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Some Properties of Entire Functions Associated with
L-entire Functions on C(/)
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Abstract—In this paper, let C(I) denote the Banach algebra of
all continuous complex-valued functions defined on a close
interval I in the set of real numbers, R. The functions having
derivatives in the Lorch sense on the whole Banach algebra C()
are considered and they are called L-entire functions [1, 3]. For
each L-entire function on C(I), entire complex functions are
associated and the relationship between their orders is studied.
Even more, the possibility of locating the solutions of the
equation F(f) = 0 from the location of zeros of the associated
family of entire functions with F is analyzed too.

Index Terms—Banach algebras, locating zeros, order,
L-entire functions, power series.

I. INTRODUCTION

Let I = [a, b] be a closed and bounded interval of R. Let C(I)
denote the Banach algebra of continuous complex-valued
functions defined on [, provided with the uniform
convergence norm. The element 1¢(;) € C(I)is called the

unit element and it is the function satisfying 1 ,)(t) = 1for all
tel

A function F:C(I)— C(I) is said to have derivative in the
Lorch sense, F'(f,) at f,, if for any >0, a @>0 can be
found such that for all e C(I) with || <4,

|F(fy +h)—F(f)—hF'(f,)]| <|He.

If F has a derivative throughout a neighborhood of f, F is
said to be a L-analytic function at f; and of course, if F is

L-analytic in the whole C(J), it is said L-entire function on
C(), see [3].

If F is a L-entire function on C(I), by Theorem 26.4.1 of
(31,

F(f) =Y g.f" fec, (1)

i
where g, € C(I) and limsup||g,, [+ =0.
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A L-entire function F on C(J) is associated with a family of
entire complex functions, { I }le , defined for each t € I by

£i(2)=Fl1e)Ne)

:ig”z", zeC.

n=0

@

Also, it can be associated with the L-entire function F a
function of complex variable, defined by

= [ F@lcgwd zeC. 3)
By (1), forall z e C.,

> b
@)= [[eatohar )

;‘ J )

= Za,,z” zeC,
n=0

and forall ne N

b
ol =| [0 00 0 - ), ) )

Inequality given in (5) implies that g is an entire function of
complex variable.

Now, if F is a L-entire function on C(J), it is possible to
find the relationship between the order of F and the orders of
the entire functions f,,# €/ and g, but all in all, there is not

relationship between the orders of the entire functions
f:,t €1 and the order on the entire function g.

Furthermore, the possibility of locating the solutions of the
equation F(f)=0 from the location of the zeros of the

equation f, (z) = 0 will be analyzed.

II. ORDER OF A L-ENTIRE FUNCTION ON C(])

The notion of order for an entire complex function has been
extended without changes to entire functions defined from C,
the complex number, onto a Banach space E, see [3]. This
process can be done in the same way for a L-entire function
on C(I), see [1].

Let F be a L-entire function on C(I). For each r >0, it
makes sense to define the quantity

M(F,r) = Hi‘lﬁp ||F(f)||
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It is said that F has finite order, if there are constants x>0
and ¢ >0 such that

M(F,r)<e™, if r>6 6)

The lower bound of these u's is called the order of F and it
will be denoted by p(F).

In [1], it has shown that some relationships which are true
for the order of an entire function of complex variable, are
still maintained for the order of a L-entire function on C([),
while others relationships are not longer fulfilled.

The next relationships is true and its proof can be found in

(2],

p(F) = lim sup %(Fr) @)
r—om Inr

Between the order of the L-entire function F and the order
of its associated entire function f, given in (2), there is the

next relationship.

P )< p(F), ®)

for each ¢t e I. Indeed, as
|fr (Z) < ”F(ZIC(I))’"

forall zeC and all 1. So,
M(f,,r)<M(F,r).

and (8) follows from (7).
By the other hand, if g is the entire function given in (4)
associated with F, the inequality (5) gives

M(g,r)S M(F,r)
Thus, from (7)

plg)< p(F) )

Example 1. The inequality given in (9) can be strict, to see it,
it is enough considered the L-entire function

F(£)=2 g.f"

where g,,(t)zL/ for te[—l,ll It is clear that p(F)=1,
n!

while p(g) =0.

Example 2. The inequalities given in (8) and (9) help to
obtain information about the order of a L-entire function in
cases where this quantity is impossible or difficult to
calculate. For example, let F be the L-entire function on
C([0,1]),

42

F(f)= g.f"

with
03
g,(t)=—5,0) refo]
nn

where 0 <0 <1 and

Then,

and it is easy to see that p(g) =00 .By (9), p(F) = oo,
In general, the order of the entire function f, defined in

(2), is not related to the order of the entire function g defined
in (3). For example, if F is the L-entire function of the
example 1, for all f e [— 1,1], p(ft): 1 and p(g) =0. So,

plg)< Ei[qfl]p(ft)

By the other hand, if F is the L-entire function of the example
2, for all ¢1 [0,1], f; 1s a polynomial function with

p( ,):O and p(g):oo.So,

plg)> sup p(f,)

1€f0,1]

III. LOCATION AND DISTRIBUTION OF THE ZEROS OF A
L-ENTIRE FUNCTION ON C(1)

Let DcC andzeC. Let
QP ={nec(1)n(r)c D}
and

h(t)=z tel

Ifz € D, then hZeQD.

