On the Local Continuity of a Real Invertible Function

Jenica Cringanu

Abstract— In this paper we present a real invertible function which is continuous in a real fixed point for which its inverse is not be continue in a suitable point.

Index Terms- Invertible function, Continuity, Sequence, Convergence

2000 AMS Classification: 26A09, 26A15, 26A30

I. INTRODUCTION

It is well known that if I and J are two intervals in R and $f:I\to J$ is a invertible and continuus function on I then the inverse function $f^{-1}:J\to I$ is also continue on J (se egg. [1] or [3]). We ask the following natural question: if the function f is invertible and continuous at a given point $x_0\in I$, then the inverse function f^{-1} is continuous at the corresponding point $y_0=f(x_0)$?

This is is not true. We will give a real invertible function $f:R\to R$, continuous in $x_0\in R$ but the inverse function f^{-1} is not be continuous in $y_0=f(x_0)$.

II. THE MAIN RESULT

We will use the next lemma:

Lemma 2.1. If $a, b \in R$, a < b, there exist a invertible functions $f:(a,b) \to (a,b]$ and $g:[a,b) \to (a,b)$.

Jenica Cringanu, Associate Professor "Dunarea de Jos" University of Galati. Romania

Proof. Firt we assume a = 0, b = 1 and we define the function $h: (0,1) \rightarrow (0,1]$,

$$h(x) = \begin{cases} \frac{1}{n-1}, & \text{if } x = \frac{1}{n}, n \ge 2, \\ x, & \text{if } x \in (0,1), x \ne \frac{1}{n}, n \ge 2. \end{cases}$$

Let us remark that h is invertible. Now we define the function $f:(a,b) \rightarrow (a,b]$,

$$f(x) = h(\frac{x-a}{b-a}),$$

which is also invertible. Similarly we define the function g (see egg. [2]).

Using this lemma, for every $n \ge 1$, there exist invertible functions $f_n:(n,n+1) \to (n,n+1]$ and

$$g_n: [\frac{1}{n+1}, \frac{1}{n}) \to (\frac{1}{n+1}, \frac{1}{n}).$$

Now we define the function $f: R \to R$,

$$f(x) = \begin{cases} f_n(x), & \text{if } x \in (n, n+1), n \ge 1, \\ g_n(x), & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right), n \ge 1, \\ \frac{1}{n}, & \text{if } x = n, n \ge 1, \\ x, & \text{if } x \le 0. \end{cases}$$

Theorem 2.1. The function f defined above is well defined, invertible, continuous in $x_0 = 0$ and the inverse function f^{-1} is not be continuous in $y_0 = f(0)$.

Proof. From the way that the above function f was defined it is well define and since the functions f_n and $g_n, n \ge 1$, are invertible it results that f is invertible. Let us remark

www.wjrr.org

On the Local Continuity of a Real Invertible Function

65

that for $x \in R, |x| \le 1$ we have $|f(x)| \le 2|x|$, so that

$$\lim_{x \to 0} f(x) = 0 = f(0),$$

and then f is continuous in x = 0.

Let
$$y_n = \frac{1}{n} \to 0 = f^{-1}(0)$$
.

Since $f^{-1}(\frac{1}{n}) = n \to \infty$ it results that the inverse

function f^{-1} is not be continuous in y = 0. \Box

REFERENCES

- [1] M. Nicolescu, N. Dinculeanu, S. Marcus, Mathematical Analysis, E. D.
- P. Bucharest, Romania, 1971;
- [2] Gh. Siretschi, Mathematical Analysis, University Bucharest, Romania, 1984.
- [3] J. Stewart, Calculus, University of Toronto, 2014.

