Some Properties of Entire Functions Associated with L-entire Functions on C(I)

Roberto Contreras, Hector D. Ramírez, Nelva B. Espinoza

Abstract—In this paper, let C(I) denote the Banach algebra of all continuous complex-valued functions defined on a close interval I in the set of real numbers, R. The functions having derivatives in the Lorch sense on the whole Banach algebra C(I) are considered and they are called L-entire functions [1,3]. For each L-entire function on C(I), entire complex functions are associated and the relationship between their orders is studied. Even more, the possibility of locating the solutions of the equation F(f) = 0 from the location of zeros of the associated family of entire functions with F is analyzed too.

Index Terms—Banach algebras, locating zeros, order, L-entire functions, power series.

I. INTRODUCTION

Let I = [a, b] be a closed and bounded interval of R. Let C(I) denote the Banach algebra of continuous complex-valued functions defined on I, provided with the uniform convergence norm. The element $1_{C(I)} \in C(I)$ is called the unit element and it is the function satisfying $1_{C(I)}(t) = 1$ for all $t \in I$.

A function $F:C(I) \to C(I)$ is said to have derivative in the Lorch sense, $F'(f_0)$ at f_0 , if for any >0, a >0 can be found such that for all $h \in C(I)$ with $||h|| < \delta$,

$$||F(f_0+h)-F(f_0)-hF'(f_0)|| \le ||h||\varepsilon.$$

If F has a derivative throughout a neighborhood of f_0 , F is said to be a L-analytic function at f_0 and of course, if F is L-analytic in the whole C(I), it is said L-entire function on C(I), see [3].

If F is a L-entire function on C(I), by Theorem 26.4.1 of [3],

$$F(f) = \sum_{n=0}^{\infty} g_n f^n, \ f \in C(I),$$
 (1)

where $g_n \in C(I)$ and $\limsup_{n \to \infty} ||g_n||^{\frac{1}{n}} = 0$.

Roberto Contreras J., Faculty of Computer Science, Autonomous University of Puebla, Puebla, Mexico,

Hector D. Ramírez H., Faculty of Computer Science, Autonomous University of Puebla, Puebla, Mexico,

Nelva B. Espinoza H., Faculty of Computer Science, Autonomous University of Puebla, Puebla, Mexico,

A L-entire function F on C(I) is associated with a family of entire complex functions, $\{f_t\}_{t\in I}$ defined for each $t \in I$ by

$$f_t(z) = F(z \mathbf{1}_{C(t)})(t)$$

$$= \sum_{n=0}^{\infty} g_n z^n, \quad z \in \mathbb{C}.$$
(2)

Also, it can be associated with the L-entire function F a function of complex variable, defined by

$$g(z) = \int_{a}^{b} F(z1_{C(I)})(t)dt, \quad z \in \mathbb{C}.$$
 (3)

By (1), for all $z \in \mathbb{C}$.,

$$g(z) = \sum_{n=0}^{\infty} \left(\int_{a}^{b} g_{n}(t) dt \right) z^{n}$$

$$= \sum_{n=0}^{\infty} a_{n} z^{n} \quad z \in \mathbb{C},$$
(4)

and for all $n \in \mathbb{N}$

41

$$|a_n| = \left| \int_a^b g_n(t) dt \right| \le (b - a) \|g_n\|.$$
 (5)

Inequality given in (5) implies that g is an entire function of complex variable.

Now, if F is a L-entire function on C(I), it is possible to find the relationship between the order of F and the orders of the entire functions $f_t, t \in I$ and g, but all in all, there is not relationship between the orders of the entire functions $f_t, t \in I$ and the order on the entire function g.

Furthermore, the possibility of locating the solutions of the equation F(f) = 0 from the location of the zeros of the equation $f_t(z) = 0$ will be analyzed.

