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 
Abstract — Surfaces quality is one of the most specified 

customer requirements for machine parts. The major indication 

of surfaces quality on machined parts is surface roughness. The 

research aim is to study the cutting conditions and their effects 

on the surface roughness. This research will use regression 

models and neuro-fuzzy to predict surface roughness over the 

machining time for variety of cutting conditions in turning. In 

the experimental part for turning, different types of materials 

(Aluminum alloy, brass alloy, and low carbon steel) were 

considered with different cutting speed, and feed rate. A linear 

regression and neuro-fuzzy model depending on 

statistical-mathematical method between surface roughness, Ra, 

and cutting condition will be derived, for the three materials. 

The effect of cutting parameters on surface roughness is 

evaluated and the optimum cutting condition for minimizing the 

surface roughness will be determined. The model will be 

established between the cutting conditions and surface 

roughness using regression and neuro-fuzzy model. As the 

results of this work, the linear regression and neuro-fuzzy 

model will be used in predicting surface roughness, can be used 

in manufacturing systems, this modeling helps engineer to 

reduce the efforts and improve the quality. 

I. INTRODUCTION 

The surface quality is quite important for the efficient 

working of machine parts. The structure of a machined 

surface is one of the most important criteria in terms of 

quality, and tribological properties of the machined surface 

are considerably affected from the surface tissue. Generally, 

the surface quality is characterized with surface roughness. 

Surface roughness is an important factor which must be 

considered not only in the conventional subjects of tribology 

such as abrasion, friction and lubrication but also in different 

fields such as sealing, hydrodynamics, electrical and heat 
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conductivity. Surface roughness is mainly affected during the 

machining process by cutting parameters such as cutting 

speed, feed rate and constant depth of cut. If these parameters 

are not chosen convenient, the surface roughness increases. 

This situation creates a notch effect and results in crack 

initiation, decrease in fatigue strength and corrosion 

resistance. So, the characterization and measurement of 

surface roughness has a great important in the sense of the 

optimization of machining process [4, 5]. Average roughness 

(Ra) is defined as the average roughness of the profile about 

the mean line (usually the least squares mean line or that 

generated by a standard filter). It represents the average 

absolute deviation of the profile points from a mean line and 

is perhaps the most widely used ―quoted‖ parameter. If z = 

f(x) is the profile measured from the reference mean line and 

L is the length of the profile measured from the reference 

mean line L is the length of the profile being assessed, then Ra 

is defined by 

 

 
 

An equally spaced digitised 3D surface can be denoted by a 

function z(xi, yi) with xi = i∆x and yj = j∆y, whereby i = 1, 2, 3, 

..., M and j = 1, 2, 3, ..., N. ∆x and ∆y are sampling intervals. 

M and N represent the number of sampling data points in the 

x and y directions, respectively. The 3D parameters are passed 

on the residual surface η(x, y), which is the difference 

between the original surface z(xi, yi) and the reference datum 

f(xi, yi). The average amplitude of the surface Sa is defined in 

3D as 

 

 
 

This is an arithmetic average parameter. It insensitive to 

changes in the sampling interval. Many experiments have 

been made in order to investigate surface roughness in 

turning machining. Therefore, this research will focus on the 
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effect of feed rate, spindle speed with three different material 

hardness on surface roughness, Ra. 

II. METHODOLOGY  

 

Neuro-Fuzzy Modeling 

The adaptive network based fuzzy inference system (ANFIS) 

architecture and learning is based on a fuzzy inference system 

[6] implemented in a framework of an adaptive network. 

Using a hybrid learning procedure, ANFIS can learn an 

input-output mapping based on human knowledge (in the 

form of if-then fuzzy rules). The ANFIS architecture has been 

employed to model non-linear functions, identify non-linear 

components on-line in a control system, and predict a chaotic 

time series. ANFIS performs the identification of an 

input-output mapping, available in the form of a set of N 

input-output examples, with a fuzzy architecture, inspired by 

the Takagi-Sugeno modeling approach [7]. The fuzzy 

architecture is characterized by a set of rules, which are 

properly initialized and tuned by a learning algorithm. The 

rules are in the form: 

 

 if speed1 is A11 and feed1 is A12 and size1 is A13 

then output =f1(speed1,feed1,size1) 

 if speed2 is A21 and feed2 is A22 and size2 is A23 

then output =f2(speed2,feed2,size2) 

 

Where, Aij are parametric membership functions. 

