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Abstract — This study provides an overview in combining spatial analysis and time series analysis to model the
frequency of earthquake. The aim of this research is to apply the spatial statistical analysis and time series analysis in
estimating semivariogram parameters for the next four steps. The data in this study is secondary data that has been
validated based on sources that publish parameters of earthquake events. Looking at the characteristics of the
earthquake frequency frequency data, there are spatial and time elements. The method used in this research is
interpolation kriging and Autoregressive Moving Average (ARMA) model. The semivariogram models used in kriging
interpolation are: Spherical, Exponential, Gaussian, and Linear. The parameters of the semivariogram model are
modeled using ARMA time series analysis adjusted to the model diagnostic results. To measure of fit model is used
Mean Square Error (MSE). The result of research is a suitable semivariogram model to be applied in the modeling of
earthquake events is the Spherical model. While each parameter is estimated using ARMA model (2,2) with different
coefficient estimation value.

Keywords: frequency, earthquake, spatial analysis, time series analysis, MSE

Introduction

Forecasting of earthquake events is very interesting to be studied. Until now there are many
researchers study this project, not only partially, but also simultaneously. The forecasting of tsunami after
earthquake is a unity that can not be separated by earthquake forecasting. The forecasting of earthquake
events is still based on assumptions, the earthquake occurred above 6.1 SR, the depth of the quake <10 km
and the location of the incident was in the sea (bmkg.go.id).

The trend of the earthquake frequency data can be categorized as time series data. So the analysis of
data used to determine the relationship between previous events with current events even the future can
use a time series analysis. Based on the result of research by Irwanto ez a/ (2014), the trend of tectonic
earthquake in Sumatra region has a high frequency of occurrence with an average value close to 5 SR. From
the point of view of spatial statistics, Fachri ez @/ (2014) examines the relationship between earthquake events
between points of occurrence, where the results are statistically closely related to the occurrence of
earthquakes between points of location. This has been previously investigated by Kannan (2011), the
occurrence of earthquakes can be predicted by using Poisson distribution based on distance and cesarean
zone. Another approach in earthquake forecasting is done by Fong and Nannan (2011) with Time series
Analysis method, namely ARIMA adaptive model. Based on these results, it is possible to estimate the
distance and occurrence of occurrences in forecasting earthquakes. In addition to the above weaknesses,
generally the results of the analysis is still limited to a number. Yulian e a/. (2012), managed to provide an
alternative in describing the simulation results using geographic information system (GIS).

Studies conducted, spatial analysis applications and time series, are still done partially, such as Carr ez a/
(1986) implemented Disjuntive Kriging to estimate theearthquake ground motion. Furthermore Carr ez a/
(1989), continued his research by comparing between Universal Kriging and Ordinary Kriging in the case
of earthquake ground motion. Then Sugai ¢# a/. (2015) introduced a practical method to estimate the special
distributions of ground motion, based on Ordinary Kriging analysis. Cakmak ez 2/ (1985), modeled the
earthquake ground motion in California using the parametric time series methods. Lin (2014), conducted a
time series modeling of earthquake ground motion using ARMA-GARCH models.
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Based on the above description, the research objective can be formulated to provide an overview in
applying spatial statistical analysis and time series analysis to estimate semivariogram parameters for the next
4 steps. The method used is applying semivariogram models such as: Spherical, Exponential, Gaussian, and
Linear. Then the parameters of the semivariogram model are modeled using ARIMA time series analysis
adapted to the model diagnostic results.

Materials and Methods
Mechanism of data collecting and processing

Data used in this paper are the number of earthquake events which have magnitude above 5 Mw that
occurred in Bengkulu Province within the period of 2000-2016. The data are obtained from the website
www.usgs.com with the amount of data as much as 534. Variables of data are the coordinate position of the
center of the earthquake, latitude, longitude, depth and magnitude. Based on the longitude position,
earthquake events in the data range from 99.00°E to 106.00°E, while based on the latitude position, the
minimum data is at 7.00°S and the maximum is at 1.00S. distribution of earthquake data of Bengkulu
Province is presented in Figure 1

FRanjang

Bukit
-~ ~Tigapuluh
!, National Park

Jambi
o

Mentok

Palembang kedalaman
° dangkal
° menengah

Lahat “Muara Enim

lat

(Magnitud)
© =5Ms
MPUM O »6Ms
Kotabum Q >7Ms
Metro O =8 Ms

_ Bandar
(ampung

Google’ - : N Map data 2018 Google
100 102 104
lon

Figure 1. Distribution Map of Earthquake Events with The magnitude of 25Ms in 2000-2016

After collecting data, the next step is processing. Firstly, data are grouped into two parts. The first
part (A) as much as 85% is used in the formation of semivariogram model and while the second part (B) as
much as 15% is used in the model validation/conformity stage. The first part (A) consists of the earthquake
events in 2000-2014, while the second one is earthquake events in 2015-2016.