II. ORDER OF A L-ENTIRE FUNCTION ON C(I)

The notion of order for an entire complex function has been extended without changes to entire functions defined from C, the complex number, onto a Banach space E, see [3]. This process can be done in the same way for a L-entire function on C(I), see [1].

Let F be a L-entire function on C(I). For each r > 0, it makes sense to define the quantity

$$M(F,r) = \sup_{\|f\| \le r} \|F(f)\|.$$

www.wjrr.org

Some Properties of Entire Functions Associated with L-entire Functions on C(I)

It is said that *F* has *finite order*, if there are constants $\mu > 0$ and $\delta > 0$ such that

$$M(F,r) < e^{r^{\mu}}$$
, if $r > \delta$ (6)

The lower bound of these μ 's is called the *order* of F and it will be denoted by $\rho(F)$.

In [1], it has shown that some relationships which are true for the order of an entire function of complex variable, are still maintained for the order of a L-entire function on C(I), while others relationships are not longer fulfilled.

The next relationships is true and its proof can be found in [2],

$$\rho(F) = \limsup_{r \to \infty} \frac{\ln \ln M(F, r)}{\ln r}.$$
 (7)

Between the order of the L-entire function F and the order of its associated entire function f_t given in (2), there is the next relationship.

$$\rho(f_t) \le \rho(F),\tag{8}$$

for each $t \in I$. Indeed, as

$$\left| f_t(z) \right| \le \left\| F(z 1_{C(I)}) \right\|$$

for all $z \in \mathbb{C}$ and all $t \in I$. So,

$$M(f_t,r) \leq M(F,r)$$
.

and (8) follows from (7).

By the other hand, if g is the entire function given in (4) associated with F, the inequality (5) gives

$$M(g,r) \leq M(F,r)$$

Thus, from (7)

$$\rho(g) \le \rho(F). \tag{9}$$

Example 1. The inequality given in (9) can be strict, to see it, it is enough considered the L-entire function

$$F(f) = \sum_{n} g_n f^n$$
,

where $g_n(t) = \frac{t}{n!}$ for $t \in [-1,1]$ It is clear that $\rho(F) = 1$, while $\rho(g) = 0$.

Example 2. The inequalities given in (8) and (9) help to obtain information about the order of a L-entire function in cases where this quantity is impossible or difficult to calculate. For example, let F be the L-entire function on C([0,1]),

$$F(f) = \sum g_n f^n,$$

with

$$g_n(t) = \frac{n^3}{n^{n^\delta}} S_n(t), \ t \in [0,1],$$

where $0 < \delta < 1$ and

$$S_n(t) = \begin{cases} 6t \left(\frac{1}{n} - t\right) & t \in \left[0, \frac{1}{n}\right], \\ 0 & t \in \left[\frac{1}{n}, 1\right] \end{cases}$$

Then,

$$g(z) = \sum \frac{1}{n^{n^{\delta}}} z^n,$$

and it is easy to see that $\rho(g) = \infty$. By (9), $\rho(F) = \infty$.

In general, the order of the entire function f_t defined in (2), is not related to the order of the entire function g defined in (3). For example, if F is the L-entire function of the example 1, for all $t \in [-1,1]$, $\rho(f_t) = 1$ and $\rho(g) = 0$. So,

$$\rho(g) < \inf_{t \in [-1,1]} \rho(f_t)$$

By the other hand, if F is the L-entire function of the example 2, for all t [0,1], f_t is a polynomial function with $\rho(f_t) = 0$ and $\rho(g) = \infty$. So,

$$\rho(g) > \sup_{t \in [0,1]} \rho(f_t).$$

III. LOCATION AND DISTRIBUTION OF THE ZEROS OF A L-ENTIRE FUNCTION ON $\mathcal{C}(I)$

Let $D \subset C$ and $z \in \mathbb{C}$. Let

$$\Omega^D = \{ h \in C(I) : h(I) \subset D \}$$

and

42

$$h_z(t) = z$$
, $t \in I$.

