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 
Abstract— In this paper we present the numerical simulation of 

the deformation of two Micro-Electromechanical Systems 
(MEMS), a trampoline-type one i.e. a rectangular cantilever 

beam and an accelerometer that consists of a square plate with 
all edges simply supported. The deformation of these systems is 

modeled by fourth-order differential equations, ordinary and 
partial respectively. We find the approximate solutions by using 

the finite differences method programmed in Matlab, solving 
the system of linear equations associated with different methods 

to evaluate the efficiency of these. We obtained very good 
approximations with small errors compared to other articles 

that use other approaches. 

 

Index Terms— Accelerometer-type MEMS, differential 
equations, finite differences, MEMS, trampoline-type MEMS. 

 

I. INTRODUCTION 

 

The Micro-Electromechanical Systems (MEMS) are devices 

created by using nanotechnology that combine sensors and 

actuators that sense and control physical parameters at 

microscale. Now days there is a great number of MEMS with 

applications in medicine, engineering, telecommunications, 

etc. [6].  

The trampoline-type MEMS are mainly used as sensors in 

biology and chemistry, e.g. for the measurement of chemical 

absorptions in the order of picograms or inbiomolecular 

measurements [7]. Consider a rectangular cantilever beam 

subject to certain forces. Such forces cause a deformation in 

the beam which is the main topic of this article. 

There are many different accelerometer-type MEMS that are 

used, for example, to activate air bags or in electronic devices 

to detect its orientation. This device consists of a square plate 

with all edges simply supportedand receive an electric pulse 

causing a deformation in the z axis [3], [6]. 

The main goal of these simulations isa saving in production 

costs, also in time and efforts needed to achieve the good 

operation of the devices [3]. 

We will compare the results obtained with an analytical 

solution for the differential equations (when possible) and 

also with simulations realized in previous works, like in [1] 

and [3], in which solutions were obtained by using similar 

methods. 

In section 2 we present the differential equations that 
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governthe devicesbehavior. 

Later, in section 3, we give a brief explanation of the finite 

difference method used to obtain the solution for the 

differential equations. For this kind of systems, it is more 

common to use the finite element method [1], [2].  

II. MATHEMATICAL MODELS 

 

For both situations a physical analysis of the behavior leads 

to a fourth-order differential equation. These equations are 

presented below. 

A. Model 1: Trampoline-type MEMS 

 

Suppose that we have the cantilever beam shown in figure 1 

and there is an area stressed outs,uniformly distributed on the 

upper surface. It is possible to model this as a uniformly 

distributed axial stress swalong the beam’s neutral axis and a 

uniformly distributed bending moment m along the beam as 

showing un figure 2[4]. 

 

 
Figure 1: Characteristics of the cantilever beam[4] 

 

 

 
Figure 2: Forces applied to the beam [4] 

 

To avoid dimensional problems, we formulate the equation in 

terms of the dimensionless variables below [1], [2]: 𝜉 =  
𝑥𝐿    , 𝑌 =

𝑦𝐿 

The equation that describes the behavior of the beam is [2], 

[4]: 

 𝑌′′′′ −  𝛽𝐿 2 1 − 𝜉 𝑌′′ +  𝛽𝐿 2𝑌′ =  0    (1) 

 

Here𝛽 = (𝑠𝑤𝐿)/𝐸∗𝐼, where I is the area moment of inertia 

and𝐸∗  is the biaxial modulus, defined as𝐸∗ = 𝐸/(1 − 𝑣) 

withE the Young’s modulusand v the Poisson ratio. 

The boundary conditions for (1) are the following ones [2], 

[4]: 
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𝑌 0 = 0,    𝑌′ 0 = 0,     𝑌′′  1 = 0 
 𝑌′′′  1 +  

𝛼 𝛽 𝐿 2

2
= 0 

 

where𝛼 = 𝑡/𝐿. 

