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 
Abstract— In this paper we present a real invertible function 

which is continuous in a real fixed point for which its inverse is 

not be continue in a suitable point. 

Index  Terms-  Invertible function, Continuity, Sequence, 

Convergence 
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I. INTRODUCTION 

   It is well known that if I and J are two intervals in R and 

JIf : is a invertible and continuus function on I then 

the inverse function  IJf  :1
 is also continue on J  

(se egg. [1] or [3]). We ask the following natural question: if 

the function f is invertible and continuous at a given point 

Ix 0 , then the inverse function 
1

f is continuous at the 

corresponding point )( 00 xfy  ?  

This is is not true. We will give a real invertible function 

,: RRf   continuous in Rx 0  but the inverse 

function
1

f is not be continuous in )( 00 xfy  . 

II. THE MAIN RESULT 

We will use the next lemma:  

Lemma 2.1. If ,,, baRba   there exist  a  invertible 

functions ],(),(: babaf   and ).,(),[: babag    
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Proof.  Firt we assume 1,0  ba  and we define the 

function ]1,0()1,0(: h , 
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Let us remark that h  is invertible. Now we define the 

function ],(),(: babaf  , 
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which is also invertible. Similarly we define the function g  

(see egg. [2]).                               □                                                            

Using this lemma, for every n ≥ 1, there exist invertible 

functions ]1,()1,(:  nnnnfn     and 
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Now we define the function ,: RRf   
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Theorem 2.1. The function f  defined above is well defined, 

invertible, continuous in 00 x   and the inverse function 

1
f  is not be continuous in ).0(0 fy   

Proof.  From the way that the above function f  was defined 

it is well define and since the functions nf  and ,1, ngn  

are invertible it results that f  is invertible. Let us remark 
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that for 1,  xRx  we have ,2)( xxf   so that 

),0(0)(lim
0

fxf
x




 

and then f  is continuous in .0x  

  Let ).0(0
1 1 f
n

yn   

Since 
n

n
f )

1
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  it results that the inverse 

function 
1

f is not be continuous in .0y   □                             
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