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 
Abstract—In this paper, let C(I) denote the Banach algebra of 

all continuous complex-valued functions defined on a close 

interval I in the set of real numbers, R. The functions having 

derivatives in the Lorch sense on the whole Banach algebra C(I) 

are considered and they are called L-entire functions [1, 3]. For 

each L-entire function on C(I), entire complex functions are 

associated and the relationship between their orders is studied. 

Even more, the possibility of locating the solutions of the 

equation F(f) = 0 from the location of zeros of the associated 

family of entire functions with F is analyzed too. 

 
Index Terms—Banach algebras, locating zeros, order, 

L-entire functions, power series.  

 

I. INTRODUCTION 

Let I = [a, b] be a closed and bounded interval of R. Let C(I) 

denote the Banach algebra of continuous complex-valued 

functions defined on I, provided with the uniform 

convergence norm. The element    ICIC 1 is called the 

unit element and it is the function satisfying    11 tIC for all 

I.t  

A function    ICIF:C   is said to have derivative in the 

Lorch sense, )(' 0fF  at 0f , if for any e> 0,  a d > 0  can be 

found such that for all  ICh  with δ,h   

 

.)(')()( 000 hfhFfFhfF   

 

If F has a derivative throughout a neighborhood of f0 , F is 

said to be a L-analytic function at f0  and of course, if F is 

L-analytic in the whole C(I), it is said L-entire function on 

C(I), see [3].  

 If F is a L-entire function on C(I), by Theorem 26.4.1 of 

[3], 
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A L-entire function F on C(I) is associated with a family of 

entire complex functions,  
Ittf   defined for each It  by 
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Also, it can be associated with the L-entire function F a 

function of complex variable, defined by 
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By (1), for all .z C , 
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and for all Nn  
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Inequality given in (5) implies that g is an entire function of 

complex variable. 

Now, if F is a L-entire function on C(I), it is possible to 

find the relationship between the order of F and the orders of 

the entire functions It,ft   and g, but all in all, there is not 

relationship between the orders of the entire functions 

It,ft   and the order on the entire function g. 

Furthermore, the possibility of locating the solutions of the 

equation 0F(f)  from the location of the zeros of the 

equation   0zf t will be analyzed. 

II. ORDER OF A L-ENTIRE FUNCTION ON C(I)  

The notion of order for an entire complex function has been 

extended without changes to entire functions defined from C, 

the complex number, onto a Banach space E, see [3]. This 

process can be done in the same way for a L-entire function 

on C(I), see [1].  

Let F be a L-entire function on C(I). For each 0r , it 

makes sense to define the quantity 

 

.sup F(f)M(F,r)
rf 

  
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It is said that F has finite order, if there are constants 0μ  

and 0δ  such that 

 

 

δr,eM(F,r)
μr  if  (6) 

 

The lower bound of these μ's  is called the order of F and it 

will be denoted by ρ(F).  
In [1], it has shown that some relationships which are true 

for the order of an entire function of complex variable, are 

still maintained for the order of a L-entire function on C(I), 

while others relationships are not longer fulfilled. 

The next relationships is true and its proof can be found in 

[2], 
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Between the order of the L-entire function F and the order 

of its associated entire function tf  given in (2), there is the 

next relationship. 

 

,ρ(F))ρ(f t   (8) 

 

for each I.t  Indeed, as 

 

    ,zFzf ICt 1  

 

for all Cz  and all I.t  So, 

 
   .F,rM,rfM t   

 

and (8) follows from (7). 

 By the other hand, if g is the entire function given in (4) 

associated with F, the inequality (5) gives 

 
   .F,rMg,rM   

 

Thus, from (7) 

 

   .Fρgρ   (9) 

 

Example 1. The inequality given in (9) can be strict, to see it, 

it is enough considered the L-entire function 

 

  ,fgfF
n
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where  
n!

t
tgn   for  .11,t   It is clear that   ,1Fρ  

while   .gρ 0  

 

Example 2. The inequalities given in (8) and (9) help to 

obtain information about the order of a L-entire function in 

cases where this quantity is impossible or difficult to 

calculate. For example, let F be the L-entire function on 

C([0,1]), 
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where 10  δ  and 
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Then, 
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and it is easy to see that   gρ . By (9),   .Fρ  

 In general, the order of the entire function tf  defined in 

(2), is not related to the order of the entire function g defined 

in (3). For example, if F is the L-entire function of the 

example 1, for all  11,t  ,   1tfρ  and   0gρ . So, 
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By the other hand, if F is the L-entire function of the example 

2, for all t Î [0,1] , tf  is a polynomial function with 

  0tfρ  and   gρ . So, 
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III. LOCATION AND DISTRIBUTION OF THE ZEROS OF A 

L-ENTIRE FUNCTION ON C(I) 

Let CD  and Cz . Let  

 

    DI:hIChΩD   

 

and 

 

I.tz,(t)hz   

 

If Dz , then .Ωh
D

z   

 The sets ,Ω D
 have some properties whose proofs are 

obtained without difficulty from the functions zh , with 

D,z  such as those listed below. 

