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Abstract- Modern system approaches will be used to realize a 5th 

order dynamic differential equation as an analogue circuit using 

resistors, capacitors, and operational amplifiers. The resulting 

circuit will be tested using Matlab® and those results will be 

verified using Multisim. The state space approach will be used to 

convert the 5th order differential equation to five first order 

differential equations. Using the Multisim simulator, various 

input types were tested across the input terminals of the analog 

computer and the results were recorded.  
Index Terms—Analog computer, state space, operational 

amplifier, resistor, capacitor, modern system approach. 

 
I. INTRODUCTION 

 

The goal of this initiative is to build a 5th order 

electronic circuit to solve and simulate a 5th order differential 

equation with any input. 

Consider the generic differential equation to be solved 
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 x(t) is the forcing function (the input to the system 

represented by this differential equation) and y(t) is the 

solution (the output of the same system). The variables a, b, c, 

d, e and f are some real constant numbers. [1] 

In the last equation, (assuming zero initial conditions) 

let 
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 Thus we have the set of four first order differential equations 
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II. METHODOLOGY 

 

Consider the Operational amplifier circuit shown in 

Figure 1. The input-output relationship is given as 
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In Figure 1, the output y(t) is the integral of the input 

arriving at the negative terminal of the Operational Amplifier. 

Thus the negative of the derivative of y(t) is located at the 

negative terminal of the Operational Amplifier. [2,3,4] 

If we set RC=1 in equation (3) we will have  

 

  dttxBdttxAty )()()( 21   (4) 
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Fig. 1.  Operational Amplifier Circuit 

 
One final step before we attempt to implement 

Equation (4), the solution of a generic 1st order linear constant 

coefficient differential equation. Consider the circuit given in 

Figure 2. The input-output relationship is 

)()( tx
R

R
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 You also can see that if Rf = R then we have pure 

inversion (unity gain). The circuit containing an inverter and 

an integrator connected in series can solve the differential 
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equation given in (6). Figure 3 is a typical example of such a 

circuit. 
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Fig. 2. Inverter 
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Fig. 3. A Circuit to Solve Equation 6 

 

The circuit in Figure 3 would solve any first order 

differential equation of the form 

)()()(' tBxtAyty         (6) 

Knowing how to solve equation (6) is helpful in solving the set 

of the four coupled equations in (2) with y(t) being the output 

in the fourth-order differential equation given in (1). 

In building a circuit to solve the given differential 

equation in (1) we will use the set of equations in (2). We have 

tried step input, impulse input, and sinusoidal input. All 

worked nicely. Next we present the step response for different 

real coefficients and consider over damped, under damped, 

critically damped and oscillatory cases. 

 

CASE 1 

For the over damped case we selected a=1, b=5, 

c=8.75, d=6.25, e=1.5, f=0.0002 and g=0.002. The differential 

equation is then 
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where u(t) is the step unit signal. The eigenvalues are then at 
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Using Matlab®
, the solution is plotted as seen in Figure 4. 
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Fig. 4.  Over Damped Case: Output from Matlab 

 

The circuit to solve the fifth-order differential 

equation with the given constant values and with the input u(t) 

is shown in Figure 5. For the input we used a pulse signal with 

pulse width 0f 20sec and period of 40sec. To make RC=1, we 

used R=1kΩ and C=1mF. We simulated for the first 20 

second. The simulated output is shown in Figure 6.  
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Fig. 5.  Circuit to Solve the Differential Equation 
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Fig. 6.  Over Damped Case: from Circuit Simulation 

 

CASE 2 

 

For the critically damped case we selected a=1, b=6, 

c=13, d=12, e=4 and f=0.0004. The differential equation is 

then 
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1.0000    6.0001   13.0006   12.0013    4.0012    0.0004 

The eigenvalues are then at 

 

-1.0000           

-1.0000  

-2.0000 

-2.0000 

-0.0001 

Using Matlab, the solution is plotted as seen in Figure 

7. For the circuit we used a pulse signal with pulse width 0f 

20sec and period of 40sec. To make RC=1, we used R=1kΩ 

and C=1mF, the simulation done for the first 20 second and it 

is shown in Figure 8. 
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Fig. 7.  Critically Damped Case: Output from Matlab 

 

 
Fig. 8.  Critically Damped Case: from Circuit Simulation 

 

CASE 3 

 

For the oscillatory case we selected a=1, b=3, c=3, 

d=3, e=2 and f=0.0001. The differential equation is then 
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The eigenvalues are then at 

 

-2.0000           

-0.0000 + 1.0000i 

-0.0000 - 1.0000i 

-1.0000   

-0.0001 

Using Matlab, the solution is plotted as seen in Figure 

9. For the circuit we used a pulse signal with pulse width 0f 

20sec and period of 40sec. To make RC=1, we used R=1kΩ 

and C=1mF, the simulation is done for the first 20 second and 

it is shown in Figure 10. 
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Fig. 9.  Oscillatory Case: Output from Matlab 
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Fig. 10.  Oscillatory Case: from Circuit Simulation 

 

CASE 4 

 

For the under damped case we selected a=1, b=4, 

c=6, d=9, e= 5 and f=5. The differential equation is then 
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1.0000    4.0000    6.0003    9.0008    5.0010    0.0005 

The eigenvalues are then at 

-2.7720           

-0.2138 + 1.4860i 

-0.2138 - 1.4860i 

-0.8003  

-0.0001  

Using Matlab, the solution is plotted as seen in Figure 

11. For the circuit we used a pulse signal with pulse width 0f 

25sec and period of 50sec. To make RC=1, we used R=1kΩ 

and C=1mF, the simulation is done for the first 25 second and 

it is shown in Figure 12. 
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Fig. 11.  Under damped Case: Output from Matlab 

 

 
 Fig. 12.  Under damped Case: from Circuit Simulation 

 

In the process of simulating the circuit we had to 

adjust the resistor values to accommodate the change in the 

coefficients. 

The input x(t) has to be adjusted too to accommodate 

the necessary time required to show enough time for the 

transients to settle. 

 

III. CONCLUSION 

 

It would be discovered by looking at the graphs and 

also by comparing these results with what was derived 

analytically that the circuits worked as desired. The 

differential equation was solved and its outputs were verified. 

The analog computer can be used to solve the two-point 

boundary-value problem for a fifth optimal control problem. It 

can also be applied to the study of micro-economic inventory 

system, for investigation a stock control system where the 

supply is discontinuous. [6] The analog computer also was 

found helpful in solving problems like simulation of a sampled 

data system, simulation of forecasting methods, locating a 

ware house or a distribution center, and controlling and 

resetting policies for process subject to trend. [7] In the future 

we will attempt to solve higher order differential equations. 

Practically, to solve any sixth order differential equation with 

any arbitrary coefficients requires a huge set of resistive 

values. However, since the constant values of a, b, c, d and e 

can be translated to ratios of resistor values that makes things 

easier. Issues related to amplifier saturation should also be 

studied. [5]  
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