The sets 27, have some properties whose proofs are

obtained without difficulty from the functions 4, , with
z € D, such as those listed below.
1. Dis aconvex set if and only if Q” is a convex set.

2. Dis aclosed set if and only if QP is a closed set.
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3. Dis a bounded set if and only if Q is a bounded
set.

4. D is an open set if and only if Q7 is an open set.
5. D is a compact set if and only if Q” is a compact
set.
6. For D, cC and D, cC,
QP QP = QPP
In the following result, f, is the entire function of

complex variable defined in (2) and g is the entire function
of complex variable defined in (3) and (4).

Proposition 1. Let F be a L-entire function on C(I) and
DcC IfF(.QD)C.QD, then ft(D)chorall tel
Proof. For zeD, h, € 2° so F(hz)e QP. Now for all
tel F(hz)(t)eD, but

F(h)o)= " 8, 0 O]

= 2.(0" = f(2).

Since z € D is arbitrary, f, (D)c D. =

Generally it cannot enunciate a similar result for the entire
function g given in (4). However, under certain conditions
over the set D, it is possible to enunciate some results
involving g.

Proposition 2. Let F be a L-entire function on C(I) and let D
be a closed and convex subset of C. If F (QD)C QP then
g(D) cD.

Proof. For zeD, then h, e QP. If te], F(hz )(t)e D.
Taking a=t, <t <ty <---<t, =b a partition of the
interval [ :[a,bl by the convexity of D, for s; e[ti_],ti],

i=12,...,n,

n

Z(ti —t1;)F(h )s;)

i=1

(10)

is an element of D. Since

8(e)= [ Pletcy Yokt = [ P Yohar

is the limit of sums of the type (10), together with the fact that
D is closed, it is concluded that g(z) eD. O

As a consequence of the Proposition 2 and the Schauder’s
fixed-point theorem, see [5], the following collorary is
obtained.

Collorary 3. Let F be a L-entire function on C(I) and let D be
a compact and convex subset of C. If F (QD )C QP then the

entire function g has a fixed point in D.

W

The following result provide information about the
distribution and location of the zeros of a L-entire function on

c\.

Proposition 4. Let F be a L-entire function on C(I) and let D
be a subset of C. If the zeros of all entire functions f,t€l,

are in D, then the zeros of the L-entire function F are in the
set QP
Proof. Taking heC(I) and supposing F(h)=0 but

he QP, then exist to €I such that h(to): Zg € D. But
fi (z0)= F(Zolc(I)Xfo)z F()to)=0.
Then z, € D, which contradicts the assumption. |

Proposition 5. Let F be a L-entire function on C(I) and
heC(I) a zero of F. Then h(t) is a zero of the entire

Sunction f,tel.
Proof. For fixedr € I,

£ (n(e))= F(h(t)lca)) = F(h)t)=0.
from here, the result is followed. O

Proposition 6. Let F be a L-entire function on C(I) and
F(O);tO. Then f,(O);t 0 for some t el

Proof. Just look that

1£,00)=F(0-1¢())= F(0)r) H

Using the Proposition 5 and 6, it is possible to prove, under
certain conditions, that a L-entire function on C(/) of finite
order has a finite number of zeros in the closed ball with
radius r and center in the origin point.

Denote by n(r) the number of zeros that a L-entire

function F has in the closed ball {h e C(I): ||h||£ r}. It is
obvious that

n(r) = sup n(rf, )

tel

where n(r, f,) is the number of zeros that the entire function
f, has in the closed ball {z e C:|z|<r}.

Proposition 7. Let F be a L-entire function on C(I) and let
{h Yren e the collection of zeros of F. Suppose F(O);t 0

and h, (t);t hy (t) with k #1 and t € I. Then F cannot have

infinitely many zeros in a ball of finite radius.
Proof. Since F (0) # 0, by Proposition 6, there is #, | /such

that f, (0)7& 0. So f, is an entire function non-identically
zero. By Proposition (5), {h, (to)}kEN are the zeros of f,
and since (t);t h (t) with k 1 then the zeros of f, are
different.
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From here, n(r,f,o ): n(r) and by Theorem 1.13.2 of [4],

the conclusion is followed. o

Proposition 8. Let F be a L-entire function on C(I) with
p(F) <oo. Let {hy },on be the collection of zeros of F where

each one appears as many times as its multiplicity indicates.
Suppose F(0)#0 and hy(t)# h/(t) with k=1 and tel.

Then for each r >0, the number n(r) < oo,
Proof. Since F(0)# 0 by Proposition 6, there is 7, e I such
that f, (O)i 0 and by Proposition (5), {#; (t())}keN are the
zeros of f, . and since Ay (to);t h (to) with k #/, then the
zeros of f, , are different.

From here, n(r, f,o ): n(r) and by Theorem 4.5.1 of [4], the

conclusion is followed. O
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