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Abstract. A three-story single-unit tunnel form building (TFB) was designed 

using a non-seismic code of practice (BS 8110). Two one-third scale test models 

were constructed and tested under in-plane lateral cyclic loading and out-of-
plane lateral cyclic loading, respectively. The specimens were tested at ±0.01%, 

±0.1%, ±0.25%, ±0.5%, ±0.75%, ±1.0%, ±1.25%, ±1.5%, ±1.75% ±1.8, ±1.9% 

and ±2% drifts, after which severe cracks were observed on the wall-slab joints 

and wall panels. Subsequently, the damaged specimens were repaired and 

retrofitted by wrapping carbon fiber reinforced polymer (CFRP) around the 

damaged walls and affixing steel plates and steel angles at the wall-slab joints 

using several different repair and retrofitting schemes. The repaired specimens 

were retested using the same drifts. The comparison of the seismic behavior 

between unrepaired and repaired specimens was made based on visual 

observation of damage, hysteresis loops, lateral strength capacity, stiffness, 

ductility, and equivalent viscous damping. The experimental results showed that 
the repaired specimens were improved in terms of damage, lateral strength 

capacity, stiffness, ductility, and equivalent viscous damping. It is recommended 

to strengthen and rehabilitate tunnel form buildings after an earthquake using 

CFRP, additional shear walls, steel plates and steel angles.  

Keywords: damaged specimens; ductility; equivalent viscous damping; rehabilitation; 

stiffness. 

1 Introduction 

To date, few studies have been conducted to determine the seismic performance 

of tunnel form building systems under in-plane and out-of-plane lateral cyclic 

loading [1-4]. Moreover, in these studies no repair or retrofitting schemes were 

carried out for tunnel form buildings. It is evident that the poor seismic behavior 
of these types of buildings during the 1999 Kocaeli Earthquake and the 1999 

Duzce Earthquake in Turkey caused severe damages. These buildings had to be 



 Seismic Behaviour of TFB Under Lateral Cyclic Loading 225 

repaired and strengthened before they could be occupied again after the 

earthquake. 

Common problems encountered with shear walls in tunnel form buildings are 

that they have inadequate strength to resist lateral forces and transfer them to 

the foundation of the building due to the absence of diagonal bracing on the 
shear walls. An effective way of repairing them is to wrap the damaged 

structural components with carbon fiber reinforced polymer (CFRP) 

perpendicular to potential shear cracks. Three repairing techniques using CFRP, 
i.e. full wrapping, three-sided wrapping (U-shape) and two-sided wrapping, 

have been investigated to determine the best technique [5-7]. If the bond zone 

between the wrapping surface and the CFRP fabric is larger, then the lateral 

strength capacity of the structure will increase gradually. Furthermore, another 
research revealed that the use of FRP sheets wrapping the wall surface increased 

its displacement ductility by 57% when compared to the control wall [8-10]. 

Layssi has studied the poor seismic response of shear walls and then repaired 
and retrofitted damaged walls using CFRP fabrics [11-13]. Others studies on 

shear walls and precast walls have been conducted in order to determine the 

seismic behavior of low-ductility precast walls under in-plane lateral cyclic 

loading [14-17]. Recently, strengthening techniques for non-ductile reinforced 
concrete shear walls using externally bonded CFRP sheets under in-plane 

seismic loading have been investigated [18,19]. There are also several seismic 

retrofitting schemes for repairing local and global damage to reinforced 
concrete structures caused by earthquake disasters [20-22]. Based on past 

research work on repair and retrofitting schemes for shear walls, the most 

effective technique is fully wrapping the whole damaged shear wall panel with 

CFRP. Hence, this technique was adopted in this study. 

