
 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-4, Issue-6, June 2018 Pages 95-97

 95 www.ijntr.org


Abstract— The current concern regarding quality of

evaluation performed in existing studies reveals the need for

methods and tools to assist in the definition and execution of
empirical studies and experiments. This paper discusses those

issues specific for evaluation of software testing techniques and
proposes an initiative for a collaborative effort to encourage

reproducibility of experiments evaluating software testing

techniques . This paper also proposes the development of a tool

that enables automatic execution and analysis of experiments

producing reproducible research compendia as output that is,

in turn, shared among researchers. There are many expected

benefits from this endeavour, such as providing a foundation for
evaluation of existing and upcoming STT, and allowing

researchers to devise and publish better experiments. Total

number of failures of a software system can help practitioners

to have a better understanding of the software quality. This

paper proposes a model to predict the total number of software

failures in a software system by analyzing the failure data from

testing using failure data and code coverage are combined in a

Bayesian way. The methodology is applied to real world failure

data to validate its predictability. The predictive accuracy of

our model is also evaluated with different methods. The results

of our experiment show that our proposed model can provide a

very good estimation of the total number of failures. The

estimation is stable from a very early point on.

Index Terms— Bayesian Method, Software Testing.

I. INTRODUCTION

 Testing is defined as a process of evaluation that either the

specific system meets its originally specified requirements or

not. It is mainly a process encompassing validation and

verification process that whether the developed system meets

the requirements defined by user. Therefore, this activity

results in a difference between actual and expected result.

Software Testing refers to finding bugs, errors or missing

requirements in the developed system or software. So, this is

an investigation that provides the stakeholders with the exact

knowledge about the quality of the product. Software Testing

can also be considered as a risk-based activity. The important

thing during testing process the software testers must

understand that how to minimise a large number of tests into

manageable tests set.

II. EXISTING TESTING METHODS

For the commencement of the Testing process, the first

step is to generate test cases. The test cases are developed

using various testing techniques, for the effective and

Vaibhav Sancheti, Computer Sciences, VIT University, Vellore, India

G. Srikari Sharma, Computer Sciences, VIT University, Vellore, India

accurate testing. The major testing techniques are Black box

testing, White Box testing and Grey Box testing. White Box

testing is significantly effective as it is the method of testing

that not only tests the functionality of the software but also

tests the internal structure of the application. While designing

the test cases to conduct white box testing, programming

skills are requisite to design the test cases. White box testing

is also called clear box or glass box testing. This kind of

testing can be applied to all levels including unit, integration

or system testing. This type of testing is also called Security

Testing that is it fulfils the need to determine whether the

information systems protect data and maintains the intended

functionality. As this kind of testing process makes use of the

internal logical arrangement of the software hence it is

capable enough of testing all the independent paths of a

module, every logical decision is exercised, all loops are

checked at each boundary level, and internal data structures

are also exercised. However, white box testing serves a

purpose for being a complex testing process due to the

inclusion of programming skills in the testing process. Black

Box testing is a testing technique that essentially tests the

functionality of the application without going into its

implementation level detail. This technique can be applied to

every level of testing within the SDLC. It mainly executes the

testing in such a way that it covers each and every

functionality of the application to determine whether it meets

the initially specified requirements of the user or not. It is

capable of finding incorrect functionalities by testing their

functionality at each minimum, maximum and base case

value. It is the most simple and widespread testing process

used worldwide.

III. ISSUES

The empirical software engineering community has been

dedicating efforts in breaking down the fundamental

elements of an experiment in software engineering. Despite

the efforts and discussions regarding appropriate methods to

conduct experiments in software engineering, evaluating STT

is not easy since many information and artefacts are required

in order to thoroughly evaluate the capabilities of a testing

technique. First of all, software testing itself is a very

multidisciplinary area, that is able to comprise distinguished

and combined types of software such as standalone, web

services, real time, critical systems, embedded systems, etc.