Data in the first part (A) are processed in two steps. The first step is grouping data.In each year, data
are grouped into two group, the first semester in January-June and the second semester in July-December.
So that for this step, 30 groups of data are obtained. Furthermore, each group of data is determined the
value of parameters of the semivariogram model such as Variance Nugget, Sill, and Range. There are four
models of semivariogram used in this research, namely Spherical model, Exponential, Gaussian, and linear.
The output generated at this steps consists of four semivariogram models along with the value of each
parameter for each group.

The second step is further analysing the output resulted in the first step. In this step, the analysis is
done for parameter values produced in first step by time series analysis approach. The time series analyses
used is ARMA model and characteristics of ACF and PACF. The outputs resulted in this step are total of
twelve time series models consisting of four semivarogram models (Spherical, Exponential, Gaussian and
Linear Model). Each semivariogram model consists of three-time series models of parameter values (Nugget
Variance, Sill and Range). The final process involves the data in the second part (B) of data. Based on this
data. The best semivariogram model is selected based on MSE. The output resulted in this step is one of
the best semivariogram models, with 3 time series models of the model parameters.
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Spatial Statistics Analysis
Spatial data being in the form of data point location coordinates of earthquakes in the first part
(A)areprocessed by semivariogram model. The semivariogram is a statistical tool for describing, modeling,

and explaining spatial correlations between observations. The semivariogram is defined as follows

(Wackernagel, 2003):
2y(h) =Var[Z(s+h) —Z(h)] = E[Z(s + h) — Z(h)]? 1)

where y(/) is a semivariogram.The above semivariogram is also called theoretical semivariogram. There are
two types of semivariogram: isotropic semivariogram (y(4) depends only on distance h) and anisotropic
semivariogram (y (h) depends on distance h and direction).

An experimental semivariogram is a semivariogram obtained from known data:

7(n)

T 2 ]

= z(s; + h) —z(s;) )
2AN(n) 4

with §; is location of sample (coordinate), Z(s;) data value in location s,

IN() | : #pairs (S;, 8, +4) with distances .

In the semivariogram prediction, the theoretical semivariogram model is fitted in the experimental

semivariogram 7;(}1) There are four theoretical semivariogram models that are used:

*  Spherical Model : C,+C % _ l(hjz O<h<a o)
y(h)= 2a 2\a
Co +C h>a

h

*  Exponential Model :y(h) = {CO +C [1 —exp (_ g)] ; h>0 “
0,h=0

hZ

»  GaussianModel : y(h) = {CO +C [1 —exp (— ;)] ; h>0 5
0,h=0

Co: nugget vatiance, Cy + C : sill, anda: range
= Linear Model: y(h) =ah , o = gradient(Amstrong, 1998).

Ordinary Kriging

The Ordinary Kriging Method (OK) is a method of estimating a random variable at a given point by
observing similar data in another location with the mean data assumed to be constant but not known in
value. In the ordinary kriging method, the known sample values are used as linear combinations to estimate
the points around the sample's location.In other words, to estimate any non-sampled point(Sy)can use a

linear combination of randomZ(s;)and kriging weight values respectively, mathematically can be written
by:

2(s0) = ) MZ(s) ©
i=1

whereZ (Sq)is the value of the random variable estimation at the pointsg, andZ (s;)is the value of the random
variableZ (s)at the point i, andA;is the kriging weightat the point i (Pfeiffer & Robinson, 2008). The vatiance
of the estimated error (kriging variance) can be expressed by

0'51{(50) =E (Z MZ(sy) — Z(So))
i=1

2

= Z%’V(So —s)+m ™
=1
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where 72 is the Lagrange multiplier factor.

