Some Properties of Semi-continuous, Pre-continuous and α-continuous Mappings

Yasser A. Abou-Elwan

Abstract— This paper investigates some new characteristics of semi-continuous, pre-continuous and α -continuous mappings. We provides two theorems that are equivalent to the definitions of pre-continuous and M-semi-continuous mappings. A condition has been proposed, which makes the injective mapping pre-open. We have proved that the domain of the injective α -continuous mapping with closed graph is Housdorff space. In addition, more other conditions put on the α -continuous mapping, which make its graph closed.

Index Terms—closed graph, semi-continuous mappings, pre-continuous mapping, α -continuous mapping, α -open mapping, M-semi-continuous mapping

I. INTRODUCTION

A subset A of the space X is called a semi-open [5] (resp. α -set [7], pre-open [1], β -open [2], regular open[8]) $A \subset A^{\ast-}$ (**resp.** $A \subset A^{\ast-\ast}$, $A \subset A^{-\ast-}$, $A \subset A^{-\ast-}$, $A = A^{-\ast}$). The complement of a semi-open (resp. α -set, pre-open, β -set, regular open) set, is called a semi-closed[5] (resp. α -closed [6], pre-closed[1], β -closed[2], regular closed[7]). The family of all semi-open (resp. α -set, pre-open, β -open, regular open) sets of a space X will be denoted by SO(X) (resp. $\alpha(X)$, PO(X), β O(X), RO(X)).

A mapping $f: X \to Y$ is called semi-continuous [5] (resp. α -continuous [6], pre-continuous [1], and β - continuous [4]) if the inverse image of every open set in Y is semi-open (resp. α -set, pre-open, β -open) in X.

Theorem 1.1. [5]. Let $f : X \to Y$ be a mapping, then the following statements are equivalent:

i) f is β -continuous.

ii) For every $x \in X$ and every open set $V \subset Y$ containing f(x), there exists a β -open set $W \subset X$ containing x such that $f(W) \subset V$.

iii) The inverse image of each closed set in Y is $\beta\text{-closed}$ in X.

iv) $(f^{-1}(B))^{\circ \circ} \subset f^{-1}(\overline{B})$, for every $B \subset Y$. v) $f(A^{\circ \circ}) \subset (f(A)\overline{)}$, for every $A \subset X$.

Theorem 1.2. [1]. Let f: $X \rightarrow Y$ be a mapping, then the following statements are equivalent:

i) f is β -open.

ii) For every $x \in X$ and every neighborhood U of x, there exists a β -open set $W \subset Y$ containing f(x) such that $W \subset f(U)$. iii) $f^{-1}(B^{\circ \circ \circ}) \subset (f^{-1}(B)\overline{)}$, for every $B \subset Y$.

iv) If f is bijective, then $(f(A))^{0^{-0}} \subset f(\overline{A})$, for every $A \subset X$. *Definition 1.1.* [3],[5] A mapping $f: X \to Y$ is said to have a closed graph , if its graph $G(f) = \{(x, y) : y = f(x), x \in X\}$ in the product space $X \times Y$ is a closed set. Equivalently,

Yasser A. Abou-Elwan, Department of Mathematics, Faculty of Sciences, University of Omer Almukhtar, Libya.

G(f) is a closed subset of $X \times Y$, if and only of for each $x \in X$, and $y \neq f(x)$, there exist open sets U and V containing x and y respectively such that $f(U) \cap V = \emptyset$.

II. SEMI-CONTINUOUS, PRE-CONTINUOUS AND A -CONTINUOUS MAPPINGS.

Theorem 2.1. A mapping $f : X \to Y$ is pre-continuous iff $f(\overline{U}) \subset (f(U))^-$, for every open set $U \subset X$.

Proof. Let f be a pre-continuous, then by theorem 1.1., $f(U^{\circ-}) \subset (f(U))^{-}$, for every U, since $U \subset X$, since $U \subset X$ is open, then $f(\overline{U}) \subset (f(U))^{-}$.

Conversely, let $V \subset Y$ be open, W = Y - V, and let $U = (f^{-1}(W))^{\circ}$ be an open subset of X, then

$$f(f^{-1}(W))^{\circ} \subset (f((f^{-1}(W)^{\circ}))^{-} \subset (f(f^{-1}(W)))^{-} \subset \overline{W} = W$$

. So, $(f^{-1}(W))^{\circ-} \subset f^{-1}(W)$ and f is pre-continuous.

Theorem 2.2. An injective mapping $f: X \to Y$ is pre-open iff $f^{-1}(\overline{B}) \subset (f^{-1}(B))^-$, for every open set $B \subset Y$.

Proof. Suppose f is pre-open then by Theorem 1.2., $f^{-1}(\mathbb{B}^{\bullet-}) \subset (f^{-1}(\mathbb{B}))^-$. Since $\mathbb{B} \subset Y$ is open, $f^{-1}(\overline{\mathbb{B}}) \subset (f^{-1}(\mathbb{B}))^-$

Conversely, let $V \subseteq X$ be an open set, W = X - V and let $B = (f(W))^{\circ}$ be an open subset of Y.

Then

$$f^{-1}((f(W))^{\circ-}) \subset (f^{-1}(W))^{\circ})^{-} \subset (f^{-1}(f(W)))^{-} = \overline{W} = W.$$

Hence $(f(W))^{\circ-} \subset f(W)$, and so, f is pre-open.

Theorem 2.3. Let $f : X \to Y$ be an injective α -continuous mapping with closed graph. Then X is a T₂-space.