Therefore, drawing a precise line to establish the scope

affecting the test is very challenging. At the same time, trying

to draw that line is one of the most important steps to define a
good experiment, since it allows researchers to identify:

An Initiative to Improve Quality of Software Testing

Techniques and Calculating Total Number of Failures

using Bayesian Method

Vaibhav Sancheti, G. Srikari Sharma

An Initiative to Improve Quality of Software Testing Techniques and Calculating Total Number of Failures using

Bayesian Method

 96 www.ijntr.org

context, subjects, limitations, and more importantly, which

variables can/must be controlled. Why are we not seeing,

over the years, a significant increase in the number of
empirical findings regarding STT? There is an array of
classifications, configurations and guidelines that help
researchers to define, conduct and report their experiments.
But manifesting those methods for constructs specific to STT

evaluation is very challenging. For example, statistics often

require large sets of significant data (usually hard to obtain or
unavailable) to achieve conclusive results. In addition, the

need for human involvement in testing makes the generation

of a large number of test sets infeasible. Similarly, obtaining

defect data for larger test sets is nearly impossible since

detection of defects will always be, to a certain degree, a

stochastic process. Availability and access to information is

still limited when evaluating STT. For instance, the System

Under Test (SUT) may not be ready for testing, test cases may

present limited coverage, defect data is unknown, among

others. Even when available, many researchers disregard the

representativeness of their artefacts (e.g. choice of

inappropriate programs or unreal defects) or even the

minimum sample size required to claim statistical

significance of results. That creates gaps and validity threats
that seriously compromise credibility of results. There are

existing techniques for stochastic generation of data for

testing. More specifically, they rely on models to generate
well-formed data. Those types of strategies enable control

over automatic generation of large sets of artefacts, hence

assisting experimenters who struggle with availability and

accessibility of objects in an experiment. Thus, existing

approaches can already be applied to overcome those issues.

Besides getting data, organization and analysis of all elements

in an experiment intimidates many researchers. Devising an

appropriate experimental design to comply with one’s
hypotheses, objectives and variables is overwhelming and a

poor design lead to confusing reports. Similarly, lack of

experience and/or knowledge in statistics hinder researchers

to harness full potential of their data causing them to either

enhance or destroy credibility of conclusions. For example,

many researchers recklessly use parametric tests (such as

ANOVA or t-test) as a rule of thumb, without proper

investigation of its assumptions, sometimes leading to

erroneous conclusion. In its early start, the empirical software

engineering community turned to other disciplines that have

been dealing with empirical evaluation over decades (e.g.

biology and social sciences) in order to overcome general

difficulties in managing data, subjects, statistical analysis, etc.
The software testing community seems to be performing

more experiments. However, they neglect validation of

existing experiments and proposal of innovative strategies to

help their fellow researchers in overcoming the specific
challenges of evaluating STT. That being said, validation of

experiments needs to be performed through reproduction,

replication or re-analysis of existing experiments with STT.

IV. METHODOLOGY

A. Model Based Testing

Model-based testing is a software testing technique in

which the test cases are derived from a model that describes

the functional aspects of the system under test. Generally, it

makes use of a model to generate tests that includes both

offline and online testing. Some advantages of model-based

testing are:

1) Higher level of Automation is achieved.

2) Exhaustive testing is possible.

3) Changes to the model can be easily tested.

B. Ghost Transition Testing

These testing for part of model based testing wherein the

only difference that lies between ghost transition testing and

all pair testing is that the transitions which are not defined/

visible for a state (called as ghost transition) when triggered

will remain in same state as the original. Such type of

transitions when triggered does not affect the change in state.

C. Multiple Condition Testing

Development of tests by white box testing method in

which test cases are designed to execute combinations of

single condition outcomes and each of the conditions or

branches are evaluated.

D. Number of Failures

It is highly plausible, that the additional information of

code coverage could help us to predict the total number of

failures better than with failure data alone. Here for the

Bayesian computations the hyper geometric distribution is

used as a prior. This method to use the hyper geometric

distribution is known and used as the "Capture-Recapture

Method" in biology since many decades. It goes back to P.S.

Laplace. He used it in the year 1786 to estimate the

population size of France. Here we use it to estimate the total

number of failures. This distribution can be used if we know

that the faults (the causes of our failures) are somehow spread

“uniformly” all over the code. To verify this assumption we

check the relationship of code coverage achieved and number

of detected failures. In the data set examined in the next

chapter there is an approximately linear relationship between

coverage achieved and failures detected. Other people

observed this relationship too (at least after some initial time).