2 Design and Construction of Tunnel Form Building 

In this study, a tunnel form building was designed using British Standard 8110 

[23], which is a non-seismic code of practice that has no provision for 
earthquake resistance. This building was designed to carry a vertical load that 

only consists of dead load and imposed load with a safety factor of 1.4 and 1.6, 

respectively. However, according to British Standard 8110 Part 2, the notional 
horizontal load that applies to each floor level is 1.5% of the characteristic dead 

weight of the structure. Unfortunately, this notional lateral load is very small 

compared to the lateral load caused by moderate to strong earthquakes. The 

design processes of the tunnel form building was aimed at determining the 
design load (wd), designing the shear walls of the tunnel form building, 

designing the flat slab, and finally designing the foundation beam. The number 

of reinforcement bars in the shear wall was determined by dividing the axial 
load with the yield stress of steel. The thickness of the steel plate and steel angle 
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depends on the bending moment at the wall-slab joints. The compressive 

strength of concrete for shear walls is 35 N/mm
2
 and the tensile strength of steel 

is 460 N/mm
2
. Initially, the tunnel form building behaves linearly, until it 

reaches the yield load, followed by nonlinear behavior starting from yield load, 
up to failure load. Due to space limitations, the actual building was scaled down 

to one-third scale for use as the test model. 

Figure 1 shows a front view of the design detailing of the reinforcement bars of 

the three-story single-unit TFB, with diameters of 6 mm, 10 mm and 16 mm for 
the bars. Meanwhile, Figure 2 shows a side view of the detailing of the 

reinforcement bars of the three-story TFB using a diameter of 6 mm for the 

shear walls and 16 mm for the reinforcement bars of the foundation beam. 

Construction involved two phases and took place at the Heavy Structural 
Laboratory, Faculty of Civil Engineering, Universiti Teknologi MARA, Shah 

Alam, Selangor, Malaysia. The first phase involved the construction of two 

single units of a TFB and included the preparation of the reinforcement bars, the 
cages for the foundation beam, the formwork for wall panels and slabs, the 

pouring of wet concrete into the formwork and the curing of the specimens at 

ambient temperature. The second phase was the experimental set-up, calibration 

of the instruments, testing of the specimens, repairing and retesting of the 
specimens using the same loading regime under in-plane and lateral cyclic 

loading. Figure 3 shows the one-third scale three-story single-unit of the TFB 

test model ready to be tested under in-plane lateral cyclic loading, where two 
holes at the top of the specimen were used to clamp the specimen to a double 

actuator. Meanwhile, the second TFB model, which was to be tested under out-

of-plane lateral cyclic loading, had four holes on top. 

 
Figure 1 Front view of details of 

reinforcement bars in TFB. 

 

Figure 2 Side view of details of 

reinforcement bars for TFB. 
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Figure 3 Isometric view of TFB model ready for experimental testing. 

3 Repair and Retrofitting Schemes 

After the two specimens were tested under in-plane and out-of-plane lateral 
cyclic loading, respectively, the specimens were repaired and retrofitted using 

different repair and retrofitting schemes depending on the severity of the 

damage. The first TFB specimen, which had been tested previously under in-
plane lateral cyclic loading, was repaired and retrofitted using CFRP, with a 

steel plate and a steel angle. Figure 4 shows the process of repairing and 

retrofitting the TFB specimen by affixing the steel plate and the steel angle at 

the wall-slab joint and then wrapping the whole shear wall with CFRP. The 
characteristic tensile strength of CFRP is 2800 MPa, the Young modulus E = 

165 kN/mm
2
, and density is 1600 kg/m

3
. The second specimen, which had been 

tested under out-of-plane lateral cyclic loading and had suffered severe damage 
at the wall-slab joints, was repaired using a steel plate and a steel angle. Then, 

this specimen was re-tested using the same loading pattern before repairing it, 

until more cracks were observed at the outer and inner wall. Finally, the 

damaged wall panel was repaired again using CFRP fabric, and retested for a 
third time. A comparison was made between the unrepaired and repaired 

specimen based on visual observation damage, hysteresis loops, stiffness, 

ductility, and energy dissipation. Table 1 shows the amount of drift imposed on 
the unrepaired and repaired test models under in-plane and out-of-plane lateral 

cyclic loading. 
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Table 1 Drift Percentage Imposed on Specimens 

Specimen Drift percentage 

S-INP-BR ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% 

S-INP-AR (SP + SA+CFRP) 
±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75%, ±1.0%, 

±1.25%, ±1.5% 

S-OUT-BR 
±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75%, ±1.0%, 

±1.25%, ±1.5%, ±1.75% 

S-OUT-AR (SP + SA + CFRP) 
±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75%, ±1.0%, 

±1.25%, ±1.5%, ±1.75% ±1.8, ±1.9%, ±2% 

 

 

Figure 4 Repair and retrofitting process of test model using CFRP fabric. 

