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   Abstract – Classical quantum gravity approach is presented in 

the frame work of the new Relativistic Alpha Field Theory 

(RAFT).  It is very important to describe gravity at the Planck’s 
scale and near compact astrophysical objects where quantum 

effects cannot be ignored. Meanwhile, General Relativity 

Theory (GRT) cannot be applied to the extremely strong 

gravitational field at the Planck’s scale, because of the related 

singularity. Recently developed RAF theory extends the 

application of GRT to the extremely strong fields, including 

Planck’s scale. This is the consequence of determination of field 
parameters by using condition that they should satisfy both 

relativistic Hamiltonian and field equations with energy 

momentum tensor. As the result, we obtain, among the others, 

the following prediction of RAF theory: there exists a minimal 

gravitational radius at r = (GM/2c2) that prevents singularity at 

r = 0. The existence of the minimal gravitational radius opens a 

new avenue for quantization of a gravitational field. One of the 

possible approaches is presented in this paper.  

Index Terms- Quantum gravity, Relativistic Alpha Field Theory 

(RAFT), Minimal gravitational radius, Extremely strong 

gravitational fields 

I. INTRODUCTION 

    It is of the special interest to describe gravity at the 
Planck’s scale and near compact astrophysical objects where 
quantum effects cannot be ignored 1-5. The main 
difficulties in quantum gravity (QG) description appear when 
one attempts to apply the usual prescriptions of quantum field 

theory to the force of gravity via graviton bosons 6. The 

problem is that the theory one gets in this way is not 
renormalizable and therefore cannot be used to make 
meaningful physical predictions. Therefore, theorists have 
taken up more radical approaches to the problem of QG. The 

most popular approaches are string theory 7-10 and loop 

quantum gravity 11-15.  The   noncommutative theories of 
geometry and an overview of many current approaches to QG 

are presented in 16-22. The quantum cosmology problems 
and some collections of philosophers’ texts of QG and 
popularization works are illustrated in 23-32.  
   As it is well known, the Planck’s scale is far smaller in 
distance than those currently accessible at high energy 
particle accelerators. Therefore, QG is a mainly theoretical 
enterprise. Meanwhile, in the field of phenomenological QG, 
we have studies of the possibility of experimental tests of QG 

33-37. Unfortunately, at present, there is no QG theory 
which is universally accepted and confirmed by experience. 

One of the major hopes of observing traces of QG phenomena 
is in the cosmological context. In that sense, we have 
detection of an electromagnetic counterpart (GRB 170817A) 
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to the gravitational-wave signal (GW170817) from the 

merger of two neutron stars 38-41. This opens a completely 
new arena for testing theories of gravity.  

     Further, General Relativity Theory (GRT) 42-47 cannot 
be applied to the extremely strong gravitational field at the 
Planck’s scale, because of the related singularity. Here we 
apply a new theory that is called Relativistic Alpha Field 

(RAF) theory 48-50. It has been shown 51 that RAF 
theory extends the capability of the GRT for the application to 
the extremely strong fields, including the Planck’s scale. This 
is the consequence of determination of field parameters by 
using condition that they should satisfy both generalized 

relativistic Hamiltonian and field equations, with energy 
momentum tensor and without cosmological constant Λ 
48,52.  As the result, we obtain the following predictions of 
RAF theory: a) no a singularity at the Schwarzschild radius 

49, b) there exists a minimal gravitational radius at  r = 

(GM/2c2) that prevents singularity at r = 0, i.e. the nature 

protects itself 49, c) the gravitational force becomes 
positive (repulsive) if (GM/rc2) > 1, that could be a source of 

a dark energy 50,53, and d) unification of electrical and 
gravitational forces can be done in the standard four 

dimensions (4D) 50. The existence of the minimal 
gravitational radius opens a new avenue for quantization of a 
gravitational field.                
   The presented predictions of RAF theory may look like too 
speculative items. But, it is not because the solution of the 
field parameters generates energy - momentum tensor (EMT) 
on the right side of the field equations. Thus, this tensor is not 