Autoregressive with p-order and Moving Average with g-order (ARMA (p, q))
In the second step, parameter values produced by semivariogram models are analyzed using time

series model. There are several formulations used in spatial model parameter modeling by time series analysis
approach, one of them is ARMA models. Initial stage of modeling is establishment of Autocorelation
Function (ACF) and Partial Autocorelation Function (PACF). Characteristics of ACF and PACF can be
used in determining the diagnosis of ARMA models and their order. The autocorrelation function (ACF) is
denoted by(py), is the correlation or relationship between the observed data 7 of a time series dataX;. The

value of pgcan be assumed by the formula:

e Yk = D) Kerr — X) .
g (X, —X)2

While partial autocorrelation coefficient or Partial Autocorrelation Function (PACF) is a measure of the

relationship between variablesX;withX; . The value of the autocorrelation function(pgy )is formulated as
follows:
D = prc — 21 (i1, (Pr—)
kk — —
1=3521 (Pe-1,0 ()

Time series model Autoregressive Moving Average p-q order (ARMA (p, q)) is a combined model of

&)

Autoregressive model with order (p) and Moving Average model with order (q).The following formulation
of the ARMA model (p, q)

Xe = (01 X1 + -+ 0pXep) +ar — (61ar1 + -+ ar_g) (10)
where, (Z)pdenotesthe p th autoregressive paramete, qutates the moving average parameter to (,
andagdenotes a random noise (white noise) during period # In practice, the ARMA model is not unique.
Therefore, it takes a measure in choosing the best model. In this paper the criteria used are Mean Square
Error (MSE), which is expressed by the formula:

n

MSE = EZ(X‘* - X)? (11)
e

Results and Discussions

Figure 2 presents three displayed images characterize the parameter value fluctuation of the
semivariogram model. Figure 2A is a graph for the Variance Nugget parameters. Globally, the linear model
parameter value (the colored line) is predominantly above the parameter values of other models and even
above the average rating. In Figure 2B, the Gaussian model sill parameter values are mostly larger than other
semivariogram models. While in Figure 2C, the parameter values of the exponential model range globally
are larger than other semivariogram models.

The second step generates ACF and PACF graphs of parameter values from four semivariogram
models. Figure 3 shows the ACF and PACF for each of the Spherical model parameters. Those are within
the upper and lower limits of the correlation value (red dashed lines), it indicates that data from the Spherical
model parameters are statsioner. For Nugget Variance parameters, ACF plot on the third lag has the greater
correlation value than the previous lag, as well as the fourth lag until the seventh lag. As for PACF plot, its
characteristics are almost same as ACF plot. Of the two characteristics, the possible model is ARMA (2,2).
Both in Sill and Range parameters, the characteristics of ACF and PACF are identical (only different
marked), which there is a larger correlation value in the first lag and the next lag is relatively small. Sill and
Range parameters are expected to have ARMA (1.1) model.
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Figure 2. Parameter Values of Spherical, Exponential, Gaussian, and Linear model; (A) Nugget Variance,
(B) Sill, and (C) Range
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Figure 3. ACF and PACF Characteristics of the Spherical Model for parameters (A) Nugget Variance, (B)

Sill, and (C) Range

Table 1. Mean Square Error (MSE) value of ARMA model For Spherical Model parameters

No Spherical Model AR Models(p) MA Model(q) ARMA Models(p,q)
Parameters ) 2) ) 2) Ly a2 @ @22
1. Nugget Variance(x 107%)  6.786 6908 6786  6.921 6979 7258  7.082  (.453"
2. Sill (x 1072) 7263 7507 7250 7428 59399 5994 6771 5989
3. Range 3024 3130 3040 3122 3132 2726 3250 26729
4. Average 1032 1.069  1.038  1.066  1.064 0929 1106  0.911"
*) the smallest value
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Regarding to ACF and PACF graphs in figure 3, four ARMA model are choosen Next step ischoosing
the best time series model. Model selection measurement is using the smallest MSE value criteria presented
in Table 1. From Table 1, for the Nugget Variance parameter, the ARMA Model (2,2) results the smallest
MSE value,6.453 x 10™* . While the Sill parameter of ARMA model (1,1) generates the smallest MSE
value,5.939 x 1072 and for the Range parameters, the smallest MSE value is 2.672 forARMA (2,2)model.
ARMA model (2,2) for sill parameter is choosed for the simplification of model, because the difference of
MSE value between ARMA (1,1) and ARMA (2,2) is relatively small and for ARMA (2,2) has minimum
average value. It can be inferred that for the three parameters of Spherical semivariogram model has ARMA
model (2,2), but coefficient values ate different.