 

The model topology was based on TSK type, 2 input 

variables, 3 Gaussian membership functions for each 

variable, 9 rules; training was performed to 30 epochs. Three 

models were generated, for carbon, brass and aluminum. 

Results of the models response surface are shown in the 

following sections. Linear regression equation is given by: 

 

Roughness, Ra = a × feed rate + b × speed + c 

 

III. EXPERIMENTAL PROCEDURE 

A. MATERIALS SELECTION 

More than 36 samples (a rod bar, from Saline Water 

Conversion Corporation, Al Shuaiba, KSA) were used in this 

study with identical dimensions of length of 80 mm (length) × 

38 mm (diameter). A saw machine was used to cut the rod bar 

into identical dimensions. Figure 1 shows the image of the 

samples (rod bars) to be tested and Table 1 shows the data 

sheet of the material specifications. 

  

 

Figure 1: low steel rod while machining 

Table 1: material specifications 

 
 

The chemical compositions and mechanical properties of 

work materials are shown in Tables 2, 3 and 4, respectively. 

The effectiveness of turning process can be determined by the 

effects of surface layer and depend upon three parameters of 

cutting conditions have been chosen which are cutting speed, 

feed rate and three different materials (different hardness):  

 

1) Cutting speed, v = 132, 260, 320 and 500 m/min. 

2) Feed rate, f = 0.18, 0.31, 0.71 mm/rev. 

3) Depth of cut, DOC = 0.5 mm. 

 

Table 2: Chemical compositions of Aluminum 5052 

Al Mn Mg Si Cu Ti Zn Fe Cr 
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 Table 3: Chemical compositions of Brass 

Cu Fe Pb Zn Sn Ni Ti Al Fe 
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Table 4: Chemical compositions of low alloy steel 

Fe Mn Cu Si Zn Ti C Al Fe 
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B. EXPERIMENTAL SETUP 

The experiments for testing are carried out on turning 

machine using various solid carbide cutting tool at different 

cutting machining parameter combination. Figure 2 shows 

the image of the samples (rod/round bars) to be tested. 
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Figure 2: image of the samples (rod/round bars) to be tested 

 

C. CLEANING PROCEDURE 

It is of the utmost significant before starting the experiments 

to clean the samples of any sur`face contaminations, such as 

dust, grease, or any other soluble organic particles so that 

there will be no adverse effect on the results. Prior to 

measurement, samples (rod bar) were cleaned ultrasonically 

in three five-minute steps using: (i) water with detergent to 

remove dust and oils; (ii) distilled water to remove detergent; 

(iii) methanol to remove the distilled water. After cleaning, 

all samples were stored for 24 hours in the same metrology 

laboratory that was used for testing, to allow them to 

equilibrate with their environment (normally 20±1˚C and 
40±5% relative humidity). The procedure that is described 

above was judge to be adequate at this stage of investigation. 

 

D. TESTING PROCEDURE 

The surface profile of all samples were quantitatively 

analyzed in order to determine the statistical standard 

parameter of average roughness, Ra, by using Taly-surf® 

(from Taylor Hobson Precision, Inc.) which delivers 0.8 nm 

resolution over 12.5 mm seamless measuring range and 

includes 0.125 µm horizontal data spacing. A nominal 2 µm 

stylus was used with a normal load of 0.7 mN and selectable 

traverse speed down to 0.5 mm s-1 and which conforms to 

British Standards, see Figure 3. Surface roughness errors 

were calculated from the standard deviation of the absolute 

values of height deviation (absolute values). The traces were 

auto-leveled to a linear least-squares straight line and then 

filtered with a standard 0.8 mm cut-off. The surface 

parameters were selected according to the recommendations 

in the literature and also with respect to the data processing 

facilities available [8-12]. 

 

 
Figure 3: image of Taly-surf® and specimen 

 

Every test condition was repeated at least three times at 

different ―new‖ locations on a rod bar surface in order to 

ensure the repeatability and reproducibility of the results. 

The ―new‖ location was at least ±100 µm from the previous 
one. This approach should have avoided any alteration of the 

counterbody surface, e.g., due to wear, which might occur 

during the test and affect the measurements in the following 

tests. All experiments were performed with a typical ―ball-

on-flat‖ arrangement applying a linear sliding contact at 
constant velocity over a specific distance. Tests were 

performed by using single scan mode (forwards motion). 