If $z \in D$, then $h_z \in \Omega^D$.

The sets Ω^D , have some properties whose proofs are obtained without difficulty from the functions h_z , with $z \in D$, such as those listed below.

- 1. D is a convex set if and only if Ω^D is a convex set.
- 2. D is a closed set if and only if Ω^D is a closed set.

www.wjrr.org

- 3. D is a bounded set if and only if Ω^D is a bounded set.
- 4. D is an open set if and only if Ω^D is an open set.
- 5. D is a compact set if and only if Ω^D is a compact set.
- 6. For $D_1 \subset \mathbb{C}$ and $D_2 \subset \mathbb{C}$, $Q^{D_1} \cap Q^{D_2} = Q^{D_1 \cap D_2}.$

In the following result, f_t is the entire function of complex variable defined in (2) and g is the entire function of complex variable defined in (3) and (4).

Proposition 1. Let F be a L-entire function on C(I) and $D \subset C$. If $F(\Omega^D) \subset \Omega^D$, then $f_t(D) \subset D$ for all $t \in I$. Proof. For $z \in D$, $h_z \in \Omega^D$ so $F(h_z) \in \Omega^D$. Now for all $t \in I$, $F(h_z)(t) \in D$, but

$$F(h_z)(t) = \sum_{n} g_n(t)[h_z(t)]^n$$

$$= \sum g_n(t)z^n = f_t(z).$$

Since $z \in D$ is arbitrary, $f_t(D) \subset D$.

Generally it cannot enunciate a similar result for the entire function g given in (4). However, under certain conditions over the set D, it is possible to enunciate some results involving g.

Proposition 2. Let F be a L-entire function on C(I) and let D be a closed and convex subset of C. If $F(\Omega^D) \subset \Omega^D$, then $g(D) \subset D$.

Proof. For $z \in D$, then $h_z \in \Omega^D$. If $t \in I$, $F(h_z)(t) \in D$. Taking $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ a partition of the interval I = [a,b] by the convexity of D, for $s_i \in [t_{i-1},t_i]$, $i = 1,2,\ldots,n$,

$$\sum_{i=1}^{n} (t_i - t_{i-1}) F(h_z) (s_i)$$
 (10)

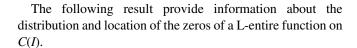
is an element of D. Since

$$g(z) = \int_0^1 F(z1_{C(I)})(t)dt = \int_0^1 F(h_z)(t)dt$$

is the limit of sums of the type (10), together with the fact that D is closed, it is concluded that $g(z) \in D$.

As a consequence of the Proposition 2 and the Schauder's fixed-point theorem, see [5], the following collorary is obtained.

Collorary 3. Let F be a L-entire function on C(I) and let D be a compact and convex subset of C. If $F(\Omega^D) \subset \Omega^D$, then the entire function g has a fixed point in D.



Proposition 4. Let F be a L-entire function on C(I) and let D be a subset of C. If the zeros of all entire functions $f_t, t \in I$, are in D, then the zeros of the L-entire function F are in the set Ω^D .

Proof. Taking $h \in C(I)$ and supposing F(h) = 0 but $h \notin \Omega^D$, then exist $t_0 \in I$ such that $h(t_0) = z_0 \notin D$. But

$$f_{t_0}(z_0) = F(z_0 1_{C(I)})(t_0) = F(h)(t_0) = 0.$$

Then $z_0 \in D$, which contradicts the assumption. \square

Proposition 5. Let F be a L-entire function on C(I) and $h \in C(I)$ a zero of F. Then h(t) is a zero of the entire function $f_t, t \in I$.

Proof. For fixed $t \in I$,

$$f_t(h(t)) = F(h(t)1_{C(I)}) = F(h)(t) = 0,$$

from here, the result is followed. \Box

Proposition 6. Let F be a L-entire function on C(I) and $F(0) \neq 0$. Then $f_t(0) \neq 0$ for some $t \in I$. Proof. Just look that

$$f_t(0) = F(0 \cdot 1_{C(I)}) = F(0)(t).$$

Using the Proposition 5 and 6, it is possible to prove, under certain conditions, that a L-entire function on C(I) of finite order has a finite number of zeros in the closed ball with radius r and center in the origin point.