added by the hand, as it is suggested in GRT. Furthermore, 
this EMT obeys the following required properties: symmetry, 
non-negative energy density and zero trace of EMT. Without 
EMT, the solution of the field parameters in RAF theory is 
reduced to the Schwarzschild’s solution for the vacuum, as 
we expected that should be. This vacuum solution cannot be 
applied to the extremely strong fields, because of the related 
singularity. In that sense, it has been discussed the possibility 
that the singularity and dark energy problems are the 

consequences of vacuum solution of the field equations 54. 
     This paper is organized as follows. In Sec. II, we show the 
theoretical proof of the existence of the minimal radius. The 
quantum gravity procedures are presented in Sec. III. Some 
possible influences of the presented quantization are 
considered in Sec. IV. Finally, the related conclusion and the 
reference list are presented in Sec. V. and Sec. VI, 
respectively. 

 

II. EXISTENCE OF THE MINIMAL GRAVITATIONAL RADIUS  

     Many arguments indicate that the Planck length may 
appear as a minimal meaningful length. But, in RAF theory 

48-50 it has been predicted that there exists a minimal 
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radius in gravitational field equal to rm = GM/2c2
, that 

eliminates the singularity problem. As we can see the 
minimal radius is proportional to mass. Thus, the minimal 
length belongs to the minimal mass. Minimal radius of the 

Planck’s mass is half of the Planck’s length rpm= Lp/2. This 
means that the Planck’s length is the minimal length only for 
the Planck’s mass. As an example, the minimal radius of the 

proton mass is equal to  rm= 0.62×10-54m, which is too 
smaller than half of the Planck’s length. Unfortunately, 
current technology is not yet capable of observing physical 
effects at scales that are so small. Therefore, we cannot 
confirm any of the current tentative QG theories, until the 
genuine quantum gravitational phenomena are directly or 
indirectly observed. 
   In order to theoretically prove the existence of the minimal 
radius in gravitational field, we started with the general line 
element ds2 in an alpha field, derived in the first part of RAF 

theory 48. In the spherical polar coordinates this line 
element is presented by the nondiagonal form  

      
 2 2 2 2

2 2 2 2 2

ds c dt c dt dr dr

r d r sin d .

       

    
         (1) 

Generally, field parameters   and  are scalar functions of 

the space-time coordinates, or normalized potential energy 

(U/mc2) in an alpha field 48. Here U is potential energy, m 
is the related particle rest mass in that field, c is the speed of 

light in vacuum and parameter 1 . Since, the line 

element (1) belongs to the well-known form of the Riemanns 
type line element, the contra-variant coordinates and 
components of the covariant metric tensor are given by the 
relations: 
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      (2)  

Starting with the line element (1) we employ, for the 

convenient, the following substitutions: 

                
  2, / .                            (3) 

In that case the nondiagonal line element (1) is transformed 
into the new relation 

                 

2 2 2

2 2 2 2 2 2

2d s c d t cd t d r

d r r d r sin d .

    
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                (4) 

The determination of the parameters   and   in the 

gravitational field has been obtained by using condition that 
field parameters should satisfy both the generalized 

relativistic Hamiltonian 52 and field equations 48, with 

energy momentum tensor T  and without cosmological 

constant 

        
4

1 8
0 1 2 3

2

G
R g R kT , k , , , , , .

c
  


         (5) 

Here R  is Ricci tensor, R is Ricci scalar, G is the 

Newton’s gravitational constant and c is the speed of the light 

in a vacuum. Thus, the solutions of the parameters   and   

for the static gravitational field have been presented in the 

first and second parts of RAF theory 48, 49:  
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          (6) 

Here M is gravitational mass of the spherically symmetric not 
rotating body. The quadratic term (GM/rc2)2 in (6) generates 
the energy - momentum tensor on the right side of the 

Einstein’s field equations 48-50: 
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It is easy to prove that the energy - momentum tensor (EMT) 

in (7) obeys the following required properties: symmetry, 
non-negative energy density and zero trace of EMT. In 
relatively weak field, as is in our solar system, or in vacuum, 
the quadratic term (GM/rc2)2 is too small and can be 
neglected. In that case EMT is vanishing and parameters in 
(6) are transformed into the solution corresponding to the 
Schwarzschild’s solution for the vacuum: 