By doing the same method, the time series model is diagnosed for all three parameters of the
Exponential semivariogram model. Figure 4 describes the ACF and PACF of exponential semivariogram
model. Based on Figures 4A, 4B, and 4C, the characteristics of stationary data and possible order of ARMA
are 1, 2, and 3, however it can be tried to get the minimum order. In order to determine the best model,
MSE of ARMA model are calculated and MSE of ARMA(1,1), ARMA (1,2), ARMA (2,1) and ARMA (2,2)

are presented in Table 2.
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Figure 4. ACF and PACF Characteristics of Exponential Model for parameters (A) Nugget Variance, (B)
Sill, and (C) Range

Table 2. Mean Square Error (MSE) Value of ARMA Model For Exponential Model Parameters

No Exponential AR Models(p) MA Models(q) ARMA Models(p,q)
Model Parameters H @ O @ ) 12  @eh @22
: —z
I NuggeeVariance@ 1079 5479 5279 8617 80685 8235 9126 8253 00
2. sill (x 1071 1443 1482 1440 1476 1213 11979 1250 1.226
3. Range (x 101) 2681 2764 26537 2742 2739 2.845 2845 2954
4, Average 8985 9263 88929 9.18) 9171 9524  9.525 9.888

*) the smallest value

In Table 2, it can be seen that for the Nugget Variance parameters, the ARMA Model (2,2) has the
smallest MSE value with 6.563 x 10™* . While, Sill parameter of the ARMA model (1,1) has the smallest
MSE value,1.197 x 10™! and for the Range parameter, the smallest MSE value is 26.53 for the MA model
(1). For this case, the model can not be simplified, because the three parameters have different models and
the average values of the three models are not different significantly. So for the three parameters of the
Exponential semivariogram model, Nugget Variance, Sill, and Range have ARMA (2,2), ARMA (1,2), and
MA (1) respectively.

108



Aceb Int. ]. Sci. Technol., 7(2):103-114
August 2018
doi: 10.13170/ agjst 7.2.8656

For the Gaussian model parameters, ACF and PACF plots as shown in Figure 5reveal stationary
conditions. It can be seen from each plot of ACF and PACF in 5A, 5B and 5C, specifically for the nugget
variance parameter in 5A, that the possible value of the code is more than one.
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Figure 5. ACF and PACF Characteristics of the Gaussian Model for parameters (A) Nugget Variance , (B)
Sill, and (C) Range

Table 3. Mean Square Error (MSE) Value of ARMA Model For Gaussian Model Parameters

No Gaussian Model AR Models(p) MA Models(q) ARMA Models(p,q)
Parameters @) ) @) ¢) (%)) (1,2) 21 22)
1. Nugget Variance 1572 1454 1587 1268 1510 L1179 1432 1157
(x1073)
. Sill (x 107Y) 1236 1371 1326 1371 11739 1186 1419 1245
3. Range 2467 2553 24519 2537 2535 2620 2655  2.700
4. Average 0864 0897 08629 0892 0885 0913 0933 0942

*) the smallest value

Table gives the information of the smallest MSE value in ARMA models for the gaussian
semivariogram models. In Table 3, for the Nugget Variance parameter, ARMA (1,2)model has the smallest

MSE  value,1.117 x 1073, WhileSill parameter of ARMA (1,1)model has the smallest MSE
value,1.173 x 10~ tandfor the Range parameterof MA (1)model, the smallest MSE value is 2.451. Similar
to the case of the Exponential model, in the Gaussian model, the model can not be simplified, because the
three parameters have different models and the mean values of the three models are not different
significantly. So for the three parameters of the Gaussian semivariogram model, NuggetVariance, Sill, and
Range have ARMA (1,2), ARMA (1,1), and MA (1) respectively.

The last semivariogram model used is Linear model. The parameters of the model, especially the Sill
Model tend not to be stationary, as seen from the ACF and PACF values in the second lag above the upper

limit. While other parameters are stationary (see Figure 6).