V. ALGORITHM

For our computations we need as input:

a) number of failures detected during the test b) total

number of statements (or whatever is used for coverage)

c) percentage of coverage reached

p =

where

N0=Total number of failures

n:= number of failures detected

S:= total number of statements

s:= number of statements covered

VI. LITERATURE REVIEW

The initiative begins with a collaborative effort within the

testing community to share and standardize methods and

artefacts used to evaluate STT. Therefore, the research

comprises the state of art of empirical studies in software

engineering, software testing, statistics, experimental

designs, among others. The outcome is the development of

techniques and tools to provide support and execution of

experiments. Therefore, researchers will extend the body of

 International Journal of New Technology and Research (IJNTR)

 ISSN: 2454-4116, Volume-4, Issue-6, June 2018 Pages 95-97

 97 www.ijntr.org

knowledge by proposing new methodologies to perform

reproducible studies with STT. Even though replication and

re-analysis are just as important as reproducibility, we believe

that focusing first in reproducibility will allow researchers to
quickly overcome the general lack of availability and

accessibility of data required to replicate/re-analyse the

existing experiments. Thus, as the initiative strengthens, we

enable more replication because the community will rely on a

larger repository of experiments. In summary, we intend to

encourage practices similar to the initiative of reproducible

software engineering but adapting them to the software

testing community. We begin by defining input and output of
our process. The input are the study parameters, such as the

objects of study, a SUT, sets of test cases, number of subjects,

a general hypothesis and goals. The output, in turn, is a

compendium (i.e. a package), named Reproducible Software

Testing Research Compendium(RSTRC).

The proposed approach (Bayesian Zipf-models+coverage)

to predict the total number of failures of a software system

can be used with failure time data or the number of test cases.

In both cases it can also be used with grouped data. This

approach gives excellent predictive performance with the

data set of Wang et al.. The same methodology can be used to

fit time or number of test cases vs. code coverage. In the

future, we would like to extend our experiment to compare

the estimated constant c in Zipf(c) with the shape of the usage

profile (at a functional level), which can also be described via

Zipf's law. It is conjectured, that there is a strong connection,

which can be used for even better estimation at early levels

(prior distribution for c from the usage profile). As the

predicted mean value function fits the - in the future observed

- failure data extremely well, the method described in and

could be used very early to detect failure prone modules or

irregularities during the test process (statistical process

control).

VII. CONCLUSION

This paper discussed issues and goals regarding the need

for more reproducible research with software testing

techniques. Based on existing achievements and

contributions from empirical software engineering, we

proposed introduction of guidelines, artefacts and methods to

encourage researchers to produce compendia targeting

evaluation of STT (RSTRC). The objective is to define,
execute and deploy experiments with improved description,

accessibility and availability of required artefacts to

reproduce, replicate and re-analyse the experimental findings.
Through a collaborative effort among researchers, sharing

and reproduction allows the community to identify which

experimental findings are consequences of an actual cause
effect relationship, rather than an artefactual result. That leads

to a more reliable body of knowledge, increasing confidence
in existing research and setting high standards for upcoming

testing techniques.

The proposed approach (Bayesian Zipf-models+coverage)

to predict the total number of failures of a software system

can be used with failure time data or the number of test cases.

In both cases it can also be used with grouped data. This

approach gives excellent predictive performance with the

data set of Wang et al. [6]. The same methodology can be

used to fit time or number of test cases vs. code coverage. In

the future, we would like to extend our experiment to

compare the estimated constant c in Zipf(c) with the shape of

the usage profile (at a functional level), which can also be

described via Zipf's law. It is conjectured, that there is a

strong connection, which can be used for even better

estimation at early levels (prior distribution for c from the

usage profile). As the predicted mean value function fits the -

in the future observed - failure data extremely well, the

method described in and could be used very early to detect

failure prone modules or irregularities during the test process

(statistical process control).

REFERENCES

[1] Muhammad Abid Jamil, Muhammad Arif, Normi Sham Awang

Abubakar, Akhlaq Ahmad “Software Testing Techniques: A
Literature Review”

[2] Jai Gaurl, Akshita Goya1, Tanupriya Choudhury and Sai Sabitha

”A Walk Through of Software Testing Techniques”

[3] Francisco G. de Oliveira Neto, Richard Torkar, Patricia D. L.

Machado “An Initiative to Improve Reproducibility and

Empirical Evaluation of Software Testing Techniques”

[4] Harald A. Stieber, Linghuan Hu, W. Eric Wong” Estimation of the
Total Number of Software Failures from Test Data and Code

Coverage”

[5] Eduard P. Enoiu∗, Adnan ˇCauˇsevi´ ,Daniel Sundmark, Paul

Petersson “A Controlled Experiment in Testing of Safety-Critical

Embedded Software”

[6] S. Wang, Y. Wu, M. Lu, and H. Li, “Software Reliability modeling
based on test coverage,” in Proceedings of 9th International
Conference on Reliability, Maintainability and Safety, Guiyang,

China, 2011