Because the variable 𝜉  appears multiplying the second 

derivative in equation (1) it is very difficult to obtain an 

analytical solution. For this reason, is necessary to use a 

numerical approximation. 

B. Model 2:Accelerometer-type MEMS 

For the accelerometer described in the introduction, the 

deformation of the plate is modeled by a Bi-Laplacian type 

equation [3], [5]: 

 𝜕4  𝜔𝜕𝑥4
+ 2 

𝜕4𝜔𝜕𝑥2  𝜕𝑦2
+  

𝜕4𝜔𝜕𝑦4
= 𝑞   (2) 

 

Where𝜔 is the deformation of the plate, andqisthe force 

magnitude applied to the plate given by the following 

equation: 𝑞 =  
𝑞0𝐷 sin  𝜋𝑥𝑎  sin  𝜋𝑦𝑏   

 

Considering the length and width of the plate asa andb 

respectively. Here 𝑞0 is the force applied in the middle of the 

plateandDis the material rigidity. In turn, such rigidity 

depends on the material Young’s modulus (E), the inertial 

moment (I) and the Poisson ratio (v) that is given by: 

 𝐷 =  
𝐸𝐼

1 − 𝑣2
 

 

The boundary conditions for this model are the following 

ones: 𝜔 = 0,
𝜕2𝜔𝜕𝑥2

= 0 para𝑥 = 0,   𝑥 = 𝑎 

 𝜔 = 0,
𝜕2𝜔𝜕𝑦2

= 0 para𝑦 = 0,   𝑦 = 𝑏 

 

For simplicity we suppose thata = b = 1 therefore the 

equation (2) has the following analytical solution [3], [5]: 

 𝜔 =  
1

4𝜋4

𝑞0𝐷 sin 𝜋𝑥 sin(𝜋𝑦) 

 
III. NUMERICAL SOLUTION 

 

The finite difference method that we use to obtain the 

approximate solutions for equations (1) and (2),consists of a 

domain discretization obtaining a mesh with certain step 

length h. In each node we approximate the derivativesthrough 

formulas that relate the function value in the node and its 

neighbors. In this way, after the discretization we get a 

system of linear equationswhose solution is the approximate 

value of the solution of equations (1) or (2) at each node. 

A. Model 1 

After applying this procedure to equation (1) we obtained the 

following equations for interior nodes, i.e. nodes away from 

the boundary: 

 

𝑌𝑛−2 −  
1

2
 8 + ℎ2 𝛽𝐿 2 2 1 − 𝜉 + ℎ  𝑌𝑛−1

+  6 + 2ℎ2 𝛽𝐿 2 1 − 𝜉  𝑌𝑛− 1

2
 8 + ℎ2 𝛽𝐿 2 2 1 − 𝜉 − ℎ  𝑌𝑛+1

+ 𝑌𝑛+2 = 0 
 

Applying the boundary conditions, we obtained similar 

equations for nodes near the boundary. 

The relative error is a number that represents a measurement 

(or a percentage) of how far is the result from the real 

solution: 𝐸 =  
 𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑎𝑝𝑝𝑟𝑜𝑥   𝑦𝑟𝑒𝑎𝑙   

 

Since we do not have an exact solution for this model (in 1D), 

a mesh size independence study was performed, that is, we 

are considering results obtained with a finer mesh as the exact 

solution, and the ones with a coarser mesh as the 

approximation to the solution, and we calculate the relative 

error. 

For this model we take  𝛽𝐿 2 = 0.1 and 𝛼 = 0.05 obtaining 

the graph showed in figure 3 for the approximation for the 

deformation. 

 

 
Figure 3: Approximate solution for model 1 with h=1/16 

 

The relative error computing with different size of grids is 

shown in table 1. 

