

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-4, April 2015

 55 www.ijeas.org

Abstract— This research addresses the problem of computer

worms in the modern Internet. A worm is similar to a virus. A

worm is a self-propagating computer program that is being

increasingly and widely used to attack the Internet. It is

considered as a sub-class of a virus because it is also capable of

spreading from one computer to another. Worms are also

computer programs that are capable of replicating copies of

themselves via network connections. What makes it different

however is that unlike a computer virus a computer worm can

run itself without any human intervention? Because of these two

qualities of a worm, it is possible that there will be thousands of

worms in a computer even if only one computer worm is

transferred. For instance, the worm may send a copy of itself to

every person listed in the e-mail address book. The worm sent

may then send a copy of itself to every person who is listed in the

address book of the person who receives the email. Because this

may go on ad infinitum worms can not only cause damage to a

single computer and to other person’s computer but it can only
affect the functionality of Web servers and network servers to

the point that they can no longer function efficiently. One

example is the .blaster worm.

Index Terms— Worm, Hierarchical Model, Internet, Hosts,

Infection, Protected, Firewall

I. INTRODUCTION

 This model assumes a tree structure where the internal nodes

of the tree are firewalls and leaves are servers vulnerable to

worm attacks. See Figure 1.1. The firewalls are assumed to be

immune to infections [1, 2]. It is also assumed that we have

sensors at the vulnerable hosts that can detect an infection and

report it. All nodes at a particular level of the hierarchy have

equal number of children. Each level of the hierarchy has a

certain threshold associated with it. Once the number of

infection reports amongst a node's (firewall’s) children
reaches the threshold, the firewall turns on the filter rules

protecting all of its children, and alerts its parent that the

sub-tree below it is infected but now protected. This

escalation of alerts from one level to the next higher level in

the hierarchy and protection of sub-trees takes place

successively as the threshold for infections is reached at each

node. False alerts are handled by the firewalls by associating a

`Time to Live'(TTL) with the latest alert that they receive. If

the threshold is reached before the TTL expires the above

actions are taken. If the TTL expires before the threshold is

hit, all the alerts/infection reports are discarded and the

firewalls `back-off' from protecting its children [2, 4]. This is

Basheer Suleiman, Research Scholor,Umaru Musa Yar’aduva

University, Nigeria

Rashid Husain, Lecturer, Umaru Musa Yar’aduva University, Nigeria

Saifullahi Muhammad, Lecturer, Federal University, Dusin-Ma,

Nigeria

done because any action taken to contain a worm involves a

cost, and actions undertaken when there is no worm are of no

use.

Fig.1.1: Hierarchical relationship among firewalls and

vulnerable hosts in Hierarchical Model

II. MATHEMATICAL MODELS

We will derive some of the interesting quantities of the

hierarchical model of mitigation mathematically. As always,

the goal of this whole project is to minimize the number of

infections amongst our participating hosts [4, 7].

The first quantity of interest is the probability with which

infections are minimized. For this to happen, the root node

should trigger the protection of its children with the minimum

number of hosts being infected [3, 4].

Probability to minimize infection For the sake of this

derivation let us consider that the leaves are at level 0 of the

tree, the parents of the leaves are at level 1 and so on [23, 24].

For a node to protect its children, it should have received τ
alerts from its children.

That is the number of infections

A Study on Hierarchical Model of a Computer Worm

Defense System

Basheer Suleiman, Rashid Husain, Saifullahi Muhammad

A Study on Hierarchical Model of a Computer Worm Defense System

 56 www.ijeas.org

Similarly,

P (Some non-leaf node at level 2 to protect to its children)

P (Some non-leaf node at level 3 to protect to its children)

.

.

.

P (some non-leaf node at level (n - 1) to protect to its children)

But the only node at level n 1 is the root node. So, the

above expression gives us the probability that the root will be

alerted with the minimum number of infections at the leaves.

Time to alert root The next interesting mathematical result is

the time it takes to achieve complete protection. That is the

time it takes to alert the root so that it can trigger protection of

its children [17, 18].