Proof. Let $x_1, x_2 \in X$, $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Since G(f) is closed, then there exist open sets U and V containing x_1 and $f(x_2)$ respectively, such that $f(U) \cap V = \phi$. Thus $f^{-1}(V) \subset X - U$, and $(f^{-1}(V))^{\bullet-\bullet} \subset (X - U)^{\bullet-\bullet} = (X - U^{-\bullet})^{\bullet}$. Since f is α -continuous, $x_2 \in f^{-1}(V) \subset (X - \overline{U}^{\bullet})^{\bullet}$. Therefore, X is a T_2 -space.

Theorem 2.4. Let $f: X \to Y$ be α -continuous mapping where Y is locally connected T_2 -space. If f and f^{-1} map connected sets into connected sets, then the graph G(f) of f is closed.

Proof. Let $x \in X$, and $y \in f(x)$, $y \in Y$. Since Y is T_2 -space, there exist two disjoint open sets U and V containing y and f(x), respectively. Since Y is locally connected, there exist an

open connected set W such that $f(x) \in W \subseteq V$. So $W \cap U = \phi$ and $f^{-1}(W) \cap f^{-1}(U) = \phi$. Since f is α -continuous, $\mathbf{x} \in \mathbf{f^{-1}}(\mathbf{W}) \subset (\mathbf{f^{-1}}(\mathbf{W}))^{\circ-\circ}.$

Now since any point $p \in f^{-1}(U)$ is a limit point of the connected set $f^{-1}(W)$, then $\{p\} \cup f^{-1}(W)$ is connected. But, $f({p} \cup f^{-1}(W))$ has points in each of the two disjoint open sets U and W and so, $f({p} \cup f^{-1}(W))$ is not connected, which is a contradiction to our assumption that f maps connected sets into connected sets . Hence (f⁻¹ (W))^{••} \cap f⁻¹(U) = ϕ and f (f⁻¹(W))^{•-•} \cap U = ϕ , therefore G(f) is closed.

Theorem 2.5. Let f be α -continuous surjection, then Y is connected if X is connected.

Proof. Assume Y is not connected and X is connected, then there are two disjoint open sets $V_i \subseteq Y$, $i \in \{1,2\}$ such that $\bigcup_i V_i = Y$ and $\bigcap_i V_i = \phi$. Since f is α -continuous and since α -continuity implies β -continuity, then f^{-1} (V_i) $\subset (f^{-1}(V_i))^{\circ-\circ} \subset f^{-1}(\overline{V}_i)$. Since V_i is open and closed for every $i \in \{1,2\}$,

 $\bigcap_{i} f^{-1}(V_{i}) \subset \bigcap_{i} (f^{-1}(V_{i}))^{\circ-\circ} \subset \bigcap_{i} f^{-1}(\overline{V}_{i}) \cap_{i} f^{-1}(V_{i}) = \phi.$ Hence X is not connected, and this leads to a contradiction which proves that Y is connected.

Theorem 2.6. For a bijective mapping f, f is α -open iff $(f(U))^{-\circ-} \subseteq f(\overline{U})$, for every $U \subseteq X$.

Proof. Suppose f is α -open. Let $U \subseteq X$, then

$$f(X - U) \subset (f(X - U))^{U-1} \subset (f(X - U))^{U-1}$$

Since f is bijective, $f(\overline{U}) \supset (f(U))^{-\circ-}$.

Conversely, suppose U is an open set of X. Then $f(X - U) = f(X - U) \supset (f(X - U))^{-\circ-}.$

Since f is bijective, $f(U) \subset (f(U))^{\circ-\circ}$, and so, f is α -open.

Definition 2.1.[1]. A mapping $f : X \rightarrow Y$ is called M-semi-continuous if the inverse image of every semi-open set in Y is semi-open in X.

The following theorem gives a new property of a semi-continuous mappings.

Theorem 2.7. Let $f: X \rightarrow Y$ be semi-continuous and $f^{-1}(\overline{V}) \subset (f^{-1}(V))^{-1}$ for every semi-open set $V \subseteq Y$, then f is M-semi-continuous.

Proof. Let V be semi-open set in X. Since f is semi-continuous, Then $f^{-1}(V) \subset f^{-1}(V^{\circ-}) \subset (f^{-1}(V^{\circ}))^{-} \subset (f^{-1}(V^{\circ}))^{\circ} =$ $f^{-1}(V^{\circ}))^{\circ-} \subset$ (f⁻¹(V))^{e-}. Hence f is M-semi-continuous.

REFERENCES

- [1] Abd El-Monsef, M.E., . Studies on some pre-topological concepts, vol.11, pacific, J. Math., 1980, pp.339-347.
- [2] Abd El-Monsef, M.E., El-Deeb, S .N., Mahmoud, F.A., On β open set, vol. 13, pacific, J. Math., 1981, pp.561-569.
- [3] Husain, J., Topology and Maps , Plenum Press, New York, 1977.
- [4] Levine. N., A de composition of continuity in topological spaces, vol.68, Amer. Math. Monthely, 1961, pp.44-46.
- [5] Levine. N., Semi-open sets and semi continuity in topological spaces, vol.70, Amer. Math. Monthely, 1963, pp.36-41
- [6] Mashhour, A. S.; Hasanian, I. A.;El-Deeb, S. N. , α- continuous and αopen mappings, vol.41, Acta. Math. Hungar, 1983, pp.213-218.
- [7] Najstad, O., On some classes of nearly open sets, vol.15, pacific, J. Math., 1965, pp.961-970.
- [8] Singal, M. J., Rani, A., Almost-continuous mappings, vol.16, Yokohama, Math. J., 1968, pp.63 -73.