4 Experimental Results and Data Analysis 

The experimental results and data analysis for all three specimens were 

compared based on visual observations of damage, hysteresis loops, lateral 
strength capacity, stiffness, ductility and equivalent viscous damping. The best 

repair and retrofitting scheme will be recommended based on the comparisons 

made between the unrepaired and the repaired specimens. 

4.1 Comparison of Unrepaired and Repaired Test Model Under 

In-Plane Lateral Cyclic Loading 

Figure 5 shows a comparison of the visually observed damage for the 

unrepaired test model and the same model that was repaired using a steel angle, 

a steel plate and CFRP fabric subjected to in-plane lateral cyclic loading only. It 

can be seen that the unrepaired specimen, labeled S-INP-BR, had some 
horizontal hairline cracks on the inner and outer surfaces of both walls at the 

first and second floor level at ±0.75% drift, as shown in Figure 5(a) and Figure 

5(c), respectively. In contrast, no horizontal cracks were observed on the inner 
and outer sides of both walls at the first and second floor of the wall for the S-
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INP-AR (SA+SP+CFRP) specimen at ±0.75% drift, as shown in Figure 5(b) 

and Figure 5(d), respectively. 

S-INP-BR S-INP-AR(SA+SP+CFRP) 

  
(a) Horizontal cracks at ±0.75% drift.   (b ) No cracks observed at ±0.75% drift 

  
(c) Horizontal cracks at ±0.75% drift (d) No cracks observed at ±0.75% drift 

Figure 5 Comparison of visual observation of damages of unrepaired and repaired 
TFB specimens. 

Figure 6 shows a comparison of the hysteresis loops between the unrepaired and 

repaired specimens based on the measurement of load versus displacement 

obtained at LVDT1 at the top part of the test model. The ultimate in-plane load 
for the S-INP-BR specimen was 42kN and 45kN for the S-INP-

AR(SA+SP+CFRP) specimen at +0.75% drift. It can also be observed that the 

area of the hysteresis loops was higher for the repaired specimen than for the 
unrepaired specimen. This means that the repaired specimen could absorb more 

seismic energy and better protect the wall from damage and collapse.  

Stiffness is the rigidity of the structure, where the extent to which it can resist 
deformation in response to an applied force under linear and nonlinear limits is 

known as elastic stiffness (Ke) and secant stiffness (Ksec), respectively. The 

formulas to calculate the elastic stiffness and secant stiffness are as follows: 

 �� =
��

∆�
    (1)                              

 ���� =
�	
����

∆	
��∆�
       (2)                    
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where 
�= yield lateral load, ∆�= yield lateral displacement, 
��� = ultimate 

lateral displacement and ∆���= ultimate lateral load. From Table 2, the 

maximum value of elastic stiffness (Ke = 9.5) for the unrepaired specimen, 
which occurred in the pushing direction in the first cycle, was higher than for 

the repaired specimen (Ke = 8.06) in the second cycle. Meanwhile, the 

maximum value for secant stiffness (Ksec = 1.95) for the repaired specimen was 
higher than for the unrepaired specimen (Ksec = 1.08). Therefore, it can be 

concluded that the elastic stiffness before repair was higher than for the repaired 

specimen and the secant stiffness was higher for the repaired specimen than for 
the repaired specimen. This is supported by results obtained from experimental 

work on an exterior beam-column joint with and without steel fibred reinforced 

concrete [24]. 

Table 2 Values of Ke and Ksec for unrepaired and repaired specimens under in-

plane lateral cyclic loading. 