For the sake of this derivation we will consider a small

sub-tree with just 2 levels. The top level contains the root

node and the leaves all form a group. Each infected leaf node

tries to infect all non-infected leaf nodes in its group [8, 9].

For each infected/non-infected leaf node pair, the time until

infection of the non-infected node by the infected one is

exponentially distributed. By scaling of time, we can take the

mean of this distribution to be 1.0. It is assumed that all

infecting processes operate stochastically independently [6,

12].

: Number of infected nodes in a group

: The threshold for alerts

: The group size

Then in state , there are exponential random

variables in progress at once, since each of the infected

nodes is trying to infect each of the g i uninfected nodes.

Then the time to go from state to will be the

minimum of exponentially distributed random

variables, and thus will itself be exponentially distributed1,

with mean [7,8].

For simplicity, we will consider the case the

more general case is handled similarly. The total expected

time to an alert, starting at the time the first member of the

group becomes infected, is [10, 24]

Using a standard approximation, (1.1) is approximately equal

to

Where C is the constant of integration. The latter quantity

goes to C as .

In other words, (1.1) remains bounded as . This is a

very interesting result, since it says that the mean time to alert

is bounded no matter how big our group size is [14, 15].

This is verified in our simulations.

III. DESCRIPTION OF THE SIMULATION

The Hierarchical Model simulation was implemented in Perl.

The simulation was done on a network modeled as a tree with

4 levels. Each level of the tree has 4 children. The simulation

is started by randomly infecting a single leaf node. The rate of

infection is fixed at the beginning of the simulation. The exact

number of machines that each infected machine tries to infect

is determined by using a Poisson distribution, with the mean

value as the rate of infection. The worm scenarios were

simulated with a large TTL value, 1000 [17, 21].

In each time slice, every infected machine tries to infect as

many other machines as dictated by the Poisson distribution.

Alerts are raised in the same time slice as an infection occurs.

And each alert is propagated as high as possible in the

hierarchy in the same time slice.

In the case of false alarms, the rate of false alarms is fixed at

the beginning of the simulation. Unlike worms where only

infected machines can infect others, there is no relationship

between one false alarm and the next. The machine that raises

a false alarm is determined randomly [19, 21]. All false alarm

scenarios were simulated with TTL window sizes varying

from 10 to 400 time units.

Simulations were run with thresholds at 75% and 50% of the

number of children. That is, if 75% of a node's children have

raised alerts, the node takes action. The structure of network

and thresholds were chosen so as to be comprehensible.

However, more complex structures with different number of

children at each level and different thresholds at each level

could also be simulated [24].

IV. DISCUSSION OF THE RESULTS

The basic results of two extreme cases where all parameters

are identical except the rate of infection which is very high

and very low are shown in Fig.1.2 and Fig.1.3. These two

figures show that the number of infections before complete

immunization could take place is almost the same for both the

cases [22].

The simulation was done for different rates of infection with 2

different levels of thresholds and the results are shown in

Fig.1.4. As we can see in Fig.1.4, the number of infections

before complete immunization takes place is almost the same

for varied rates of infection. But the time it takes is different

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-4, April 2015

 57 www.ijeas.org

and favorable too as seen in Fig.1.5. For high rates of

infection, maximum possible protection is achieved quicker

than for slower rates of spread [23]. This is a direct result of

the dependence of the alert propagation on the infection rate.

And we also see that the thresholds don't determine the time

taken as it takes almost the same time to achieve complete

immunization for 2 different threshold values. The only thing

that varies with threshold is the number of infected machines

[19, 20].

Thus the lessons learnt are [11, 13]:

 For any rate of infection, the number of victims is the

same.

Figure 1.2: Response for a low rate of infection. # represents

the number

Figure 1.3: Response for a high rate of infection. # represents

the number

Figure 1.4: Percentage of machines infected for different rates

of infection.

Figure 1.5: The time taken for complete protection is

inversely proportional to the infection rate.

