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Abstract— This research addresses the problem of computer 

worms in the modern Internet. A worm is similar to a virus. A 

worm is a self-propagating computer program that is being 

increasingly and widely used to attack the Internet. It is 

considered as a sub-class of a virus because it is also capable of 

spreading from one computer to another.  Worms are also 

computer programs that are capable of replicating copies of 

themselves via network connections.  What makes it different 

however is that unlike a computer virus a computer worm can 

run itself without any human intervention? Because of these two 

qualities of a worm, it is possible that there will be thousands of 

worms in a computer even if only one computer worm is 

transferred.  For instance, the worm may send a copy of itself to 

every person listed in the e-mail address book.  The worm sent 

may then send a copy of itself to every person who is listed in the 

address book of the person who receives the email.  Because this 

may go on ad infinitum worms can not only cause damage to a 

single computer and to other person’s computer but it can only 
affect the functionality of Web servers and network servers to 

the point that they can no longer function efficiently.  One 

example is the .blaster worm. 

 

 

Index Terms— Worm, Hierarchical Model, Internet, Hosts, 

Infection, Protected, Firewall 

 

I. INTRODUCTION 

 

  This model assumes a tree structure where the internal nodes 

of the tree are firewalls and leaves are servers vulnerable to 

worm attacks. See Figure 1.1. The firewalls are assumed to be 

immune to infections [1, 2]. It is also assumed that we have 

sensors at the vulnerable hosts that can detect an infection and 

report it. All nodes at a particular level of the hierarchy have 

equal number of children. Each level of the hierarchy has a 

certain threshold associated with it. Once the number of 

infection reports amongst a node's (firewall’s) children 
reaches the threshold, the firewall turns on the filter rules 

protecting all of its children, and alerts its parent that the 

sub-tree below it is infected but now protected. This 

escalation of alerts from one level to the next higher level in 

the hierarchy and protection of sub-trees takes place 

successively as the threshold for infections is reached at each 

node. False alerts are handled by the firewalls by associating a 

`Time to Live'(TTL) with the latest alert that they receive. If 

the threshold is reached before the TTL expires the above 

actions are taken. If the TTL expires before the threshold is 

hit, all the alerts/infection reports are discarded and the 

firewalls `back-off' from protecting its children [2, 4]. This is 
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done because any action taken to contain a worm involves a 

cost, and actions undertaken when there is no worm are of no 

use. 

 
Fig.1.1: Hierarchical relationship among firewalls and 

vulnerable hosts in Hierarchical Model 

II. MATHEMATICAL MODELS 

We will derive some of the interesting quantities of the 

hierarchical model of mitigation mathematically. As always, 

the goal of this whole project is to minimize the number of 

infections amongst our participating hosts [4, 7]. 

The first quantity of interest is the probability with which 

infections are minimized. For this to happen, the root node 

should trigger the protection of its children with the minimum 

number of hosts being infected [3, 4]. 

 

Probability to minimize infection For the sake of this 

derivation let us consider that the leaves are at level 0 of the 

tree, the parents of the leaves are at level 1 and so on [23, 24]. 

 

 

 

 

 

 

 

 

 
For a node to protect its children, it should have received τ 
alerts from its children. 

That is the number of infections  
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Similarly, 

P (Some non-leaf node at level 2 to protect to its children) 

 

 
P (Some non-leaf node at level 3 to protect to its children) 
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P (some non-leaf node at level (n - 1) to protect to its children) 

 

 

But the only node at level n  1 is the root node. So, the 

above expression gives us the probability that the root will be 

alerted with the minimum number of infections at the leaves. 

Time to alert root The next interesting mathematical result is 

the time it takes to achieve complete protection. That is the 

time it takes to alert the root so that it can trigger protection of 

its children [17, 18]. 

For the sake of this derivation we will consider a small 

sub-tree with just 2 levels. The top level contains the root 

node and the leaves all form a group. Each infected leaf node 

tries to infect all non-infected leaf nodes in its group [8, 9]. 