1. D is a convex set if and only if DΩ  is a convex set. 

2. D is a closed set if and only if DΩ  is a closed set. 
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3. D is a bounded set if and only if DΩ  is a bounded 

set. 

4. D is an open set if and only if DΩ  is an open set. 

5. D is a compact set if and only if DΩ  is a compact 

set. 

6. For C1D  and ,2 CD  

.2121 DDDD ΩΩΩ   

In the following result, tf  is the entire function of 

complex variable defined in (2) and g is the entire function 

of complex variable defined in (3) and (4). 

 

Proposition 1. Let F be a L-entire function on C(I) and 

.D C  If   ,DD ΩΩF   then   DDf t   for all I.t  

Proof. For ,Dz D
z Ωh   so   .D

z ΩhF   Now for all 

I,t     D,thF z   but 
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Since Dz  is arbitrary,   D.Dft   

Generally it cannot enunciate a similar result for the entire 

function g given in (4). However, under certain conditions 

over the set D, it is possible to enunciate some results 

involving g.  

 

Proposition 2. Let F be a L-entire function on C(I) and let D 

be a closed and convex subset of C. If   ,ΩΩF
DD   then 

  D.Dg   

Proof.  For ,Dz  then .Ωh
D

z   If I,t     .DthF z   

Taking btttta n  210  a partition of the 

interval  ,a,bI  by the convexity of D, for  ,1 iii ,tts   

,n,,,i 21  
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is an element of D. Since 
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is the limit of sums of the type (10), together with the fact that 

D is closed, it is concluded that   .Dzg    

As a consequence of the Proposition 2 and the Schauder’s 
fixed-point theorem, see [5], the following collorary is 

obtained. 

 

Collorary 3. Let F be a L-entire function on C(I) and let D be 

a compact and convex subset of C. If    ,ΩΩF
DD   then the 

entire function g has a fixed point in D. 

 

The following result provide information about the 

distribution and location of the zeros of a L-entire function on 

C(I). 

 

Proposition 4. Let F be a L-entire function on C(I) and let D 

be a subset of C. If the zeros of all entire functions I,t,ft   

are in D, then the zeros of the L-entire function F are in the 

set .DΩ  

Proof. Taking  ICh  and supposing   0hF  but 

,Ωh
D  then exist It 0  such that   D.zth  00  But 

 

         .01 00000
 thFtzFzf ICt  

 

Then D,z 0  which contradicts the assumption. 

 

Proposition 5. Let F be a L-entire function on C(I) and 

 ICh  a zero of F. Then  th  is a zero of the entire 

function .It,f t   

Proof.  For fixed I,t  

 

         ,01  thFthFthf C(I)t  

  

from here, the result is followed.  

 

Proposition 6. Let F be a L-entire function on C(I) and 

  .00 F  Then   00 tf  for some I.t  

Proof. Just look that 

 

       .tFFf ICt 0100   

 

Using the Proposition 5 and 6, it is possible to prove, under 

certain conditions, that a L-entire function on C(I) of finite 

order has a finite number of zeros in the closed ball with 

radius r and center in the origin point. 

Denote by n(r)  the number of zeros that a L-entire 

function F has in the closed ball   }.{ rhICh  :  It is 

obvious that  

 

   ,sup t
It

r,fnrn


  

where  tr,fn  is the number of zeros that the entire function 

tf  has in the closed ball }.{ rzCz  :  

 

Proposition 7. Let F be a L-entire function on C(I) and let 

Nkkh }{  be the collection of zeros of F. Suppose   00 F  

and    thth lk   with lk   and .It  Then F cannot have 

infinitely many zeros in a ball of finite radius. 

Proof. Since   ,F 00   by Proposition 6, there is t0 Î I such 

that   .00
0

tf  So 
0t

f is an entire function non-identically 

zero. By Proposition (5),   Nkk th }{ 0  are the zeros of 
0t

f  

and since    thth lk   with lk   then the zeros of 
0t

f  are 

different.  



 

Some Properties of Entire Functions Associated with L-entire Functions on C(I) 

                                                                      44                                                                              www.wjrr.org 

 From here,    rnr,fn t 
0

 and by Theorem 1.13.2 of [4], 

the conclusion is followed.  

 

Proposition 8. Let F be a L-entire function on C(I) with 

  .Fρ   Let Nkkh }{  be the collection of zeros of F where 

each one appears as many times as its multiplicity indicates. 

Suppose   00 F  and    thth lk   with lk   and .It  

Then for each ,0r the number   .rn   

Proof. Since   00 F  by Proposition 6, there is It 0 such 

that   00
0

tf  and by Proposition (5),   Nkk th }{ 0  are the 

zeros of ,
0t

f  and since    00 thth lk   with l,k   then the 

zeros of ,
0t

f  are different. 

From here,    rnr,fn t 
0

and by Theorem 4.5.1 of [4], the 

conclusion is followed.  
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