Stiffness 

(kN/mm) 
Before repair After repair 

Difference 

percentage 

Ke 9.5 7.85 17.36% 

Ksec 1.08 1.61 49.07% 

(a) Pushing load in the first cycle 

Stiffness 

(kN/mm) 
Before repair After repair 

Difference 

percentage 

Ke 9.02 8.06 10.64% 
Ksec 1.72 1.95 13.37% 

(b) Pushing load in the second cycle 

S-INP-BR S-INP-AR(SA+SP+CFRP) 

  

(a) Hysteresis loops of  LVDT1 (b) Hysteresis loops of LVDT1 

Figure 6 Comparison of hysteresis loops between unrepaired and repaired 

specimens. 
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Ductility is the ability of a structure to undergo permanent deformation through 

elongation under lateral cyclic loading. The formula used to calculate the 

ductility of the unrepaired and repaired specimens is in Eq. (3) as follows [25]: 

 �∆ =
∆	
�

∆�
  (3) 

Table 3 shows a comparison of displacement ductility between the unrepaired 

specimen and the repaired specimen, both tested under in-plane lateral cyclic 

loading. The maximum value of displacement ductility (�∆) occurred in the 
repaired specimen with a value that was 1.50 higher than in the unrepaired 

specimen. It can be concluded that the steel plate, the steel angle and the CFRP 

increased the secant stiffness and ductility of the repaired specimen significantly 
when compared to the unrepaired specimen. A similar study showed that these 

materials could increase the seismic performance of a beam-column joint [26]. 

Table 3 Comparison of µΔ between unrepaired and repaired specimens. 

Cycle Direction 
Displacement ductility (µΔ) Difference 

percentage Before repair After repair 

First cycle 
Pushing 1.14 1.21 6.14% 

Pulling 1.00 1.47 47.00% 

Second 

cycle 

Pushing 1.00 1.21 21.00% 

Pulling 1.00 1.50 50.00% 

The equivalent viscous damping concept was first introduced by Jacobsen in 
1930 [27]. In his paper, Jacobsen approximated the steady state solution of a 

nonlinear SDOF system by equating the energy dissipated by that system to the 

energy dissipated by one cycle of sinusoidal response of a linear system. 
However, the most common method for defining equivalent viscous damping is 

to equate the energy dissipated in a vibration cycle of an inelastic system and of 

an equivalent linear system. Based on this concept, it can be shown that the 
equivalent viscous damping ratio can be calculated using Eq. (4), derived from 

[28]: 

 ��� =
�

��

��

���
  (4) 

where �� = energy dissipated under one complete cycle by calculating the total 
area under the hysteresis loops using the area under the trapezium and strain 

energy ��� by calculating the area of the triangle under maximum lateral load 

and maximum lateral displacement. Normally, the equivalent viscous damping 

for the first cycle is higher than for the second cycle. Figure 7(a) shows the 
equivalent viscous damping of the unrepaired specimen for the first and second 

cycle. Meanwhile, Figure 7(b) shows the equivalent viscous damping for the 

repaired specimen for the first and the second cycle. The maximum equivalent 
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viscous damping occurring in the repaired specimen was 30%, which is due to 

the larger area of the hysteresis loops in the repaired specimen when compared 

with the unrepaired specimen. The data analysis of the results will be discussed 

in the next section for the second specimen, which was tested under out-of-
plane lateral cyclic loading.  

  

(a) EVD unrepaired specimen (b) EVD repaired specimen 

Figure 7 Comparison of EVD between unrepaired and repaired specimen. 

4.2 Comparison of Unrepaired and Repaired Test Model Under 

Out-Of-Plane Lateral Cyclic Loading  

The second specimen was tested under out-of-plane lateral cyclic loading by 
using the drift percentages as shown in Table 1. The unrepaired specimen, 

which was tested under out-of-plane direction is labeled S-OUT-BR and the 

repaired specimen using a steel angle, a steel plate and CFRP is labeled S-OUT-

AR (SA+SP+CFRP).  