Table 4. Mean Square Error (MSE) Values of ARMA Model For Linear Model Parameters

AR Models ARMA Models
No  Linear Model Parametets ® MA Models (g) P,9)

©) ©) ©) ©) LD 1,2) 2D 2,2)

1. Nugget Variance (x 1073) 8.296  7.719 9330  7.757  8.176 9.126 7.4619 7.740
2. Sill (x 1072) 1375  1.,098 1429 1193  1.295 1.295 1.140 0.9829
3. Range (x 1071) 3.001  3.030 2951 3.034 3.031 2.4759 3.147 2.934
4. Average 0.107  0.107 0.106  0.108 0.108  0.090" 0.111 0.104

*) the smallest value
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Figure 6. ACF and PACF Characteristics of the Linear Model for parameters (A) Nugget Variance, (B)
Sill, and (C) Range

As shown in Table 4, it is selected for the three parameters of the Gaussian semivariogram model
which has the smallest MSE values. For Nugget Variance, Sill, and Range, the smallest MSE values are for
ARMA (2,1), ARMA (2,2), and ARMA (1,2) respectively.

Table 5. The Comparison of Mean Square Error (MSE) values for ARMA model (Spherical, Exponential, Gaussian,
and Linear parameters)

Parameters for ARIMA Model

Semivariogram Model Nu.gget MSE Sill MSE Range MSE Average
Variance

Spherical ARMA (2,2) 1.109 ARMA (2,2)  1.699%) ARMA (2,2) 6.810 3.206*)

Exponential ARMA (2,2) 64.808 ARMA (1,2)  12.493 MA (1) 111.152  62.818

Gaussian ARMA (1,2) 0.925%)  ARMA (1,1)  53.653 MA (1) 19.841 24.806

Linear ARMA (2,1) 39.157  ARMA (2,2) 2.677 ARMA (1,2)  0.818%) 14.217

*) the smallest value

The final step is searching the MSE value of each model that has been generated. The value of this
MSE is obtained from the difference of the square of the forecast value to the original data of part B (15%).
Table 5 represents MSE values of the twelve selected models applied to the data of part B. As shown in
Table 5, the average value of the three model parameters having the smallest MSE value of 3.206 is the
Spherical model. Here are the ARMA models for each of the Spherical model parameters. For the Nugget
Variance,Sill, and Range Parameters following the ARMA model (2.2), and the model can be written as
follows:

X, =0.0097 + 0.9663X,_; — 0.6799 X;_, + e, — 1.0460 e,_; + 0.9732 ¢,_,

Y, =0.1403 — 0.2500Y,_, + 0.6139Y,_, + e, — 0.0882 e,_, — 1.0457 e,_, (12)

Z, =0.1457 + 1.1823Z,_, — 0.3106 Z,_, + e, — 0.9852 ¢,_, — 0.1389%¢,_,

The semivariogram models and the estimation contours of the strength of earthquake events based on
ARMA model sare described as follows:
1. Spherical Model:
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Figure 6. Contour The Number Of Earthquake Events For One Step (2015-I): (a) Based on ARMA
Model, (b) Based on Testing Data.

Figure 6(a) presents the contour formed from the spherical parameters of the model in the Equation
13. This contour describes the estimation of areas with magnitude of earthquakes in 6 months (January-
June 2015). The earthquake strength estimation is obtained by the value of the Nugget Variance, Sill, and
Range and colored according to its strength. In figure 6(a) the magnitude estimation of earthquake occurred
in the range of 5.02-6.10 Ms. The blue gradation colored area is concentrated in around101.90-102.70°E
and 6.80-5.7008S and it shows the possibility of earthquake area with magnitude of 5.02-5.24 Ms, while the
earthquake with magnitude of more than 6 Ms is in the vicinity of white areas. Surrounding the blue area is
green gradation color with a range of 5.23-5.45 Ms. Figure 6(a) is dominated by yellow that indicates the
strength of earthquake range 5.52-5.60 Ms.

In the testing data, there are 6 earthquakes occurred during January-June 2015. The five events of
them are in the color contours according to the estimates. Earthquake with the strength of 5.6Ms that
occurred at the center 3.62°S and 101.58CE is in an orange color with a range of 5.59-5.66Ms and an
earthquake with a strength of 6.1 Ms with the center 2.79°S and 101.99¢Eis in a white area with a range of
6.03 and 6.10 Msas well as for the other three images that can be seen in Figure 6(a). One of the earthquakes
that is not suitable to the contour color is the event occurred in 5.508 and 102.51°E with magnitude 5.3 Ms
that is in the green color with the range 5.31-5.38.

Figure 6(a) can be compared to figure 6(b) which shows the contour map using real data in testing
data. Both of the contour have the similar pattern and neatly same range. Therefore, in 6(b) the red colors
dominate the contour map and the violet color areas in 6(b) is larger than the figure 6(a). In other words,
figure 6 (b) gives the probability of earthquake events greater than 5.59 more likely to occur.