For each infected/non-infected leaf node pair, the time until 

infection of the non-infected node by the infected one is 

exponentially distributed. By scaling of time, we can take the 

mean of this distribution to be 1.0. It is assumed that all 

infecting processes operate stochastically independently [6, 

12]. 

: Number of infected nodes in a group 

: The threshold for alerts 

: The group size 

Then in state , there are  exponential random 

variables in progress at once, since each of the  infected 

nodes is trying to infect each of the g i uninfected nodes. 

Then the time to go from state  to  will be the 

minimum of  exponentially distributed random 

variables, and thus will itself be exponentially distributed1, 

with mean   [7,8]. 

For simplicity, we will consider the case  the 

more general case is handled similarly. The total expected 

time to an alert, starting at the time the first member of the 

group becomes infected, is [10, 24] 

 
Using a standard approximation, (1.1) is approximately equal 

to 

 
Where C is the constant of integration. The latter quantity 

goes to C as . 

In other words, (1.1) remains bounded as . This is a 

very interesting result, since it says that the mean time to alert 

is bounded no matter how big our group size is [14, 15]. 

This is verified in our simulations. 

III. DESCRIPTION OF THE SIMULATION 

The Hierarchical Model simulation was implemented in Perl. 

The simulation was done on a network modeled as a tree with 

4 levels. Each level of the tree has 4 children. The simulation 

is started by randomly infecting a single leaf node. The rate of 

infection is fixed at the beginning of the simulation. The exact 

number of machines that each infected machine tries to infect 

is determined by using a Poisson distribution, with the mean 

value as the rate of infection. The worm scenarios were 

simulated with a large TTL value, 1000 [17, 21]. 

In each time slice, every infected machine tries to infect as 

many other machines as dictated by the Poisson distribution. 

Alerts are raised in the same time slice as an infection occurs. 

And each alert is propagated as high as possible in the 

hierarchy in the same time slice. 

In the case of false alarms, the rate of false alarms is fixed at 

the beginning of the simulation. Unlike worms where only 

infected machines can infect others, there is no relationship 

between one false alarm and the next. The machine that raises 

a false alarm is determined randomly [19, 21]. All false alarm 

scenarios were simulated with TTL window sizes varying 

from 10 to 400 time units. 

Simulations were run with thresholds at 75% and 50% of the 

number of children. That is, if 75% of a node's children have 

raised alerts, the node takes action. The structure of network 

and thresholds were chosen so as to be comprehensible. 

However, more complex structures with different number of 

children at each level and different thresholds at each level 

could also be simulated [24]. 

IV. DISCUSSION OF THE RESULTS  

The basic results of two extreme cases where all parameters 

are identical except the rate of infection which is very high 

and very low are shown in Fig.1.2 and Fig.1.3. These two 

figures show that the number of infections before complete 

immunization could take place is almost the same for both the 

cases [22]. 

The simulation was done for different rates of infection with 2 

different levels of thresholds and the results are shown in 

Fig.1.4. As we can see in Fig.1.4, the number of infections 

before complete immunization takes place is almost the same 

for varied rates of infection. But the time it takes is different 
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and favorable too as seen in Fig.1.5. For high rates of 

infection, maximum possible protection is achieved quicker 

than for slower rates of spread [23]. This is a direct result of 

the dependence of the alert propagation on the infection rate. 

And we also see that the thresholds don't determine the time 

taken as it takes almost the same time to achieve complete 

immunization for 2 different threshold values. The only thing 

that varies with threshold is the number of infected machines 

[19, 20]. 

 

Thus the lessons learnt are [11, 13]: 

 For any rate of infection, the number of victims is the 

same. 

 
Figure 1.2: Response for a low rate of infection. # represents 

the number 

 
Figure 1.3: Response for a high rate of infection. # represents 

the number 

 
Figure 1.4: Percentage of machines infected for different rates 

of infection. 

 
Figure 1.5: The time taken for complete protection is 

inversely proportional to the infection rate. 

 The time taken for complete protection is inversely 

proportional to the infection rate. 