 

Mesh Error relative 

h=1/5 vs h=1/10 0.0339 

h=1/5 vs h=1/20 0.0807 

h=1/5 vs h=1/40 0.1705 

h=1/10 vs h=1/20 0.0453 

h=1/10 vs h=1/40 0.1321 

h=1/20 vs h=1/40 0.0831 

Table 1: Relative error for model 1 

 

We observed that the error is about 17% (in case h=1/5 vs 

h=1/40) and in the case h=1/20 vs h=1/40 the error was 

reduced to half of its value which means a good 

approximation is obtained. 

 

In [1] similar results are obtained using the Finite Element 

Method getting an error of about 18%. 
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B. Model 2 

 

For this model we have the following equations for the 

interior nodes 

 

20𝜔𝑖𝑗 − 8 𝜔𝑖−1𝑗 + 𝜔𝑖+1𝑗 + 𝜔𝑖𝑗 −1 + 𝜔𝑖𝑗+1 
+ 2 𝜔𝑖−1𝑗−1 + 𝜔𝑖−1𝑗+1 + 𝜔𝑖+1𝑗−1

+ 𝜔𝑖+1𝑗+1 + 𝜔𝑖𝑗 −2 + 𝜔𝑖𝑗 +2 + 𝜔𝑖+2𝑗
+ 𝜔𝑖−2𝑗 = 𝑞𝑖𝑗ℎ4 

 

Again with similar equation for nodes near to the bound 

applying the boundary conditions. 

We used two different methods for solving the system of 

linear equations, LU factorization and SOR (Successive 

Over-Relaxation). LU factorizationis a direct method to 

obtain the exact solution for the system,this represents a 

decrease in the error of the approximation but requires a high 

computation time. 

In this model we consider the silicon qualities to obtain the 

parameters of equation (2): 

 𝑞0𝐷 = 7.0544 × 10−5 

 

In figure 4 is shown the approximation taking 64 nodes in 

each axis. 

 

 
Figure 4: Approximate solution using LU factorization for 

model 2 with h=1/64 

 

As we mentioned above we solve the system of linear 

equations using two different methods. The tables 2 and 3 

show the errors and CPU times for the two methods and 

different values for h 

. 

 

h  Relative error Time in seconds 

1/16 0.0064 0.3 

1/32 0.0016 2.6 

1/64 0.0004 56 

1/100 0.00016 552 

Table 2: Time and error for LU factorization 

 

 

H Tolerance Relative error Time in seconds 

1/16 10-11 0.0462 0.57 

1/16 10-15 0.0065 1.49 

1/32 10-12 0.1272 188 

1/32 10-15 0.0015 1288 

Table 3: Time and error for SOR 

 

One can observe the increased accuracy and efficiency of LU 

factorization. With an error of 0.016% for 100 nodes with an 

error of 0.15% for 32 nodes with SOR. 

For the solution with SOR it is necessary to give a very small 

error tolerance and a large number of iterations.With less 

than 10−12 and 5000 the method seems no to converge. 

 
V. CONCLUSIONS 

 

For Model 1, the results are similar to those presented in [1], 

where the finite element method was used, which as 

mentioned in the introduction is the usual method used for 

this kind of models, However, there is a small error 

reduction. 

 On the other hand, the error was very small with model 2, the 

difference between direct and iterative model to solve the 

system of linear equations lies in the associated matrixwhich 

is tri-diagonal by blocks and the LU factorization algorithm 

will help to avoid unnecessary operations. However, for the 

SOR the samenumber of operations are performed at each 

iteration and because the dimensions of the variables the 

convergence is very slow. 

These problems can be solved using different packages of 

software such as FEMLab, ANSYS and its derviates, 

COMSOL, even a matlab toolbox, but the idea is to have a 

own software and no to depend of commercial software. 

These results can be used in future articles to perform 

simulations of other types of MEMS, such as gyroscopes, 

comb engines, etc. 

In addition, it is intended to perform simulations by using our 

own techniques of visualization and translate the method to 

be implemented by using free software. 
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