          
2 2

2GM 2GM
= 1- , = , = ±1.

r c r c
         (6a) 

Including the parameters solutions from (6) into (4), the line 
element (4) can be presented in the final form:  
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Thus, it is very important to point out that RAF theory 
includes both the full form solution (6) and vacuum solution 
(6a) of the field equations (5). 
   From (6) and (8) we can theoretically prove the following 
predictions of RAF theory: a) no singularity at the 
Schwarzschild radius and b) there exist the minimal radius at 
the position rm = (GM/2c2) that prevents singularity at r = 0, 
i.e. the nature protects itself:  
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(9) 

   Following (9) we can see that at the Schwarzschild radius, 

schr , parameters   and   are regular. This proves the 

prediction a): no singularity at the Schwarzschild radius. 



 

International Journal of New Technology and Research (IJNTR) 

                                                                                       ISSN:2454-4116,  Volume-4, Issue-6, June  2018  Pages 46-51 

                                                                                       48                                                                                    www.ijntr.org 

Further, from (9), we also can see that at the minimal radius, 

rm= GM/2c2, parameters   and   are also regular and for      

r  rm parameter   becomes imaginary number, im  . 

This proves the prediction b): there exists a minimal radius at 

rm = (GM/2c2) that prevents singularity at r = 0. It seems that 
the existence of the minimal radius tells us that the nature 
protect itself from the singularity. Thus, we can say that the 
metrics of the line element in (4-6) is regular for a 

gravitational field in the region rm  r  . On that way the 
proofs of the propositions a) and b) are finished. 
   Now we shall consider the prediction c) of the RAF theory, 

given in 49,50: the gravitational force becomes positive 
(repulsive) if (GM/rc2) > 1, that could be a source of a dark 
energy. In order to theoretically prove this prediction, we can 
start with the solutions of the radial acceleration and radial 
force. For the time-invariant (or very slowly changed) 

gravitational field, the radial acceleration a and force F are 

presented by the relations 50: 

                    

2 2

2 2

1

1

GM GM
a ,

r rc

mGM GM
F m a .

r rc

    
 
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 




              (10) 

Here
 
m is a rest mass of a particle. Generally, the gravitational 

radial force in (10), describes the interactions in the strong 
fields. In the case of the relatively weak fields (as we have in 
our solar system) the radial force relation (10) is reduced to 
the well-known descriptions of the interactions in those 
fields:  

                 
2 2

GM mGM
a , F ma .

r r
              (10a) 

Further, from (10) we can see that the gravitational force is 

negative (attractive) for (GM/rc2)1. This is the case in the 
relatively weak gravitational field, where the term (GM/rc2) 

can be neglected. On the other hand, the gravitational force 

becomes positive (repulsive) if (GM/rc2)1. This is the case 
in the extremely strong gravitational field where the term 
(GM/rc2) has to be taken into account. 
   In our solar system the term (GM/rc2) is too small and can 
be neglected. For an example, on the surface of our Sun the 

amount of this term is (GM/rc2) 2.1193×10-61. On the 
surface of our planet Earth the related influence of the Sun to 

this term is (GM/rc2) 0.989×10-81. The gravitational 

influence of the planet Earth on its surface is (GM/rc2) 

0.695×10-91. The presented amounts of the term (GM/rc2) 

in our solar system could be the answer to the question: why 
our experience is that gravitational force is only the negative 
(attractive) force?  

   If the term (GM/rc2)=1, then the gravitational force is equal 
to zero. This is the very important situation that is occurring 

at the gravitational radius rc=(GM/c2). This radius separates 
the regions of the attractive and repulsive forces in a 

gravitational field. At the minimal radius rm gravitational 
force is positive (repulsive): Fm= (4mc4)/GM. Now, we can 
say that the nature protects itself from the singularity by 
producing the positive (repulsive) gravitational force at the 
minimal radius. Further, from (10) we can see that the 
gravitational force is positive (repulsive) in the region rm ≤ r < 

rc , where rm=(GM/2c2) and rc=(GM/c2). At the 
Schwarzschild radius the gravitational force is negative 
(attractive) Fsch

 
=-(mc4/8GM) and belongs to the negative 

(attractive) set of gravitation forces in the region rc < r ≤ ∞.  