Figure 8 shows a comparison in terms of visually observed damage to the inner 

walls and wall-foundation interface of this specimen at ±1.75% drift. Figure 

8(a) shows a few parallel horizontal hairline cracks on the inner shear wall at -
1.75% drift. Figure 8(b) shows there were no cracks on either the outside or the 

inside of the wall panel at +1.75% drift. It is evident that the test model, which 

had been damaged after testing under out-of-plane lateral cyclic loading, 
performed better after being repaired with the steel angle, steel plate and CFRP. 

Using CFRP to wrap the damaged area can increase the confined concrete of the 

wall panel and prevent the wall from cracking and spalling. 

Figure 9 shows a comparison of the hysteresis loops of the test model, which 
had been repaired and retested under out-of-plane lateral cyclic loading. The 

total area of the hysteresis loops for the unrepaired S-OUT-BR specimen was 

larger than for the S-OUT-AR(SA+SP+CFRP) repaired specimen, as shown in 
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Figure 9(a). However, most of the hysteresis loops from the repaired specimen 

shown in Figure 9(b) were very slim, where less of energy was dissipated 

during testing. Moreover, the highest value recorded by the load cell under out-

of-plane lateral strength capacity was 8 kN, obtained from the S-OUT-
AR(SA+SP+CFRP) specimen. Meanwhile, the out-of-plane lateral strength 

capacity of the S-OUT-BR specimen was 6 kN. Therefore, the out-of-plane 

lateral strength capacity was increased by 33.3% after the specimen was 
repaired and retrofitted using the steel plate, the steel angle and CFRP. 

S-OUT-BR 
SPECIMEN 

S-OUT-AR(SA+SP+CFRP) 
SPECIMEN 

  
(a)  Several cracks observed in the inner 

wall at -1.75% drift 
(b) No cracks observed in the inner wall at 

1.75% drift after being repaired 

Figure 8 Comparison in terms of visual observation between unrepaired and 

repaired specimen under out-of-plane lateral cyclic loading. 

S-OUT-BR 

SPECIMEN 

S-OUT-AR(SA+SP+CFRP) 

SPECIMEN 

  
(a) Hysteresis loops at LVDT1 (b) Hysteresis loops at LVDT1 

Figure 9 Comparison of hysteresis loops between unrepaired and repaired 

specimens. 
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The hysteresis loops of the S-OUT-BR unrepaired specimen and the S-OUT-

AR(SA+SP+CFRP) unrepaired specimen shown in Figure 9 were used to 

calculate the seismic performance of the TFB test model under out-of-plane 
lateral cyclic loading. The comparison of seismic performance based on elastic 

stiffness (Ke), secant stiffness (Ksec), ductility and equivalent viscous damping 

was analyzed and investigated.  

Table 4 shows that the maximum value for elastic stiffness was (Ke = 3.00) for 

the unrepaired specimen in the pushing direction of the first cycle and (Ke = 

2.50) for the repaired specimen. The maximum secant stiffness of unrepaired 

specimen was (Ksec = 0.23) and (Ksec = 0.28) for the repaired specimen. Thus, 
the secant stiffness was increased significantly in the repaired specimen when 

compared to the unrepaired specimen. 

Table 4 Values of Ke and Ksec of unrepaired and repaired specimens. 

Stiffness 

(kN/mm) 
Before repair After repair 

Difference 

percentage 

Ke 3.00 2.50 16.67% 

Ksec 0.17 0.26 52.94% 

(a) Pushing for first cycle 
 

Stiffness 

(kN/mm) 
Before repair After repair 

Difference 
percentage 

Ke 0.67 0.75 11.94% 
Ksec 0.23 0.28 21.74% 

(b) Pushing for second cycle 
 

Table 5 shows a comparison in terms of displacement ductility between the 

unrepaired and the repaired specimens tested under out-of-plane lateral cyclic 

loading. The maximum value of displacement ductility was 2.74 as recorded in 
the pushing direction in the first cycle of the repaired specimen labeled as S-

OUT-AR (SA+SP+CFRP). The highest difference percentage between the 

unrepaired and the repaired specimens occurred in the first cycle in the pushing 
direction (13.69%). The minimum value of displacement ductility for the 

unrepaired specimen was 2.38, recorded in the second cycle. These values of 

displacement ductility indicate that the tunnel form building system can survive 

under moderate to strong earthquake excitations [29]. 

