
International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-4 , April- 2016]
ISSN: 2349-6495

www.ijaers.com Page | 151

Sphinx 4 Speech Recognition in ATC
Vatsala Mathapati1, Anjaney Koujalagi2, Naveen Kumar C3

1Software Engineering, Department: CSE, AMC Engineering College Bangalore, India
2VLSI and Embedded systems, Department: ECE, Nitte Meenaxi Institute of Technology Bangalore, India

3Assistant professor, Department: CSE, AMC Engineering College Bangalore, India

Abstract—Speech Recognition plays a very important role
in day to day life. Speech Recognition is widely used and
addicted by this world as it allows users to communicate
with computers by recognizing their spoken language.
Communication with Speech Recognition made our lives
easy. There are many types of open source Speech
Recognition Engine. Different types of application are
built using Speech Recognition Engine. An Application is
built for Air Traffic Controller. A new Software library
with good grammar is proposed according to Air Traffic
Controller commands. This Software library is used to
build successful working application.
Keywords— ATC commands; JSAPI; JSGF; LM
;Sphinx Decoder Framework.

I. INTRODUCTION
This paper is determined for training ATC, represents an
excellent application for SR system .

Fig.1: Pilot handling Aircraft

Fig.2: Air Traffic Controller handling pilot

The Figure 1 represents Pilot handling Aircraft. The
Figure 2 represents ATC handling pilot with commands.
A. Abbreviations and Acronyms
Speech Recognition (SR), Language Model (LM), Air
Traffic Controller (ATC), Java Speech Application
Programming Interface (JSAPI), Java Speech Grammar
Format (JSGF).

SR converts spoken words into text. There are many open
source SR software. This software should be installed in
computer, which helps computer to understand spoken
language and be able to translate it in computer language
so that it acts according to spoken language. Speech is
recognized through Signal Analyzer.

• Signal Analyzer:
High quality microphone picks up the speaker
sound and converts to signal and signal analyzer
separates the background noise and passes only
speaker’s speech and sends to Acoustic model.

There are two types of Speech Recognition. User can use
either of them. Both Speech Recognition systems contains
corpus collection individually.

• Speaker Dependent SR system:
Single person voice is preconfigured into system
in the form of corpus as shown in figure 3 and
only that unique person’s pattern is recognized to
perform task. This is applied for small scale
industries and requires fewer databases.

• Speaker Independent SR system:
Many people’s voice is preconfigured into system
in the form of corpus as shown in figure 4 and any
one’s voice is recognized to perform task. This is
applied for large scale industries and requires
large database as it stores many person’s voice
samples.

Fig.3: Corpus collection for Speaker Dependent SR

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-4 , April- 2016]
ISSN: 2349-6495

www.ijaers.com Page | 152

Fig.4: Corpus collection for Speaker Independent SR

Speech Recognition contains two models:
1) Acoustic Model:

Acoustic Model recognizes speech samples and
breaks into phonemes using probability based on
mathematical model. The samples of phonemes
with highest probability of a match is selected as
correct phoneme and passed to Language Model

2) Language Model:
Once phonemes in speech samples are identified,
the LM is used to recognize and decide what
words has been spoken. Thousands of phonetic
spellings and meaning need to be provided in
dictionary file. The grammar file is also
generated to compare words found in dictionary.

Fig.5: Language Model

JSAPI and Sphinx 4 tools used to build Speech to text
applications.

• JSAPI:
To support commands and control recognizers
the java speech application programming
interface is required. JSAPI supports two cores.
First is Speech Synthesis used to build the text to
speech technology.
Second, Speech Recognition is used to build the
speech to text technology. It provides computer
with the ability to listen the person’s speech and
identify what has been said. JSAPI have some
classes and interfaces, which are grouped into
packages

1) Javax.speech:
It provides classes and interfaces for a
speech engine.

2) Javax.speech.synthesis:
It provides classes and interfaces for
speech synthesis.

3) Javax.speech.recognition:
It provides classes and interfaces for
speech recognition.

• Sphinx 4:
The figure 6 represents the overall architecture of
Sphinx 4 Framework. It has three modules to
perform high flexibility and modularity. The
three modules are FrontEnd, Decoder and
Linguist.

Fig.6: The Framework for Sphinx 4

Fig.7: Sphinx 4 FrontEnd

FrontEnd:
Front end picks up input as audio signal and parameterize
an input signal into sequence of output features. Different
types of parameters from same or different signals are also
performed by parallel chains of communicating Data
processors. Each Data processor have input and output to

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-4 , April- 2016]
ISSN: 2349-6495

www.ijaers.com Page | 153

communicate with other Data processor. The last Data
processor provides feature as output.
Decoder:
The decoder request Search manager to recognize set of
feature frames which are output of Data processor. Search
Manager creates Result object containing all the paths that
have reached final state. Search Manager is implemented
with Search algorithm. The Decoder has sub Frameworks.
First, ActiveList actives token using pluggable pruner.
Second, Pruner performs a garbage collection in java
platform. Third, Scorer provides score to requested
SearchManager by calculating score using mathematical
operations.
Configuration Manager configures the parameter and
provides Sphinx 4 to perform dynamically load and
configure modules at run time.
Linguist:
The Linguist generates SearchGraph which is then used by
Decoder during search. It contains three pluggable
components are Acoustic Model, Language Model,
Dictionary and SearchGraph. The SearchGraph is the
directed graph with n nodes present in it and each node
represent search state either an emitting or a non-emitting.

