are to be faced: 
(i) the strong attenuation in air of the ultrasonic 

waves.  We saw in the previous Sections that, 
e.g, for the 100 kHz frequency, the attenuation 
is 2 dB/m, implying a quite short depth of field 
(2 m).  We saw it even for a Bessel beam in the 
air; 

 
(ii) the large power required for such purposes. 

Indeed, it is relatively easy to work 
outtransducers for medical applications 
(imaging, etc.),  but it is a  
considerablechallenge to generate very 
highpower ultrasound. 

 
Happily enough we  can always obtain ultrasonic beams, 
resisting for long distances both diffraction and attenuation, 
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by generalizing the method of ours for FWs [20,4,2] (our 
standard method for FWs is briefly summarized in the 
Appendix, for convenience of the reader).  Let us recall all 
that by exploiting here one more example of the type 
examined in Section 2 above. 

 
One more Example (the Fourth) 

Similarly to what it was done in Section 2, let us now 
choose: 
1. Frequency: 100 kHz 
2. Attenuation coefficient in air: 2 dB/m 

3. Depth of field of a normal  beam (plane wave or gaussian 
beam) = 2.2 m 

Requested field depth for the FW beam: 10 m 
Radius of the desired spot: 5 cm 
Needed aperture radius: 0.35 m 
Longitudinal intensity pattern chosen: Of the ―two steps‖ 

type in  0<z<10m 
 
Our theoretical method[20,4,2] allows us to construct an 

acoustic Frozen Wave with such characteristics, as Figs.25 
do show.  

 
(25 a)(25 b) 

 

                  Fig. 25 – Our theoretical method[20,4,2] allows constructing an acoustic Frozen Waves with the 

characteristics specified in the Example above.  This is shown in the present Figure. 

 
The theoretical possibility of obtaining ultrasonic beams, 

resisting the effects of diffraction and attenuation for 
distances very much longer than the ones attained by ordinary 
beams[4], is rather encouraging.  But, let us repeat, the 
high-power needed for the desired applications, is often a 
serious obtacle. 

 
      In the case of the (last) Example above, one needs an 

array of annular transducers much bigger than the ones for 
medical applications.... In Fig.26 we show a possible 
discretization: It is rather simple, but in it each point 
represents an annular transducer with at least 1 cm of 
thickness.  

 
 

                  Fig. 26 –  For the (last) example above, 

represented by Figs.25, we can suggest the 

discretization[9,13] appearing in this Figure: A very 

simple discretization, but in it each point indicates an 

annular transducer with at least 1 cm of thickness.  
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V. BRIEF MENTIONOF SOME AVAILABLE TECHNOLOGY FOR 

THE GENERATION OF HIGH-POWER ULTRASOUND 

 
Among the existing technologies, let us mention one which 

seems to be well developed, and has been presented in a 
series of papers: We confine ourselves here  toquoting the 
work[22] by Gallego-Juarez et al. (appeared in 2010 
inUltrasonics Sonochemistry 17, pp.953-964). They showed 
therein, for instance, how ultrasonic transducers of 
high-power can be constructed with large radiation areas, and 
with a design reducing non-linear effects and unwanted 
modal interactions. A basic structure for such transducers 
consists of a piezoelectric vibrator which drives a radiator.  
The vibrator is a sandwich of piezoelectric elements.The 
vibration caused by the piezoelectric elements is amplified by 
a mechanical amplifier, causing the radiator to vibrate in one 
of its modes.  Such a radiator may have different geometries, 
varying with the application; in general, it can be circular or 
rectangular. Its surface can be moreover modeled, by furrows 
or bulges, so to get increased control on the radiated field 
(avoiding mode couplings, etc.), For examples of circular 
transducers operating in the 10--40 kHz region the interested 

reader can consult ref.[22]. The simple circular radiators 
considered therein are indeed useful for creating common 
ultrasonic beams, as the gaussian one; and may be sufficient 
also for a Bessel beam (when higher order modes are excited, 
which implies, however, also higher frequencies).  

 
For more complex beams resisting diffraction and 

attenuation, like the FWs, more sophisticated arrays of 
high-power transducers are needed. 
 

A. Possible arrays of (high-power) radiators for 

ultrasonic  beams resisting diffraction and attenuation 

 
We have seen that an efficient way for generating 

non-diffracting beams is the use of an array of annular 
transducers. 

Next, we suggest for instance the use of sets of annular 
radiator arrays, by  respecting (see below) annular symmetry; 
each constituent array being of the circular type considered 
e.g. in the mentioned ref.[22]: See Fig.27. In this Figure  the 
radius of the set of radiators may be, e.g., of about 60--80 cm, 
while each radiator may have a diameter of 10--15 cm. 

 
Fig. 27 –  For the generation of more sophisticated non-diffracting beams, let us now suggest for instance the use of sets 

of annular radiator arrays, by  respecting annular symmetry: See the Figure, where each constituent array is of the 

circular type considered e.g. in the mentioned ref.[22]. The global radius of the set of radiators may be, e.g., of about  

60--80 cm, while each radiator may have a diameter of 10--15 cm. 

 
A further possibility is discretizing the annular radiators 

via the introduction of rectangular (or bended) radiator 
elements.  Notice that the excitation to be used for each 
radiating element canbe obtained from the exact analytic 
solution which describes, for example, the chosen Frozen 
Wave.  Many more considerations can be found in refs.[1,2] 

and [13,9]. 

B. A  brief  APPENDIX 

 

For possible convenience, let us here summarize (only) a 
standard method of ours for obtaining  the Frozen 
Waves[17-20]. As we know, it was elsewhere extended for 
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absorbing media (see, e.g, ref.[20,2]), in order to get FWs 
resisting both attenuation and diffraction. 

      Basically, the idea is to obtain non-diffracting beams 
whose desired longitudinal intensity pattern, |F(z)|2, in the 

interval 0  z   L, can be chosen a priori. To obtain the 
desired beam we consider the following solution, given by a 
superposition of 2N + 1 co-propagating and equal frequency 
Bessel beams of order ν :  
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ik zi t
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where |F (z)|2 is the desired longitudinal intensity pattern in 

the interval 0 ≤ z ≤ L. This longitudinal intensity pattern can 
be concentrated (as we wish) over:  

a) the propagation axis (ρ = 0). In this case ν = 0 in eq.(10), 
i.e., we deal with a zero-order Bessel beam superposition. We 

can also choose the spot radius, 0 , of the resulting beam 

by making  
2 2 2 2 1/2

0( 2.4 )Q c  
;  or 

b) a cylindrical surface. In this case we deal with ν > 0 

values, and the radius 0  of the cylindrical surface can be 
approximately evaluated through the equation 
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