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Abstract² The present paper deals with the MHD boundary 

layer flow over a linearly moving porous semi infinite vertical 

plate taking suction and viscous dissipation into account. The 

fluid considered is viscous, incompressible and electrically 

conducting. After transferring the governing equations into 

ordinary differential equations using suitable dimensionless 

variables, analytical solutions are generated using homotopy 

analysis method (HAM).  The effects of various parameters on 

dimensionless velocity, temperature and concentration profiles 

are presented in the form of graphs and tables. HAM results are 

in good agreement with the results available in the literature.  

 

 

Index Terms² Porous Media, Viscous Dissipation, MHD 

Flow, Moving Vertical Plate, Homotopy Analysis 

Method(HAM). 

I. INTRODUCTION 

  In recent years, there are number of studies on convection 

flow and heat transfer in saturated porous media due to their 

wide ranging applications in engineering field like heat 

exchanger devices, geothermal and geophysical engineering, 

petroleum reservoirs, underground disposal of nuclear waste 

and others. The vertical free convection boundary layer flow 

in porous medium owing to combined heat and mass transfer 

has been studied by Bejan and Khair [1]. Lai and Kulacki [2] 

studied the coupled heat and mass transfer by natural 

convection from vertical surface in porous medium. Kim and 

Vafai [3] have analyzed the buoyancy driven flow about a 

vertical plate for constant wall temperature and heat flux. 

 Helmy [4] worked on MHD unsteady free convection flow 

past a vertical plate embedded in a porous medium. Raptis et 

al. [5] constructed similarity solutions for boundary layer near 

a vertical surface in porous medium with constant temperature 

and concentration. Thermal radiation and buoyancy effects on 

hydromagnetic flow over an accelerating permeable surface 

with heat source or sink was investigated by Chamka [6]. Yih 

[7] observed free convection effect on MHD coupled heat and 

mass transfer of a moving permeable vertical surface. 

Soundalgekar [8] has discussed the viscous dissipation effect 

on unsteady free convection flow past an infinite vertical 

porous plate with constant suction. 

In this study, HAM [10, 11] is adopted to find the analytical 

solutions for velocity, temperature and concentration profiles. 
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Convergence of the obtained solutions is explicitly shown. 

Velocity, temperature and concentration profiles are drawn 

for various values of flow parameters like magnetic 

parameter M , buoyancy parameters GcGrand , suction 

parameter wF , permeability parameter K , Schmidt 

number Sc  and Eckert number Ec . The results are 

discussed in detailed, compared with the available results in 

literature and are in good agreement.  

Governing equations 

 Consider the free convection effects on MHD boundary 

layer flow of a viscous incompressible fluid over a linearly 

started porous vertical semi infinite plate embedded in a 

porous medium with suction and viscous dissipation. The 

x -coordinate is taken along the plate in ascending direction. 

The y -coordinate is taken normal to the plate. The velocity 

of the fluid far away from the plate surface is assumed to be 

zero for a quiescent state fluid. The variations of surface 

temperature and concentration are linear. A uniform magnetic 

field is applied in the direction perpendicular to the plate. The 

transverse applied magnetic field and magnetic Reynolds 

number are assumed to be very small, so that the induced 

magnetic field, Hall effects and Joule heating are negligible. 

Under these assumptions, along with the Boussinesq 

approximations, the boundary layer equations describing this 

flow are  
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The corresponding boundary conditions are 
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where u and v are the velocity components along the x  

and y  axes respectively. T  and C  are the temperature and 

concentration in the boundary layer, a  and b  denote the 
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stratification rate of the gradient of ambient temperature and 

concentration, Q  is the kinematics viscosity, U  is the 

density, V  is the electric conductivity of the fluid, TE  is the 

volumetric coefficient of thermal expansion, cE  is the 

volumetric coefficient of concentration expansion, fC  is the 

free stream concentration,  0B  is the magnetic induction, 

mD  is the mass diffusivity, g  is the acceleration due to 

gravity, 'K  is the  permeability of the porous medium and 

D  is the thermal diffusivity, 
pc  is the specific heat at 

constant pressure. 

 Now using the non-dimensionless parameters and variables 

reported in [8] 

 

    (6) 

 where ),( yx\  is the stream function, )(Kf  is a 

dimensionless stream function, )(KT  is a dimensionless 

temperature of the fluid in the boundary layer region, 

)(KI is a dimensionless species concentration of the fluid in 

the boundary layer region and K   is the similarity variable. 

 Taking the Cauchy-Riemann equations 
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the conservation of mass, equation (1) is identically satisfied. 