Figure 10 shows a comparison of equivalent viscous damping (EVD) in terms 

of difference percentage between the unrepaired and repaired specimens. It 

shows that the EVD for the first cycle was always higher than for the second 
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cycle for both specimens, because the first cycle always required more energy 

to overcome the elastic strain energy before it reached the yield lateral load and 

yield strain. The second cycle indicates that the tunnel form building system 

exceeded the yield stress and yield strain of the reinforcement bars and required 
less energy to dissipate during testing or earthquake excitations. 

Table 5 Comparison of displacement ductility between unrepaired and 

repaired specimens. 

Cycle Direction 

Displacement ductility (µΔ) 
Difference 

percentage 
S-OUT-

BR 

S-OUT-AR 

(SA+SP+CFRP) 

First cycle 
Pushing 2.41 2.74 13.69% 

Pulling 2.39 2.68 12.13% 

Second 
cycle 

Pushing 2.42 2.73 12.81% 

Pulling 2.38 2.62 10.08% 

 

 
(a) EVD for S-OUT-BR specimen 

 
(b) EVD for S-OUT-AR(SA+SP+CFRP) 

Figure 10 Comparison of equivalent viscous damping (EVD) between 

unrepaired and repaired specimens. 
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Figure 10(a) shows that the EVD for the S-OUT-BR unrepaired specimen with 

a maximum value of 13% occurred at 0.5% drift in the first cycle. Meanwhile, 

Figure 10(b) shows the EVD of the S-OUT-AR(SA+SP+CFRP) specimen with 

a maximum EVD of 12% occurring at 0.01% drift in the first cycle. It can be 
seen that the value of EVD decreased when the area of the hysteresis loops 

recorded at LVDT1 was very small, or vice versa. It can be concluded that the 

EVD for the repaired specimen became steadier when compared to the 
unrepaired specimen [30]. 

5 Conclusion and Recommendations 

Seismic impacts on a test model were investigated and the optimum repair and 
retrofitting scheme was established to reduce the cost of repairing and 

retrofitting damaged buildings, to avoid demolishing buildings after an 

earthquake, and to reduce homelessness by re-occupying repaired buildings 
after a disaster. Based on the experimental work, the analysis of the results, and 

discussion of the two specimens, the following conclusions and 

recommendations can be given: 

1. Based on visual observation, the repaired specimens did not suffer any 
cracks or spalling of the concrete when compared to the unrepaired 

specimens, which had horizontal cracks along the wall panel. 

2. The highest value of elastic stiffness was 9.5 for the unrepaired specimen 
and the maximum value of secant stiffness was 1.95 for the repaired 

specimen tested under in-plane lateral cyclic loading. Meanwhile, 

maximum elastic stiffness was 3.00 for the unrepaired specimen and secant 
stiffness was 0.28 for the repaired specimen tested under out-of-plane 

lateral cyclic loading. 

3. The highest value of displacement ductility was 1.54 for the repaired 

specimen tested under in-plane lateral cyclic loading and 2.74 for the 
repaired specimen under out-of-plane lateral cyclic loading. 

4. The highest value of equivalent viscous damping (EVD) was 30% for the 

repaired specimen in the first cycle tested under in-plane lateral cyclic 
loading and 13% for the repaired specimen under out-of-plane lateral cyclic 

loading. It would be better to increase the percentage of damping rather than 

the stiffness of the structure because the building requires more damping in 

order to dissipate energy during an earthquake. 
5. The optimum repair and retrofitting scheme for the damaged tunnel form 

building test model was the one combing a steel plate, a steel angle and 

CFRP.  
6. It is recommended to conduct more experimental work using GFRP instead 

of CFRP with testing under in-plane and out-of-plane lateral cyclic loading. 
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