Denote by n(r) the number of zeros that a L-entire function F has in the closed ball $\{h \in C(I): \|h\| \le r\}$. It is obvious that

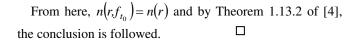
$$n(r) \ge \sup_{t \in I} n(r, f_t),$$

where $n(r, f_t)$ is the number of zeros that the entire function f_t has in the closed ball $\{z \in C : |z| \le r\}$.

Proposition 7. Let F be a L-entire function on C(I) and let $\{h_k\}_{k\in\mathbb{N}}$ be the collection of zeros of F. Suppose $F(0)\neq 0$ and $h_k(t)\neq h_l(t)$ with $k\neq l$ and $t\in I$. Then F cannot have infinitely many zeros in a ball of finite radius.

Proof. Since $F(0) \neq 0$, by Proposition 6, there is t_0 I such that $f_{t_0}(0) \neq 0$. So f_{t_0} is an entire function non-identically zero. By Proposition (5), $\{h_k(t_0)\}_{k\in\mathbb{N}}$ are the zeros of f_{t_0} and since $h_k(t) \neq h_l(t)$ with $k \neq l$ then the zeros of f_{t_0} are different.

Some Properties of Entire Functions Associated with L-entire Functions on C(I)



Proposition 8. Let F be a L-entire function on C(I) with $\rho(F) < \infty$. Let $\{h_k\}_{k \in \mathbb{N}}$ be the collection of zeros of F where each one appears as many times as its multiplicity indicates. Suppose $F(0) \neq 0$ and $h_k(t) \neq h_l(t)$ with $k \neq l$ and $t \in I$. Then for each r > 0, the number $n(r) < \infty$.

Proof. Since $F(0) \neq 0$ by Proposition 6, there is $t_0 \in I$ such that $f_{t_0}(0) \neq 0$ and by Proposition (5), $\{h_k(t_0)\}_{k \in \mathbb{N}}$ are the zeros of f_{t_0} , and since $h_k(t_0) \neq h_l(t_0)$ with $k \neq l$, then the zeros of f_{t_0} , are different.

From here, $n(r, f_{t_0}) = n(r)$ and by Theorem 4.5.1 of [4], the conclusion is followed.

REFERENCES

- [1] A. Bezanilla López. *Asymptotic elements of L-entire function on C(I)*. Ciencias Matemáticas, vol. 6, No. 2, 1985, pp. 74–81.
- [2] R. Contreras and A. Bezanilla. On a Ahlfors-Denjoy type result. Communication in Mathematics and Applications, vol. 5, No. 1, 2014, pp. 41–46.
- [3] E. Hille and R. S. Philleps. Functional analysis and semigroups. AMS Colloquium Publication, vol. 31, Providence, 1975.
- [4] A. S. B. Holland. Introduction to the theory of entire functions. Pure and Applied Mathematics, vol. 56, Academy Press, 1973.
- [5] J. Schauder. *Der fixpunktsatz in functionaraümen*. Studia Mathematics, vol. 2, 1930, pp. 171–180.

Roberto Contreras Juárez, Professor and researcher at Faculty Computer Science of the Autonomous University of Puebla, PhD. in applied and pure mathematics. Member of the Program for the Professional Development of teachers (PRODEP).

Héctor David Ramírez Hernández, Professor and researcher at Faculty Computer Science of the Autonomous University of Puebla, PhD. in applied and pure mathematics.

Nelva Betzabel Espinoza Hernández, Professor and researcher at Faculty Computer Science of the Autonomous University of Puebla, Master in Mathematics.

44 www.wjrr.org