 The time taken for complete protection is inversely

proportional to the infection rate.

 It is only the threshold levels that makes or breaks the

network. A low threshold helps to save a lot of

machines.

It is obvious that we can't forecast an unknown worm's

infection rate. But we can define our tolerance. So, we now

have a model which can tell us what should be the threshold,

for a given tolerance.

For example, if we want to save 90% of the Internet in the

event of a worm attack, we need to find out from simulations

what should be the thresholds at various levels of the network

hierarchy and set the firewall rules accordingly. Setting the

right thresholds at various levels of the hierarchy would

achieve our goal of saving 90% of the Internet for us slowly or

quickly, depending on the infection rate of the worm [21, 22,

23].

4.1 False Alarms

During false alarms the number of machines given protection

does not rise steadily as in case of real worms. Rather, the

A Study on Hierarchical Model of a Computer Worm Defense System

 58 www.ijeas.org

number of machines protected keeps oscillating as the

systems backs off if there are no alerts within the TTL, as seen

in Fig.1.6. This oscillation is an indication of a series of false

alarms. It can also be considered as an indication of a Stealth

Worm spreading very slowly. This is discussed in the next

sub-section [1, 3].

Fig.1.7 shows the average number of machines that are given

protection in response to false alarms for various TTLs and

various false alarm rates. This protection involves a price and

can be considered as a self inicted DoS attack [4, 5]. As we

can see, if the TTLs are low enough, we pay a much lower

price. But we would not be able to capture Stealth worms as is

seen in figure 1.9. At the same time, a high TTL would raise

false positives even for low rates of false alarms and raise

costs unnecessarily.

4.2 Stealth Worms

We can see the same oscillating pattern in figure 1.8 and

figure 1.9 which were recorded for a Stealth worm simulation

with a TTL of 60. Figure 1.8 shows a case where the stealth

worm is suppressed because of a low threshold of the defense

system [16, 17].

Figure 1.6: The number of machines that are protected keeps

oscillating in case of false alarms. # represents the number

Figure 1.7: Average number of machine protected for

different False Alarm rates for varying TTLs.

Figure 1.8: A stealth worm overpowered with a low threshold.

represents the number

Figure 1.9: A Stealth worm sneaking in due to a high

threshold.

Fig.1.9 shows a scenario where the protection mechanism is

able to sense that something is wrong. But due to the high

threshold, the rate of alerts received is just low enough that the

TTL expires frequently and our system backs-off reasoning it

as a false alarm. This suggests that we need a higher TTL or a

lower threshold, which we addressed above. But a high TTL

means a high cost due to false alarms which may be

unacceptable [23, 24].

Since an oscillating curve means a series of false alarms or a

stealth worm which is slow spreading, we can afford the

luxury of human intervention.

So, we need to arrive at a compromise saying that we will look

out for Stealth worms which only spread above a certain

speed. In any case, slower worms will get exposed as more

and more machines are infected, as this will increase the

overall rate of infection. So, the TTL also dictates how many

machines we will have to sacrifice before our defense

mechanism takes over. We may even lose all machines before

we respond if we choose a very small TTL [16, 19].

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-4, April 2015

 59 www.ijeas.org

V. CONCLUSIONS

This model uses a hierarchical relationship between

co-operating hosts to mitigate the spread of a worm. Each leaf

node is a vulnerable host and each non-leaf node is an

invulnerable control structure which can process alerts sent by

sensors at leaves and each non-leaf can issue appropriate

instructions to its children.

This paper also provided mathematical analyses of the

hierarchical model of worm defense and showed that the time

to alert the root of the hierarchy is bounded.

From this model, and the simulations, we can determine the

thresholds required at various levels of the hierarchy for a

given tolerance of lost machines. We can also determine the

TTL to stop a Stealth worm of a given speed by looking at the

usual rate of false alarms in an environment. With the

threshold levels and TTLs thus determined, we can effectively

inhibit the spread of worms without losing much due to false

alarms.