  Thus, the previous consideration theoretically confirms the 
prediction c) of the RAF theory: the gravitational force 

becomes positive (repulsive) if (GM/rc2) > 1 that could be a 

source of a dark energy 53. 

III. QUANTUM GRAVITY PROCEDURES 

   Following (9) we can see that there are two exclusive points 
in a gravitational static field. The first one is at the minimal 
radius, rm=(GM/2c2), where the parameters η=1 and β=0. The 
second point is at the radius rc=(GM/c2), where η=0 and β=1. 
We also can conclude that rc=2rm. These two points are very 
important items and can be useful in derivation of the 
quantum gravity procedures. Namely, we can calculate the 
states of the velocities, accelerations (forces) and energies at 
the two exclusive points. Thus, it can be proved that at the 
point  rm=(GM/2c2), radial velocity is equal to zero and radial 
acceleration (force) is positive and maximal. This means that 

a particle at this point will be repulsed to the bigger radius. 
Here we have repulsive (positive) gravitational force that also 

could be source of the so called dark energy 53. On the other 
side, at the point rc=(GM/c2), radial velocity is maximal and 
equal to the speed of the light in vacuum, and radial 

acceleration (force) is equal to zero 50. If a gravitational 

radius r > rc, then radial velocity is decreasing and radial 
acceleration (force) becomes negative (attractive). Thus, the 
radius rc separates the region of the positive gravitational 
forces rm ≤ r < rc from the region of the negative gravitational 

forces    rc< r ≤ ∞. 

   In order to make the quantization of a gravitation field we 
can start with determination of the potential energies of the 
particle at the minimal radius rm=(GM/2c2), and at the radius 
rc=(GM/c2):  

                   

2
1 2

2
2 2

2
2m

c

mGM mGM
E mc ,

r GM / c

mGM mGM
E mc .

r GM / c

  
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          (11) 

Here m is a particle rest mass.  

   A. Definition of graviton  

   The transition from the energy state 1E (at the minimal 

radius rm=r1) to the energy state 2E (at the radius rc=r2) is 

resulted with the emission (radiation) of the graviton, as a 
quant of gravitational field, with the maximal energy: 

                       

2 2 2
1 2

2
1 2 1 2

2

, ,

E E mc mc mc ,

h m .đ c

   
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              (12) 

Here h is the Planck’s constant, đ is the reduced Planck’s 
constant, ν1,2 is the related gravitational wave frequency 

between energy states (levels) 1 and 2 and ω1,2 is the related 
angular frequency. Thus, we can say that this quant of energy 
(graviton) is equal to the gravitational potential energy 
between the minimal radius rm= r1 and the radius rc = r2. In the 
opposite case, the transition from the energy state E2 (at the 
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radius rc=r2) to the energy state E1 ( at the minimal radius 

rm=r1) is resulted with the absorption of the graviton, as a 
quant of gravitational field, with the same maximal energy. 
This is the physical concept of the quantization of a 

gravitational field. 

B. Quantization of gravitational radius, energy and 

frequency 

   Quantization of the gravitational radius can be done by 
using the known values of the minimal radius rm and the 
radius rc, given by (9): 

             

1 22 2

3 2 2

2
2

3 3
2 2

m c m

m n m

GM GM
r r , r r r ,

c c

GM GM
r r , . . . , r nr n .

c c

    

   
       

(13) 

Here n is quantization number of a gravitational field. 
Quantization of the gravitational potential energy follows 
from (11) and (13): 
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  (14) 