2. Spherical Model:

0,0139 +0,2884 Sh_1f_h
2.1,588 211,588

0,3023 ,h>1,588

3
,0<h<1,588
y(h)= j

14
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Figure 7. Contour of earthquake occurrence for the second step (2015-11): (a) based on ARMA model, (b)
based on testing data.

Figure 7(a) shows the contour formed from the spherical parameters of the model in the Equation
14. It describes the estimation of areas with magnitude of earthquakes in 6 months (July-December 2015).
In figure 7(a) the magnitude estimation of earthquake occurred in the range of 5.00-5.68 Ms. The blue
gradation colored area in two locations, around 102-104°E and 5-4°S and around 100-105°E and 4-2°8.
Yellow, orange, red violet and white areas are in 100-104°N and 6-4°S and present the magnitude more
than 5.32 Ms, although it remains green color area.

In testing data, there are 3 earthquakes occurred during July-December2015. The two events of them
are in the color contours according to the estimates. Earthquake with the strength of 5 Ms that occurred at
the center 4.64°S and 102.37°F is in a blue color with a range of 5.00-5.05Ms and an earthquake with a
strength of 5.2 Ms with the center 3.75°S and 101.77°F is in a green color with a range of 5.14-5.23 Ms.
The earthquake occurred in 5.13°S and 102.89°FE is not suitable to the contour color. With the magnitude
5.4 Ms, it is in the green area, while it should be in red area.

If they are compared, Figure 7(a) and figure 7(b) are relatively seen a bit like. In figure 7(b), color
gradations are more concentrated in one location. The blue gradation colored area is in around 102-105°E
and 5-20S and it shows the possibility of earthquake area with magnitude of 4.98-5.12 Ms, while the
earthquake with magnitude of 5.12-5.32 Ms is in the vicinity of green areas. Yellow, orange, red violet and
white areas are in 100-104°E and 6-4°S and present the magnitude more than 5.32 Ms.

3. Spherical Model :

0,0176 +0,2154 3h 1[ h

3
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Figure 8. Contour of earthquake occurrence for the third step (2016-1): (a) based on ARMA model, (b)

based on testing data.
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Figure 8(a) describes the estimation area from the spherical parameters of the model in the Equation

15 and figure 8(b) shows the contour map using real data in testing data. Figure 8(a) shows the probability

of earthquake range 4.75-6.38 Ms. the green gradation area is almost as large as the blue area and they are

dominated contour map. Only one of four earthquake events is in the color contours according to the

estimates, that is the earthquake occurred in 2.86°S and 102.3°E with the magnitude 5.1 Ms. In figure 8(b)

green areas are dominated the contour map and indicate the areas of probability of earthquake with

magnitude 4.97- 5.35. it is larger than others area and there is a small area that has estimation magnitude
more than 5.35 Ms. There is no earthquake event that occurred in suitable color in this figure.

4. Spherical Model :
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3h 1k
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Figure 9. Contour The Number of Earthquake Occurrences For The Fourth Step (2016-11): (a) based on
ARMA model, (b) based on testing data.

Figure 9(a) and 9(b) have the same pattern, while they show different color. Figure 9(a) produces the
contour which has distributed colors and estimation range 4.70-5.56 Ms. On the other hands, figure (b)
results the contour with the majority color is green. In figure 9(b), Only one of four earthquake events is in
the color contours according to the estimation. Meanwhile There is no earthquake event that occurred in
suitable color in this figure.

Conclusion

Earthquakes in the province of Bengkulu for the period 2000-2016 can be modeled by combining two
methods, namely kriging interpolation and time series analysis. Based on the modeling step using 85% of
historical data and the validation phase using 15% of historical data, Spherical model is selected model with
minimum MSE value of 3.206 and time series model for each parameter ARMA (2,2) having different
coefficient estimate values.

From the four contours map based on the ARMA models, contours resulted on the estimation of the
first step parameters are most similar to the contours produced by testing data in January-June 2015. While
on other contours, the contours of the ARMA model estimation parameter show the contours that have
similar pattern to the contours on data testing. However, the contours of the ARMA model show the color
and area of the earthquake estimation is more varied. Based on the earthquake occutrence, the contours of
the ARMA model and data testing do not show that the earthquakes that occur are all located on the contour
of the appropriate estimation area.
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