 It is only the threshold levels that makes or breaks the 

network. A low threshold helps to save a lot of 

machines. 

It is obvious that we can't forecast an unknown worm's 

infection rate. But we can define our tolerance. So, we now 

have a model which can tell us what should be the threshold, 

for a given tolerance. 

For example, if we want to save 90% of the Internet in the 

event of a worm attack, we need to find out from simulations 

what should be the thresholds at various levels of the network 

hierarchy and set the firewall rules accordingly. Setting the 

right thresholds at various levels of the hierarchy would 

achieve our goal of saving 90% of the Internet for us slowly or 

quickly, depending on the infection rate of the worm [21, 22, 

23]. 

4.1 False Alarms 

During false alarms the number of machines given protection 

does not rise steadily as in case of real worms. Rather, the 
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number of machines protected keeps oscillating as the 

systems backs off if there are no alerts within the TTL, as seen 

in Fig.1.6. This oscillation is an indication of a series of false 

alarms. It can also be considered as an indication of a Stealth 

Worm spreading very slowly. This is discussed in the next 

sub-section [1, 3]. 

Fig.1.7 shows the average number of machines that are given 

protection in response to false alarms for various TTLs and 

various false alarm rates. This protection involves a price and 

can be considered as a self inicted DoS attack [4, 5]. As we 

can see, if the TTLs are low enough, we pay a much lower 

price. But we would not be able to capture Stealth worms as is 

seen in figure 1.9. At the same time, a high TTL would raise 

false positives even for low rates of false alarms and raise 

costs unnecessarily. 

4.2 Stealth Worms 

We can see the same oscillating pattern in figure 1.8 and 

figure 1.9 which were recorded for a Stealth worm simulation 

with a TTL of 60. Figure 1.8 shows a case where the stealth 

worm is suppressed because of a low threshold of the defense 

system [16, 17]. 

 
Figure 1.6: The number of machines that are protected keeps 

oscillating in case of false alarms. # represents the number 

 
Figure 1.7: Average number of machine protected for 

different False Alarm rates for varying TTLs. 

 
Figure 1.8: A stealth worm overpowered with a low threshold. 

# represents the number 

 

 
Figure 1.9: A Stealth worm sneaking in due to a high 

threshold. 

 

Fig.1.9 shows a scenario where the protection mechanism is 

able to sense that something is wrong. But due to the high 

threshold, the rate of alerts received is just low enough that the 

TTL expires frequently and our system backs-off reasoning it 

as a false alarm. This suggests that we need a higher TTL or a 

lower threshold, which we addressed above. But a high TTL 

means a high cost due to false alarms which may be 

unacceptable [23, 24]. 

Since an oscillating curve means a series of false alarms or a 

stealth worm which is slow spreading, we can afford the 

luxury of human intervention. 

So, we need to arrive at a compromise saying that we will look 

out for Stealth worms which only spread above a certain 

speed. In any case, slower worms will get exposed as more 

and more machines are infected, as this will increase the 

overall rate of infection. So, the TTL also dictates how many 

machines we will have to sacrifice before our defense 

mechanism takes over. We may even lose all machines before 

we respond if we choose a very small TTL [16, 19]. 
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V. CONCLUSIONS 

This model uses a hierarchical relationship between 

co-operating hosts to mitigate the spread of a worm. Each leaf 

node is a vulnerable host and each non-leaf node is an 

invulnerable control structure which can process alerts sent by 

sensors at leaves and each non-leaf can issue appropriate 

instructions to its children. 

This paper also provided mathematical analyses of the 

hierarchical model of worm defense and showed that the time 

to alert the root of the hierarchy is bounded. 

From this model, and the simulations, we can determine the 

thresholds required at various levels of the hierarchy for a 

given tolerance of lost machines. We can also determine the 

TTL to stop a Stealth worm of a given speed by looking at the 

usual rate of false alarms in an environment. With the 

threshold levels and TTLs thus determined, we can effectively 

inhibit the spread of worms without losing much due to false 

alarms. 
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