II. EXISTING SYSTEM
The JSAPI and Sphinx 4 libraries are already used in Java
Language to build applications such as Google
application, Speech to Text Android application and so on.
Sphinx 4 applications are not yet applied for Air Traffic
Controller in Aerospace. There is no such software
libraries present in the existing Sphinx 4, Lot of required
words are missing in sphinx 4 pronunciation dictionaries.
In sphinx 4, pronunciation dictionary is maintained with
only normal English words used in daily life but not
related to Indian ATC command dictionary.

III. PROPOSED SYSTEM
A new software library is proposed using Air Traffic
Controller commands in java platform. This library files
then imported in Eclipse tool. Some steps need to follow
are
Selecting high frequency microphone:
Speech Recognition system requires high frequency
microphone to recognize speech and it should be able to
recognize approximate voice sample of person. The
microphone should be very near to speaker and should be
surrounded with cool and silent area. The microphone
should work accurately and be able to convert person’s
sound waves to signal.

1) Creating Dictionary file:
The Dictionary file is created with collecting the
phonemes pattern from the Acoustic Model and
the correct word which matches to the phoneme

pattern. Phoneme is the small unit of word which
is created by Acoustic Model according to the
pronunciation. When phonemes are identified,
search is performed on the dictionary file and
produce correct word. The dictionary contains
thousands of phonetic spellings and corrects word
of Aircraft name, numbers, commands and unit
which are used for Aircraft application.

2) Creating a Software library
To create a software library, four dictionary files
are stored in a folder and should create a jar file
to import in the Eclipse tool to support and run
Java application. Along with the existing JSAPI
and Sphinx 4, proposed Software library is also
added by creating jar files. The command syntax
for creating jar files:
Jar cf jar-file input-files(s)
c : Represents to create jar file
f : Represent to save output in a file
jar-file: Represents any file name can be given by
the user with .jar extension.
Input-file(s): Represent space separator, used
when more than one file need to be added in a jar
file.
Figure 8 represent the Dictionary name and
location, using this detailed location jar is created
with commands in command prompt which is
presented in figure 9.

Fig.8: Dictionary name and location

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-4 , April- 2016]
ISSN: 2349-6495

www.ijaers.com Page | 154

Fig.9: Creating software library

3) Creating Grammar file:

The Grammar file is created by using JSGF and it is
platform independent. JSGF is Java Speech Grammar
Format. It is format for textual representation of
context free grammars. Grammar helps to determine
what the recognizer should listen and describes the
utterances of user sayings.

4) Set path in Java code:
The xml form is generated to use xml elements to
represent grammar constructs. The grammars of certain
application requirements are stored in xml form. This
xml path is then set in java code to run the java
application.

Fig.10: Creating JSGF

The figure 10 shows Java Speech Grammar Format for
Aircraft commands. First line represent version of
JSGF. Remaining line represent voice tokens of
Aircraft commands. The unit and digits within square
bracketsshows they are optional. The or operator
shows only one voice token is selected. The
parenthesis shows any combination can be selected.
The figure 11 shows the Result of speech in text form
with the help of Grammar

Fig.11: Result

IV. CONCLUSION

The new software library is proposed for Indian English
ATC. It is developed by using java technology in Eclipse
tool. This library helps and communicates best
performance between ATC and pilot.

ACKNOWLEDGEMENTS
I have got a best opportunity to present the paper on
“Sphinx 4 Speech Recognition in ATC”. I am thankful to
who all encouraged to complete this paper.

REFERENCES

[1] E. Craparo, E. Feron, Natural language processing in
the control of UAV, Guidance, Navigation, 2004.

[2] S. Young, “The HTK hidden Markov model toolkit:
Design and philosophy,” Cambridge University
Engineering Department, UK, Tech. Rep.
CUED/FINFENG/ TR152, Sept. 1994.

[3] Voce http://voce.sourceforge.net
[4] K. F. Lee, H. W. Hon, and R. Reddy, “An overview

of the SPHINX speech recognition system,” IEEE
Transactions on Acoustics, Speech and Signal
Processing, vol. 38, no. 1, pp. 35–45, Jan. 1990.

[5] J. K. Baker, “The Dragon system - an overview,” in
IEEE Transactions on Acoustic, Speech and Signal
Processing, vol. 23, no. 1, Feb. 1975, pp. 24–29.

[6] http://www.speech.cs.cmu.edu/cgi/bin/cmusphinx/twi
ki/view/Sphinx4/Train%erDesign

[7] CMU Sphinx: http://cmusphinx.sourceforge.net
[8] R. G. Leonard and G. R. Doddington, “A database

for speaker-independent digit recognition,” in
Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, vol. 3.
IEEE, 1984, p. 42.11.

[9] JSGF: http://java.sun.com/products/java-
media/speech/forDevelopers/JSGF/

[10] The Native Interface in JAVA : http://java.sun.com