In order to quantize the frequency ν and the related angular 
frequency ω between two energy states (levels) in a 
gravitational field, we can employ (12) and (14): 
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Here νn-1,n is the gravitational wave frequency between energy 

states (levels) ( 1n ) and n , where 2 3n , ,..  In that sense 

ωn-1,n is the related angular frequency. Thus, the quantization 
form of the frequency ν and the related angular frequency ω 
between two energy states (levels) in a gravitational field are 
given by the relations: 
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C. Quantization of line element, energy momentum tensor, 

radial acceleration and force 

   Now, we are ready to quantize the line element (8). In that 
sense, we started with parameters η and β from (6): 
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Thus, the quantization form of the line element (8) is given by 
the relation: 
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(18) 

In order to quantize the energy-momentum tensor on the right 

side of the Einstein’s field equations 48-50, we can employ 
the relation (7) and the previous quantization procedure: 
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  Finally, the quantization forms of the radial acceleration a  

and radial force F, given by (10), are presented by the 
following relations: 

                

4

2

4

2

4

2

4 2
1

4 2
1 1 2

4 2
1

n n n

n

n

c
a , F ma ,

nn GM

c m
F , n , ,.,

M nn G

c
m M F .

nn G

     
 

       
  

      
 

 

         (20) 

From (20) we can see that the quantized gravitational radial 

force nF  between two particles (bodies) with equal masses 

(m=M) is not function of the mass. At the minimal radius, 

n=1, the gravitational acceleration and force are positive 

(repulsive) and maximal. For the quantum number n=2, the 
gravitational acceleration and force are equal to zero. If the 
quantum number n  3, the gravitational acceleration and 
force are negative (attractive). Since our Universe is 
expanding at the acceleration rate, we can conclude that the 
present state of the Universe may be between the quantum 

states n=1 and n=2, but closer to the quantum state n=2. This 
could be an experimental test of RAF theory and of the 
presented quantum procedures of a gravitational field. At the 
same time, this means that between two quantum states there 

exists a transition process. At the Planck’s scale this process 
is very, very short (looking from the macro time scale). On 
the other side, this process is very, very long at the macro time 
scale and should be taken into account.  
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D. Quantization of radial density 

   Now, the quantization of the radial density ρ=M/r
 

is 
presented.  This quantization is the function of the minimal 
radius:  
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(21) 

Here M=2c2/G is the maximal radial density in a 
gravitational field. From (21) we can see that the radial 
density is not the explicit function of the mass. This means 
that all massive particles (bodies) have the same maximal 
radial density and the same radial density at each quantum 

number n=2c2/nG, n=1,2,.. This is very important discovery 
which predicts that radial density of any particle (body) 

cannot be greater than 2c2/G.  

IV. INFLUENCES OF THE PRESENTED QUANTIZATION 

   The presented quantization of a gravitational field could 
have very important influences to the regions like black holes, 
quantum field theory, high energy physics, Big Bang theory, 
dark energy, Universe acceleration, supernova explosion and 
cosmology. The presented quantization of gravitational field 
may also be useful in determination of the present Universe 
state and its maximal radius.  

V. CONCLUSION 

   Recently developed Relativistic Alpha Field (RAF) theory 

48-50 extends the capability of GRT for applications to the 

extremely strong fields, including Planck’s scale 51. One of 
the important predictions of RAF theory is the existence of 

the minimal gravitational radius equal to rm=(GM/2c2). This 

prediction eliminates the singularity problem in a strong 
gravitational field and opens a new avenue for the 
quantization of a gravitational field. One of the possible 
approaches is presented in this paper.  
   The quantization of the radial density shows that all 
massive particles (bodies) have the same maximal radial 

density M=2c2/G, and the same radial density at each 

quantum number n=2c2/nG.
 
Thus, the same maximal radial 

density have particles like electron and proton, as well as 
bodies like planet Earth, Sun and Universe. This is very 
important discovery which predicts that radial density of any 
particle (body) cannot be greater than 2c2/G. 
   The presented predictions of RAF theory may look like too 
speculative items. But, it is not. This is just the consequence 
of determination of field parameters by using condition that 
they should satisfy both generalized relativistic Hamiltonian 
and field equations with energy momentum tensor on the 

right side of them.  
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