The profiler had a scan length of 10 mm, which is close to 

the size of a human fingertip. 

 

E. CALIBRATION PROCEDURE 

Standard calibration ball radius D = 22.0161 mm, 112/1844, 

Serial No. 639-506-B (from Taylor Hobson Precision, Ltd.) 

was used to calibrate the test-rig. For convenience, ten 

calibration trials have been carried out. This is adequate as 

these trials are predominantly about relative behavior; 

design interpretation to other systems is always vulnerable to 

variations in terms of materials and dimensions. Calibration 

showed the cantilever was a linear spring (R2 > 0.99), under 

operating and environmental conditions typical for this type 

of device, with absolute uncertainties of <1% of reading and 

realizable measurement resolution down to at worst 50 nm. 

Figure 4 shows the set-up of the standard calibration ball 

and the systematic diagram of the ball and a nominal 2 µm 

stylus with a normal load of 0.7 mN and selectable traverse 

speed down to 0.5 mm s-1. This method of calibration 

ensures that the gauge travels through (and therefore, is 

calibrated over) most of its range, see [13]. 

 

 

Figure 4: (a) image of standard calibration ball radius D = 

22.0161 mm, 112/1844, Serial No. 639-506-B (b) ball with 

nominal 2 µm stylus 

 

IV. RESULTS AND DISCUSSION  

The measured values of surface roughness for the machined 

surfaces corresponding to all the experimental runs are given 

in Tables 4, 5 and 6. 

 

Table 4: repeatability performance of Aluminum 

1 0.18 132 4.2661 4.2373 4.2984 4.27

2 0.31 132 17.5879 16.179 16.3689 16.71

3 0.71 132 141.848 142.034 141.794 141.89

4 0.18 260 4.5598 4.4821 4.4496 4.50

5 0.31 260 22.2715 25.0405 25.0482 24.12

6 0.71 260 151.07 153.497 153.409 152.66

7 0.18 320 3.2054 3.1754 3.0799 3.15

8 0.31 320 14.9875 14.7761 15.7622 15.18

9 0.71 320 98.7804 97.1942 91.2627 95.75

10 0.18 500 3.7238 3.675 3.7211 3.71

11 0.31 500 14.9578 15.3767 15.3325 15.22

12 0.71 500 116.143 126.155 115.111 119.14

80 38

Surface Roughness, R a, (µm)

Average
Trail 

No.3

Aluminum

Feed Rate 

(mm/rev)

Cutting Speed 

(m/min)

Length 

(mm)

Diameter 

(mm)

Trail 

No.1

Trail 

No.2

Cutting 

No.

 
 

Table 5: repeatability performance of Brass 
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1 0.18 132 5.6294 5.3204 5.3383 5.43

2 0.31 132 22.4361 20.6543 22.4829 21.86

3 0.71 132 90.4682 90.1949 88.8665 89.84

4 0.18 260 5.8919 5.8646 5.7449 5.83

5 0.31 260 21.4614 22.6225 23.132 22.41

6 0.71 260 89.3569 89.8432 91.846 90.35

7 0.18 320 5.4822 5.4509 5.661 5.53

8 0.31 320 23.3578 23.5526 21.929 22.95

9 0.71 320 89.052 88.4315 86.244 87.91

10 0.18 500 4.4503 4.33263 4.2679 4.35

11 0.31 500 21.555 22.0424 20.7043 21.43

12 0.71 500 82.7338 81.7665 79.4545 81.32

Feed Rate 

(mm/rev)

Cutting Speed 

(m/min)

Length 

(mm)

Brass Surface Roughness, R a, (µm)

Average

80 38

Diameter 

(mm)

Trail 

No.1

Trail 

No.2

Trail 

No.3

Cutting 

No.