REFERENCES

[1] C.G.Senthilkumar, (2002). “Worms: How to stop them? - A proposal for

Master's thesis," University of California, Davis.

http://wwwcsif.cs.ucdavis.

[2] C.G.Senthilkumar and Karl Levitt, (2003). “\Hierarchically Controlled

Co-operative Response Strategies for Internet Scale Attacks,"

University of California, Davis. http://wwwcsif.cs.ucdavis.edu.

[3] D.Farmer and W.Venema, (2004). “Security Administrator's tool for
analyzing networks" http://www._sh.com//zen/satan/satan.html.

[4] D.Noijiri, J.Rowe, and K.Levitt, (2002). “Cooperative Response
Strategies for Large Sacle Attack Mitigation," DISCEX.

[5] Mark W. Eichin and Jon A. Rochlis, (1988). “With Microscope and
Tweezers: An analysis of the Internet Virus of November 1988," In

Proceedings of the symposium on Research in Security and Privacy,

Oakland, CA.

[6] Dan Farmer and Eugene H. Spa_ord, (1990). “The cops Security Checker
System ," USENIX.

[7] Gene Kim and Eugene H. Spa_ord, (1993). “The design of a system

integrity monitor: Tripwire," Technical Report CSD-TR-93-071,

Purdue University, West Lafayette, IN, USA.

[8] David Moore et al. (2003). “Inside the Slammer Worm," In IEEE

Security and Privacy.

[9] Carey Nachenberg, “Computer Parasitology," Symantec AntiVirus

Research Center.

[10] Carey Nachenberg. “Understanding and Managing Polymorphic
Viruses," Symantec AntiVirus Research Center.

[11] Don Seeley, (1989). “A Tour of the Worm," In Proceedings of 1989

Winter USENIX Conference, pp. 287 -304.

[12] John F. Shoch and Jon A. Hupp, (1982). ”The Worm Programs - Early

Experience with a Distributed Computation," Communications of the

ACM, Vol.25(3) pp: 172 -180.

[13] Eugene H. Spa_ord, (1988). “The Internet Worm Program: An
Analysis," Technical Report CSD-TR-823, Purdue University, West

Lafayette, IN, USA.

[14] Eugene H. Spa_ord, (1989). “The Internet Worm: Crisis and aftermath,"
Communications of the ACM, Vol. 32(6), pp: 678 – 687.

[15] Eugene H. Spa_ord, (1991). “The Internet Worm Incident," Technical

Report CSD-TR-933, Purdue University, West Lafayette, IN, USA.

[16] S.Staniford-Chen et al. (1996). “A Graph-Based Intrusion Detection

System for Large Networks," In The 19th National Information Systems

Security Conference, Volume 2, pages 361 – 370.

[17] Stuart Staniford, Gary Grim, and Roelof Jonkman, (2001). “Flash
Worms: Thirty Seconds to Infect the Internet," Silion Defense - Security

Information.

[18] Stuart Staniford, Vern Paxson, and Nicholas Weaver (2002). “How to
Own the Internet in Your Spare Time," In Proceedings of USENIX

Conference, Berkeley, Usenix Association, USENIX.

[19] Nicholas Weaver, (2002). “Future Defenses: Technologies to Stop the
Unknown Attack Internet”,
http://online.securityfocus.com/infocus/1547.

[20] Nicholas Weaver, (2002). “Potential Strategies for High Speed Active

Worms: A Worst Case Analysis," UC Berkeley.

[21] Nicholas Weaver, (2002). “Warhol Worms: The Potential for Very Fast
Internet Plagues," UC Berkeley.

[22] Tarkan Yetiser, (1993). “Polymorphic Viruses Implementation,
Detection and Protection," VDS Advanced Research Group.

[23] Dan Zerkle and Karl Levitt, (1996). “Netkuang - a multi-host

con_guration vulnerability checker,” USENIX.

[24] Husain Rashid and Mansir Abubakar, (2015). “A Study on Friends
Model of a Computer Worm Defense System”, IJEAS, Vol. 2(3), pp:

56-59.

.