Substituting equation (7) in equations (2) to (5), we obtain 
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The boundary conditions in non-dimensional form are  
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 is the Schmidt number,

QB

V
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the suction parameter. 

Solution using HAM 

 To solve the dimensionless equations (8) to (10) together 

with the boundary conditions (11) analytically using HAM, 

the initial approximations and auxiliary linear operators are 

chosen as 
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where )71( toiCi  are the arbitrary constants. 

If ]1,0[�p  is the embedding parameter, 321 and, !!!  are 

the non-zero auxiliary parameters, the following equations are 

constructed. 

 

Zeroth order deformation equations 
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Taking 1and0   pp , we have 

� � � � � � � �
� � � � � � � �
� � � � � � � �,1;,0;

,1;,0;

,1;,0;

0

0

0

KIKIKIKI

KTKTKTKT

KKKK

  

  

  ffff

 

when p  increases from 0 to 1 then � � � � � �pppf ;and;,; KIKTK  vary from initial approximations to the final solutions. 
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If the initial approximations, auxiliary linear operators and non-zero auxiliary parameters are chosen in such a way that the 

series (16) to (18) are convergent at ,1 p
 
then 
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m
th

 order deformation equations 

 Differentiating equations (12) to (14) m  times w.r.to p  then setting 0 p  and finally dividing with !m , we get, 
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with the following boundary conditions  
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 Now to find � � � � � �KIKTK mmmf and,  for 1tm , solve the equations (19) to (21) using MATHEMATICA by employing 

the boundary conditions (22). 

 

 

Convergence of HAM 

As pointed by Liao [12], the convergence of solution 

series depends upon the choice of the initial approximations, 

the auxiliary linear operators and on the non-zero auxiliary 

parameters. Once if the initial approximations and the linear 

operators have been selected, the convergence of the solution 

series will depend upon the non-zero auxiliary parameter. 

Proper values of the parameters 321 and, !!!  can be found 

by so-called ! -curves. According to Fig. 1, the convergent 

region of � � � � � �0'and0',0'' ITf  is [-2.0, 0.0]. In this 

paper we choose .0.1321 �   !!!
 
Convergence of 

� � � � � �0'and0',0'' ITf  for different orders of 

approximation is given in Table 1. This table shows that the 

convergence is achieved at 30
th

 order approximation. 

II. RESULTS AND DISCUSSIONS 

 

 The effects of various parameters such as magnetic 

parameter M , buoyancy parameters GcGrand , suction 

parameter wF , permeability parameter K , Schmidt 

number Sc  and Eckert number Ec  on velocity, temperature 

and concentration fields are shown graphically in Figs. 2-22. 

In this study Prandtl number Pr  is considered to be 0.72 

(air), Schmidt number 72.2,78.0,68.0,24.0 Sc . To 

ensure the accuracy of the present results, comparison is made 

with the existing results in the literature and is given in Table 

2. 

 Figs. 2 to 4 show the effect of magnetic parameter on 

velocity, temperature and concentration profiles. Introduction 

of transverse magnetic field to an electrically conducting fluid 

develops a drag due to Lorentz force which tends to resist the 

fluid flow and thus reducing its velocity and to increase its 

temperature and concentration. 

The effects of GcGrand  on velocity, temperature 

and concentration fields are illustrated in Figs 5 to 10. As 

shown, temperature and the concentration are decreasing with 

increase in, GcGr and  but the velocity increases as 

GcGrand  increase. 

Figs. 11 to 13 depict the effect of suction parameter. 

As the suction parameter wF  increases IT and,'f  are 

also increase. 

Figs. 14 to 16 show the dimensionless velocity, 

temperature and concentration profiles for different values of 

permeability parameter K . It can be seen that the velocity 

profiles decrease with the increase of permeability 

parameter K and also noticed that the temperature and 

concentration profiles increase with the increase of 

permeability parameter K . 

Figs. 17 to 19 show the dimensionless velocity, 

temperature and concentration profiles for different values of 

Schmidt number Sc . It can be seen that the velocity profiles 

decrease with the increase of Schmidt number Sc . Further, it 

is observed that the temperature monotonically increases with 

the increase of Schmidt number Sc . It is seen that the 

concentration decreases as Schmidt number Sc  increases. 

 Figs. 20 to 22 depict the behaviour of velocity, temperature 

and concentration profiles for different values of Eckert 

number. From the figures it is clear that there is a slight 

increase in velocity and a slight decrease in concentration 

profiles with an increase in Ec . It is also observed that 

temperature increases with Ec . 