 
 

 

 

Table 6: repeatability performance of low carbon steel 

1 0.18 132 6.6597 8.1768 8.1345 7.66

2 0.31 132 12.0783 12.4256 13.877 12.79

3 0.71 132 19.4475 18.3176 19.1891 18.98

4 0.18 260 5.2099 6.9874 7.1914 6.46

5 0.31 260 7.2849 7.9978 7.7982 7.69

6 0.71 260 18.6287 18.125 17.8566 18.20

7 0.18 320 2.868 3.4254 3.2185 3.17

8 0.31 320 4.3151 4.4497 3.977 4.25

9 0.71 320 19.0189 18.2117 18.7516 18.66

10 0.18 500 3.0107 3.2029 2.7492 2.99

11 0.31 500 3.3443 3.3228 3.1917 3.29

12 0.71 500 18.1182 18.7612 18.881 18.59

Carbon Steel

Average

Surface Roughness, R a, (µm)

80 38

Trail 

No.3

Diameter 

(mm)

Trail 

No.1

Trail 

No.2

Feed Rate 

(mm/rev)

Cutting Speed 

(m/min)

Length 

(mm)

Cutting 

No.

 
 

A. Repeatability Performance of Aluminum 

Figure 5 shows the Aluminum roughness prediction model 

with linear regression. The linear regression equation is 

given by: 

 

Roughness, Ra = a × feed rate + b × speed + c 

Where,  

a = 242.5899, b = - 0.0309 and c = -37.9813 

 

Figure 6 illustrates the neuro-fuzzy model of aluminum 

including the roughness, feed rate and speed. Figure 7 shows 

the repeatability performance of aluminum with different 

cutting speed and feed rate. 

 

 

Figure 5: Aluminum roughness prediction model with linear 

regression 

 

 

Figure 6: neuro-fuzzy model of aluminum 

 

 

Figure 7: repeatability performance of Aluminum surface 

roughness 

 

B.  Repeatability Performance of Brass 

Figure 8 shows the Brass roughness prediction model with 

linear regression. The linear regression equation is given by: 

 

Roughness, Ra = a × feed rate + b × speed + c 

Where, 

a = 156.7675, b = - 0.00974 and c = -21.4877 

 

Figure 9 illustrates the neuro-fuzzy model of Brass including 

the roughness, feed rate and speed. Figure 10 shows the 

repeatability performance of Brass with different cutting 

speed and feed rate. 
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Figure 8: Brass roughness prediction model with linear 

regression 

 

 

Figure 9: neuro-fuzzy model of brass steel 

 

Figure 10: repeatability performance of Brass surface 

roughness 

 

C. Repeatability Performance of Carbon Steel 

Figure 11 shows the Carbon Steel roughness prediction 

model with linear regression. The linear regression equation 

is given by: 

 

Roughness, Ra = a × feed rate + b × speed + c 

Where,  

a = 26.36, b = - 0.01325 and c = 3.699 

 

Figure 12 illustrates the neuro-fuzzy model of Carbon Steel 

including the roughness, feed rate and speed. Figure 13 

shows the repeatability performance of Carbon Steel with 

different cutting speed and feed rate. 

 

 
Figure 11: Carbon Steel roughness prediction model with 

linear regression 

 

 
Figure 12: neuro-fuzzy model of carbon steel 

 

Figure 13: Carbon steel surface roughness 

V. CONCLUSIONS 

The effect of cutting speed and feed rate on the surface 

roughness shows that a low hardness material ductile material 

gives (Ra) more than the high hardness brittle materials at 

high cutting speed, at the low feed rate. The experiment 

shows that the change of cutting speed (v) at different cutting 

feed gives the same relationship, in general. Indeed, at 0.18 

mm/rev federate and high speed 500 RPM, we got the best 

surface roughness, the effect of feed rate is the most 

important factor were we have to keep it low with high 

cutting speed to get the optimum surface roughness. The 



                                                            

 

                                                                                    21                                                                                    www.wjrr.org  

 

results of experiments allow considering the establishing 

cutting condition on the quality of surface, and then obtain 

linear regression and neuro-fuzzy models to ensure the 

quality. The analysis of the effects of various parameters 

shows that the feed rate has significant effect in the reducing 

roughness and cutting speed have second effects in reducing 

the surface roughness, while the working materials has the 

least effect. The models generated, which includes the effect 

of cutting speed, feed rate, and working materials. Finally, the 

most important points are: 

 In general, the study shows that the cutting speed is by 

far the most dominant factor for surface roughness 

then the feed rate, while the working materials has less 

effect. 

 The effect of cutting condition on the quality has been 

established with the help of mathematical models, the 

optimal conditions to minimize the surface roughness 

has been determined. 
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