 

III. CONCLUSIONS 

Analytical study has been performed to observe the 

physical behavior of the velocity, temperature and 

concentration profiles. Results are presented graphically and 

analyzed. By comparing the present results with previous 

work, it is found that there in a good agreement. 
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Fig. 2: Variation of M on 'f  when 
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Fig. 3: Variation of M on T  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcFKGcGr w  

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

K

I
( K

)

 

 

M=0.1

M=0.5

M=1.0

 

Fig. 4: Variation of M on I  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcFKGcGr w
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Fig. 5: Variation of Gr on 'f  when 
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Fig. 7: Variation of Gr on I  when 
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Fig. 8: Variation of Gc on 'f  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcFKGrM w
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Fig. 9: Variation of Gc on T  when 
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Fig. 10: Variation of Gc on I  when 
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Fig. 11: Variation of wF on 'f  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcKGcGrM  
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Fig. 12: Variation of wF on T  when 
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Fig. 13: Variation of wF on I  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcKGcGrM
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Fig. 14: Variation of K on 'f  when 
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Fig. 15: Variation of K on T  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcFGcGrM w
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Fig. 16: Variation of K on I  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScEcFGcGrM w
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Fig. 17: Variation of Sc on 'f  when 

.72.0Pr,1.0,1.0,1.0,1.0,1.0,1.0        EcKFGcGrM w

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

K

T(
K)

 

 

Sc=0.24

Sc=0.62

Sc=0.78

Sc=2.62

 

Fig. 18: Variation of Sc on T  when 

.72.0Pr,1.0,1.0,1.0,1.0,1.0,1.0        EcKFGcGrM w  
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Fig. 19: Variation of Sc on I  when 

.72.0Pr,1.0,1.0,1.0,1.0,1.0,1.0        EcKFGcGrM w  
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Fig. 20: Variation of Ec on 'f  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScKFGcGrM w  
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Fig. 21: Variation of Ec on T  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScKFGcGrM w  
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Fig. 22: Variation of Ec on I  when 

.72.0Pr,62.0,1.0,1.0,1.0,1.0,1.0        ScKFGcGrM w  

 
 

Table 1: Convergence of the HAM solutions for different 

order of approximations when 

 

.1.0,72.0Pr,1.0,78.0,1.0,2.0,1.0,1.0         EcKScFGcGrM w  

Order � �0''f�
 

� �0'T�
 

� �0'I�
 

5 
0.940911

 
  0.750398

 
0.82345

 

10 
0.940177

 
0.74813

 
0.822822

 

15 
0.940134

 
0.747914

 
0.822905

 

20 
.94013

 
0.747877

 
0.822931

 

25 
.94013

 
0.747868

 
0.822937

 

30 
0.940129

 
   0.747866

 
0.822938

 

35 
0.940129

 
   0.747866

 
0.822939

 

40 
0.940129

 
   0.747866

 
0.822939
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Table 2: Comparison of the results of )0(')0('),0('' IT ��� andf  with the existing results of Ibrahim and Makinde [10] 

when .0.0,72.0Pr    EcK  
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Gr
 

Gc  
M

 
wF

 

Sc  

Ibrahim [10] 
 

HAM Results 

)0(''f�
 

)0('T�
 

)0('I�  )0(''f�  )0('T�  )0('I�  

0.1 0.1 0.1 0.1 0.62 0.888971 0.7965511 0.7253292 0.888967 0.7965538 0.7253252 

0.5 0.1 0.1 0.1 0.62 0.695974 0.8379008 0.7658018 0.695973 0.8379015 0.7658006 

1.0 0.1 0.1 0.1 0.62 0.475058 0.8752835 0.8020042 0.475071 0.8753137 0.8020275 

0.1 0.5 0.1 0.1 0.62 0.686927 0.8421370 0.7701717 0.686926 0.8421389 0.7701723 

0.1 1.0 0.1 0.1 0.62 0.457723 0.8818619 0.8087332 0.457704 0.8818575 0.8087296 

0.1 0.1 1.0 0.1 0.62 1.264488 0.7089150 0.6400051 1.264514 0.7088625 0.6400368 

0.1 0.1 0.1 1.0 0.62 0.570663 0.5601256 0.5271504 0.570658 0.5601314 0.5271426 

0.1 0.1 0.1 0.1 0.78 0.893454 0.7936791 0.8339779 0.893453 0.7936779 0.8339784 

0.1 0.1 0.1 0.1 2.62 0.912307 0.7847840 1.6504511 0.928472 0.7931287 1.9265042 


